Properties

Label 180.3.l.c.73.2
Level $180$
Weight $3$
Character 180.73
Analytic conductor $4.905$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,3,Mod(37,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 180.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.90464475849\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.2
Root \(1.58114 - 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 180.73
Dual form 180.3.l.c.37.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.74342 - 1.58114i) q^{5} +(-1.00000 + 1.00000i) q^{7} +15.8114 q^{11} +(-6.00000 - 6.00000i) q^{13} +(15.8114 - 15.8114i) q^{17} +14.0000i q^{19} +(15.8114 + 15.8114i) q^{23} +(20.0000 - 15.0000i) q^{25} -15.8114i q^{29} +16.0000 q^{31} +(-3.16228 + 6.32456i) q^{35} +(-30.0000 + 30.0000i) q^{37} -31.6228 q^{41} +(-54.0000 - 54.0000i) q^{43} +(-47.4342 + 47.4342i) q^{47} +47.0000i q^{49} +(-63.2456 - 63.2456i) q^{53} +(75.0000 - 25.0000i) q^{55} +79.0569i q^{59} +54.0000 q^{61} +(-37.9473 - 18.9737i) q^{65} +(-34.0000 + 34.0000i) q^{67} -63.2456 q^{71} +(-65.0000 - 65.0000i) q^{73} +(-15.8114 + 15.8114i) q^{77} +108.000i q^{79} +(47.4342 + 47.4342i) q^{83} +(50.0000 - 100.000i) q^{85} -126.491i q^{89} +12.0000 q^{91} +(22.1359 + 66.4078i) q^{95} +(-69.0000 + 69.0000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} - 24 q^{13} + 80 q^{25} + 64 q^{31} - 120 q^{37} - 216 q^{43} + 300 q^{55} + 216 q^{61} - 136 q^{67} - 260 q^{73} + 200 q^{85} + 48 q^{91} - 276 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.74342 1.58114i 0.948683 0.316228i
\(6\) 0 0
\(7\) −1.00000 + 1.00000i −0.142857 + 0.142857i −0.774918 0.632061i \(-0.782209\pi\)
0.632061 + 0.774918i \(0.282209\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 15.8114 1.43740 0.718699 0.695321i \(-0.244738\pi\)
0.718699 + 0.695321i \(0.244738\pi\)
\(12\) 0 0
\(13\) −6.00000 6.00000i −0.461538 0.461538i 0.437621 0.899160i \(-0.355821\pi\)
−0.899160 + 0.437621i \(0.855821\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 15.8114 15.8114i 0.930082 0.930082i −0.0676289 0.997711i \(-0.521543\pi\)
0.997711 + 0.0676289i \(0.0215434\pi\)
\(18\) 0 0
\(19\) 14.0000i 0.736842i 0.929659 + 0.368421i \(0.120102\pi\)
−0.929659 + 0.368421i \(0.879898\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 15.8114 + 15.8114i 0.687452 + 0.687452i 0.961668 0.274216i \(-0.0884184\pi\)
−0.274216 + 0.961668i \(0.588418\pi\)
\(24\) 0 0
\(25\) 20.0000 15.0000i 0.800000 0.600000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 15.8114i 0.545220i −0.962125 0.272610i \(-0.912113\pi\)
0.962125 0.272610i \(-0.0878869\pi\)
\(30\) 0 0
\(31\) 16.0000 0.516129 0.258065 0.966128i \(-0.416915\pi\)
0.258065 + 0.966128i \(0.416915\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.16228 + 6.32456i −0.0903508 + 0.180702i
\(36\) 0 0
\(37\) −30.0000 + 30.0000i −0.810811 + 0.810811i −0.984755 0.173945i \(-0.944349\pi\)
0.173945 + 0.984755i \(0.444349\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −31.6228 −0.771287 −0.385644 0.922648i \(-0.626021\pi\)
−0.385644 + 0.922648i \(0.626021\pi\)
\(42\) 0 0
\(43\) −54.0000 54.0000i −1.25581 1.25581i −0.953073 0.302741i \(-0.902098\pi\)
−0.302741 0.953073i \(-0.597902\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −47.4342 + 47.4342i −1.00924 + 1.00924i −0.00928062 + 0.999957i \(0.502954\pi\)
−0.999957 + 0.00928062i \(0.997046\pi\)
\(48\) 0 0
\(49\) 47.0000i 0.959184i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −63.2456 63.2456i −1.19331 1.19331i −0.976131 0.217181i \(-0.930314\pi\)
−0.217181 0.976131i \(-0.569686\pi\)
\(54\) 0 0
\(55\) 75.0000 25.0000i 1.36364 0.454545i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 79.0569i 1.33995i 0.742384 + 0.669974i \(0.233695\pi\)
−0.742384 + 0.669974i \(0.766305\pi\)
\(60\) 0 0
\(61\) 54.0000 0.885246 0.442623 0.896708i \(-0.354048\pi\)
0.442623 + 0.896708i \(0.354048\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −37.9473 18.9737i −0.583805 0.291903i
\(66\) 0 0
\(67\) −34.0000 + 34.0000i −0.507463 + 0.507463i −0.913747 0.406284i \(-0.866824\pi\)
0.406284 + 0.913747i \(0.366824\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −63.2456 −0.890782 −0.445391 0.895336i \(-0.646935\pi\)
−0.445391 + 0.895336i \(0.646935\pi\)
\(72\) 0 0
\(73\) −65.0000 65.0000i −0.890411 0.890411i 0.104151 0.994562i \(-0.466788\pi\)
−0.994562 + 0.104151i \(0.966788\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −15.8114 + 15.8114i −0.205343 + 0.205343i
\(78\) 0 0
\(79\) 108.000i 1.36709i 0.729909 + 0.683544i \(0.239562\pi\)
−0.729909 + 0.683544i \(0.760438\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 47.4342 + 47.4342i 0.571496 + 0.571496i 0.932546 0.361050i \(-0.117582\pi\)
−0.361050 + 0.932546i \(0.617582\pi\)
\(84\) 0 0
\(85\) 50.0000 100.000i 0.588235 1.17647i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 126.491i 1.42125i −0.703572 0.710624i \(-0.748413\pi\)
0.703572 0.710624i \(-0.251587\pi\)
\(90\) 0 0
\(91\) 12.0000 0.131868
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 22.1359 + 66.4078i 0.233010 + 0.699030i
\(96\) 0 0
\(97\) −69.0000 + 69.0000i −0.711340 + 0.711340i −0.966816 0.255475i \(-0.917768\pi\)
0.255475 + 0.966816i \(0.417768\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 79.0569 0.782742 0.391371 0.920233i \(-0.372001\pi\)
0.391371 + 0.920233i \(0.372001\pi\)
\(102\) 0 0
\(103\) −95.0000 95.0000i −0.922330 0.922330i 0.0748637 0.997194i \(-0.476148\pi\)
−0.997194 + 0.0748637i \(0.976148\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 110.680 110.680i 1.03439 1.03439i 0.0350027 0.999387i \(-0.488856\pi\)
0.999387 0.0350027i \(-0.0111440\pi\)
\(108\) 0 0
\(109\) 46.0000i 0.422018i 0.977484 + 0.211009i \(0.0676750\pi\)
−0.977484 + 0.211009i \(0.932325\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 79.0569 + 79.0569i 0.699619 + 0.699619i 0.964328 0.264709i \(-0.0852760\pi\)
−0.264709 + 0.964328i \(0.585276\pi\)
\(114\) 0 0
\(115\) 100.000 + 50.0000i 0.869565 + 0.434783i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 31.6228i 0.265738i
\(120\) 0 0
\(121\) 129.000 1.06612
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 71.1512 102.774i 0.569210 0.822192i
\(126\) 0 0
\(127\) 35.0000 35.0000i 0.275591 0.275591i −0.555755 0.831346i \(-0.687571\pi\)
0.831346 + 0.555755i \(0.187571\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 205.548 1.56907 0.784535 0.620085i \(-0.212902\pi\)
0.784535 + 0.620085i \(0.212902\pi\)
\(132\) 0 0
\(133\) −14.0000 14.0000i −0.105263 0.105263i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 47.4342 47.4342i 0.346235 0.346235i −0.512470 0.858705i \(-0.671270\pi\)
0.858705 + 0.512470i \(0.171270\pi\)
\(138\) 0 0
\(139\) 22.0000i 0.158273i 0.996864 + 0.0791367i \(0.0252164\pi\)
−0.996864 + 0.0791367i \(0.974784\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −94.8683 94.8683i −0.663415 0.663415i
\(144\) 0 0
\(145\) −25.0000 75.0000i −0.172414 0.517241i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 142.302i 0.955050i 0.878618 + 0.477525i \(0.158466\pi\)
−0.878618 + 0.477525i \(0.841534\pi\)
\(150\) 0 0
\(151\) −134.000 −0.887417 −0.443709 0.896171i \(-0.646337\pi\)
−0.443709 + 0.896171i \(0.646337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 75.8947 25.2982i 0.489643 0.163214i
\(156\) 0 0
\(157\) −144.000 + 144.000i −0.917197 + 0.917197i −0.996825 0.0796273i \(-0.974627\pi\)
0.0796273 + 0.996825i \(0.474627\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −31.6228 −0.196415
\(162\) 0 0
\(163\) −4.00000 4.00000i −0.0245399 0.0245399i 0.694730 0.719270i \(-0.255524\pi\)
−0.719270 + 0.694730i \(0.755524\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −110.680 + 110.680i −0.662753 + 0.662753i −0.956028 0.293275i \(-0.905255\pi\)
0.293275 + 0.956028i \(0.405255\pi\)
\(168\) 0 0
\(169\) 97.0000i 0.573964i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.8114 + 15.8114i 0.0913953 + 0.0913953i 0.751326 0.659931i \(-0.229414\pi\)
−0.659931 + 0.751326i \(0.729414\pi\)
\(174\) 0 0
\(175\) −5.00000 + 35.0000i −0.0285714 + 0.200000i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 268.794i 1.50164i −0.660507 0.750820i \(-0.729659\pi\)
0.660507 0.750820i \(-0.270341\pi\)
\(180\) 0 0
\(181\) 26.0000 0.143646 0.0718232 0.997417i \(-0.477118\pi\)
0.0718232 + 0.997417i \(0.477118\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −94.8683 + 189.737i −0.512802 + 1.02560i
\(186\) 0 0
\(187\) 250.000 250.000i 1.33690 1.33690i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −347.851 −1.82121 −0.910604 0.413281i \(-0.864383\pi\)
−0.910604 + 0.413281i \(0.864383\pi\)
\(192\) 0 0
\(193\) 219.000 + 219.000i 1.13472 + 1.13472i 0.989383 + 0.145332i \(0.0464251\pi\)
0.145332 + 0.989383i \(0.453575\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −94.8683 + 94.8683i −0.481565 + 0.481565i −0.905631 0.424066i \(-0.860602\pi\)
0.424066 + 0.905631i \(0.360602\pi\)
\(198\) 0 0
\(199\) 66.0000i 0.331658i 0.986154 + 0.165829i \(0.0530300\pi\)
−0.986154 + 0.165829i \(0.946970\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.8114 + 15.8114i 0.0778886 + 0.0778886i
\(204\) 0 0
\(205\) −150.000 + 50.0000i −0.731707 + 0.243902i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 221.359i 1.05914i
\(210\) 0 0
\(211\) −106.000 −0.502370 −0.251185 0.967939i \(-0.580820\pi\)
−0.251185 + 0.967939i \(0.580820\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −341.526 170.763i −1.58849 0.794246i
\(216\) 0 0
\(217\) −16.0000 + 16.0000i −0.0737327 + 0.0737327i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −189.737 −0.858537
\(222\) 0 0
\(223\) −51.0000 51.0000i −0.228700 0.228700i 0.583450 0.812149i \(-0.301703\pi\)
−0.812149 + 0.583450i \(0.801703\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 31.6228 31.6228i 0.139307 0.139307i −0.634014 0.773321i \(-0.718594\pi\)
0.773321 + 0.634014i \(0.218594\pi\)
\(228\) 0 0
\(229\) 366.000i 1.59825i −0.601163 0.799127i \(-0.705296\pi\)
0.601163 0.799127i \(-0.294704\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −47.4342 47.4342i −0.203580 0.203580i 0.597952 0.801532i \(-0.295981\pi\)
−0.801532 + 0.597952i \(0.795981\pi\)
\(234\) 0 0
\(235\) −150.000 + 300.000i −0.638298 + 1.27660i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 4.00000 0.0165975 0.00829876 0.999966i \(-0.497358\pi\)
0.00829876 + 0.999966i \(0.497358\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 74.3135 + 222.941i 0.303321 + 0.909962i
\(246\) 0 0
\(247\) 84.0000 84.0000i 0.340081 0.340081i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 142.302 0.566942 0.283471 0.958981i \(-0.408514\pi\)
0.283471 + 0.958981i \(0.408514\pi\)
\(252\) 0 0
\(253\) 250.000 + 250.000i 0.988142 + 0.988142i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −110.680 + 110.680i −0.430660 + 0.430660i −0.888853 0.458193i \(-0.848497\pi\)
0.458193 + 0.888853i \(0.348497\pi\)
\(258\) 0 0
\(259\) 60.0000i 0.231660i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −205.548 205.548i −0.781552 0.781552i 0.198541 0.980093i \(-0.436380\pi\)
−0.980093 + 0.198541i \(0.936380\pi\)
\(264\) 0 0
\(265\) −400.000 200.000i −1.50943 0.754717i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 79.0569i 0.293892i 0.989145 + 0.146946i \(0.0469444\pi\)
−0.989145 + 0.146946i \(0.953056\pi\)
\(270\) 0 0
\(271\) −258.000 −0.952030 −0.476015 0.879437i \(-0.657919\pi\)
−0.476015 + 0.879437i \(0.657919\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 316.228 237.171i 1.14992 0.862439i
\(276\) 0 0
\(277\) 114.000 114.000i 0.411552 0.411552i −0.470727 0.882279i \(-0.656008\pi\)
0.882279 + 0.470727i \(0.156008\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 284.605 1.01283 0.506415 0.862290i \(-0.330971\pi\)
0.506415 + 0.862290i \(0.330971\pi\)
\(282\) 0 0
\(283\) 314.000 + 314.000i 1.10954 + 1.10954i 0.993211 + 0.116330i \(0.0371130\pi\)
0.116330 + 0.993211i \(0.462887\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 31.6228 31.6228i 0.110184 0.110184i
\(288\) 0 0
\(289\) 211.000i 0.730104i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 189.737 + 189.737i 0.647565 + 0.647565i 0.952404 0.304839i \(-0.0986025\pi\)
−0.304839 + 0.952404i \(0.598603\pi\)
\(294\) 0 0
\(295\) 125.000 + 375.000i 0.423729 + 1.27119i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 189.737i 0.634571i
\(300\) 0 0
\(301\) 108.000 0.358804
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 256.144 85.3815i 0.839818 0.279939i
\(306\) 0 0
\(307\) 366.000 366.000i 1.19218 1.19218i 0.215729 0.976453i \(-0.430787\pi\)
0.976453 0.215729i \(-0.0692128\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 126.491 0.406724 0.203362 0.979104i \(-0.434813\pi\)
0.203362 + 0.979104i \(0.434813\pi\)
\(312\) 0 0
\(313\) 201.000 + 201.000i 0.642173 + 0.642173i 0.951089 0.308917i \(-0.0999664\pi\)
−0.308917 + 0.951089i \(0.599966\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 237.171 237.171i 0.748173 0.748173i −0.225963 0.974136i \(-0.572553\pi\)
0.974136 + 0.225963i \(0.0725528\pi\)
\(318\) 0 0
\(319\) 250.000i 0.783699i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 221.359 + 221.359i 0.685323 + 0.685323i
\(324\) 0 0
\(325\) −210.000 30.0000i −0.646154 0.0923077i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 94.8683i 0.288354i
\(330\) 0 0
\(331\) −638.000 −1.92749 −0.963746 0.266821i \(-0.914027\pi\)
−0.963746 + 0.266821i \(0.914027\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −107.517 + 215.035i −0.320948 + 0.641895i
\(336\) 0 0
\(337\) −291.000 + 291.000i −0.863501 + 0.863501i −0.991743 0.128241i \(-0.959067\pi\)
0.128241 + 0.991743i \(0.459067\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 252.982 0.741883
\(342\) 0 0
\(343\) −96.0000 96.0000i −0.279883 0.279883i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 442.719 442.719i 1.27585 1.27585i 0.332876 0.942970i \(-0.391981\pi\)
0.942970 0.332876i \(-0.108019\pi\)
\(348\) 0 0
\(349\) 2.00000i 0.00573066i 0.999996 + 0.00286533i \(0.000912064\pi\)
−0.999996 + 0.00286533i \(0.999088\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 142.302 + 142.302i 0.403123 + 0.403123i 0.879332 0.476209i \(-0.157989\pi\)
−0.476209 + 0.879332i \(0.657989\pi\)
\(354\) 0 0
\(355\) −300.000 + 100.000i −0.845070 + 0.281690i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 158.114i 0.440429i 0.975452 + 0.220214i \(0.0706757\pi\)
−0.975452 + 0.220214i \(0.929324\pi\)
\(360\) 0 0
\(361\) 165.000 0.457064
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −411.096 205.548i −1.12629 0.563145i
\(366\) 0 0
\(367\) 299.000 299.000i 0.814714 0.814714i −0.170623 0.985336i \(-0.554578\pi\)
0.985336 + 0.170623i \(0.0545779\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 126.491 0.340946
\(372\) 0 0
\(373\) 316.000 + 316.000i 0.847185 + 0.847185i 0.989781 0.142596i \(-0.0455450\pi\)
−0.142596 + 0.989781i \(0.545545\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −94.8683 + 94.8683i −0.251640 + 0.251640i
\(378\) 0 0
\(379\) 286.000i 0.754617i −0.926088 0.377309i \(-0.876850\pi\)
0.926088 0.377309i \(-0.123150\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −142.302 142.302i −0.371547 0.371547i 0.496493 0.868040i \(-0.334621\pi\)
−0.868040 + 0.496493i \(0.834621\pi\)
\(384\) 0 0
\(385\) −50.0000 + 100.000i −0.129870 + 0.259740i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 332.039i 0.853571i −0.904353 0.426786i \(-0.859646\pi\)
0.904353 0.426786i \(-0.140354\pi\)
\(390\) 0 0
\(391\) 500.000 1.27877
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 170.763 + 512.289i 0.432311 + 1.29693i
\(396\) 0 0
\(397\) −116.000 + 116.000i −0.292191 + 0.292191i −0.837945 0.545754i \(-0.816243\pi\)
0.545754 + 0.837945i \(0.316243\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −379.473 −0.946318 −0.473159 0.880977i \(-0.656886\pi\)
−0.473159 + 0.880977i \(0.656886\pi\)
\(402\) 0 0
\(403\) −96.0000 96.0000i −0.238213 0.238213i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −474.342 + 474.342i −1.16546 + 1.16546i
\(408\) 0 0
\(409\) 156.000i 0.381418i −0.981647 0.190709i \(-0.938921\pi\)
0.981647 0.190709i \(-0.0610787\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −79.0569 79.0569i −0.191421 0.191421i
\(414\) 0 0
\(415\) 300.000 + 150.000i 0.722892 + 0.361446i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 142.302i 0.339624i 0.985476 + 0.169812i \(0.0543161\pi\)
−0.985476 + 0.169812i \(0.945684\pi\)
\(420\) 0 0
\(421\) −142.000 −0.337292 −0.168646 0.985677i \(-0.553939\pi\)
−0.168646 + 0.985677i \(0.553939\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 79.0569 553.399i 0.186016 1.30211i
\(426\) 0 0
\(427\) −54.0000 + 54.0000i −0.126464 + 0.126464i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −600.833 −1.39404 −0.697022 0.717050i \(-0.745492\pi\)
−0.697022 + 0.717050i \(0.745492\pi\)
\(432\) 0 0
\(433\) −31.0000 31.0000i −0.0715935 0.0715935i 0.670403 0.741997i \(-0.266121\pi\)
−0.741997 + 0.670403i \(0.766121\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −221.359 + 221.359i −0.506543 + 0.506543i
\(438\) 0 0
\(439\) 766.000i 1.74487i 0.488726 + 0.872437i \(0.337462\pi\)
−0.488726 + 0.872437i \(0.662538\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −94.8683 94.8683i −0.214150 0.214150i 0.591878 0.806028i \(-0.298387\pi\)
−0.806028 + 0.591878i \(0.798387\pi\)
\(444\) 0 0
\(445\) −200.000 600.000i −0.449438 1.34831i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 411.096i 0.915582i 0.889060 + 0.457791i \(0.151359\pi\)
−0.889060 + 0.457791i \(0.848641\pi\)
\(450\) 0 0
\(451\) −500.000 −1.10865
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 56.9210 18.9737i 0.125101 0.0417004i
\(456\) 0 0
\(457\) 195.000 195.000i 0.426696 0.426696i −0.460805 0.887501i \(-0.652439\pi\)
0.887501 + 0.460805i \(0.152439\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −268.794 −0.583066 −0.291533 0.956561i \(-0.594165\pi\)
−0.291533 + 0.956561i \(0.594165\pi\)
\(462\) 0 0
\(463\) −295.000 295.000i −0.637149 0.637149i 0.312702 0.949851i \(-0.398766\pi\)
−0.949851 + 0.312702i \(0.898766\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −363.662 + 363.662i −0.778719 + 0.778719i −0.979613 0.200894i \(-0.935615\pi\)
0.200894 + 0.979613i \(0.435615\pi\)
\(468\) 0 0
\(469\) 68.0000i 0.144989i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −853.815 853.815i −1.80511 1.80511i
\(474\) 0 0
\(475\) 210.000 + 280.000i 0.442105 + 0.589474i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 505.964i 1.05629i 0.849153 + 0.528147i \(0.177113\pi\)
−0.849153 + 0.528147i \(0.822887\pi\)
\(480\) 0 0
\(481\) 360.000 0.748441
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −218.197 + 436.394i −0.449891 + 0.899782i
\(486\) 0 0
\(487\) −129.000 + 129.000i −0.264887 + 0.264887i −0.827036 0.562149i \(-0.809975\pi\)
0.562149 + 0.827036i \(0.309975\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 173.925 0.354227 0.177113 0.984190i \(-0.443324\pi\)
0.177113 + 0.984190i \(0.443324\pi\)
\(492\) 0 0
\(493\) −250.000 250.000i −0.507099 0.507099i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 63.2456 63.2456i 0.127255 0.127255i
\(498\) 0 0
\(499\) 226.000i 0.452906i 0.974022 + 0.226453i \(0.0727129\pi\)
−0.974022 + 0.226453i \(0.927287\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 521.776 + 521.776i 1.03733 + 1.03733i 0.999276 + 0.0380519i \(0.0121152\pi\)
0.0380519 + 0.999276i \(0.487885\pi\)
\(504\) 0 0
\(505\) 375.000 125.000i 0.742574 0.247525i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 964.495i 1.89488i −0.319931 0.947441i \(-0.603660\pi\)
0.319931 0.947441i \(-0.396340\pi\)
\(510\) 0 0
\(511\) 130.000 0.254403
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −600.833 300.416i −1.16667 0.583333i
\(516\) 0 0
\(517\) −750.000 + 750.000i −1.45068 + 1.45068i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 94.8683 0.182089 0.0910445 0.995847i \(-0.470979\pi\)
0.0910445 + 0.995847i \(0.470979\pi\)
\(522\) 0 0
\(523\) −54.0000 54.0000i −0.103250 0.103250i 0.653594 0.756845i \(-0.273260\pi\)
−0.756845 + 0.653594i \(0.773260\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 252.982 252.982i 0.480042 0.480042i
\(528\) 0 0
\(529\) 29.0000i 0.0548204i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 189.737 + 189.737i 0.355979 + 0.355979i
\(534\) 0 0
\(535\) 350.000 700.000i 0.654206 1.30841i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 743.135i 1.37873i
\(540\) 0 0
\(541\) 634.000 1.17190 0.585952 0.810346i \(-0.300721\pi\)
0.585952 + 0.810346i \(0.300721\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 72.7324 + 218.197i 0.133454 + 0.400362i
\(546\) 0 0
\(547\) 330.000 330.000i 0.603291 0.603291i −0.337894 0.941184i \(-0.609714\pi\)
0.941184 + 0.337894i \(0.109714\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 221.359 0.401741
\(552\) 0 0
\(553\) −108.000 108.000i −0.195298 0.195298i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 569.210 569.210i 1.02192 1.02192i 0.0221667 0.999754i \(-0.492944\pi\)
0.999754 0.0221667i \(-0.00705645\pi\)
\(558\) 0 0
\(559\) 648.000i 1.15921i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 379.473 + 379.473i 0.674020 + 0.674020i 0.958640 0.284620i \(-0.0918675\pi\)
−0.284620 + 0.958640i \(0.591868\pi\)
\(564\) 0 0
\(565\) 500.000 + 250.000i 0.884956 + 0.442478i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 695.701i 1.22267i −0.791371 0.611337i \(-0.790632\pi\)
0.791371 0.611337i \(-0.209368\pi\)
\(570\) 0 0
\(571\) 494.000 0.865149 0.432574 0.901598i \(-0.357605\pi\)
0.432574 + 0.901598i \(0.357605\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 553.399 + 79.0569i 0.962432 + 0.137490i
\(576\) 0 0
\(577\) −299.000 + 299.000i −0.518198 + 0.518198i −0.917026 0.398828i \(-0.869417\pi\)
0.398828 + 0.917026i \(0.369417\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −94.8683 −0.163285
\(582\) 0 0
\(583\) −1000.00 1000.00i −1.71527 1.71527i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −47.4342 + 47.4342i −0.0808078 + 0.0808078i −0.746355 0.665548i \(-0.768198\pi\)
0.665548 + 0.746355i \(0.268198\pi\)
\(588\) 0 0
\(589\) 224.000i 0.380306i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 300.416 + 300.416i 0.506604 + 0.506604i 0.913482 0.406878i \(-0.133383\pi\)
−0.406878 + 0.913482i \(0.633383\pi\)
\(594\) 0 0
\(595\) 50.0000 + 150.000i 0.0840336 + 0.252101i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 917.061i 1.53099i −0.643444 0.765493i \(-0.722495\pi\)
0.643444 0.765493i \(-0.277505\pi\)
\(600\) 0 0
\(601\) −574.000 −0.955075 −0.477537 0.878611i \(-0.658471\pi\)
−0.477537 + 0.878611i \(0.658471\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 611.901 203.967i 1.01141 0.337135i
\(606\) 0 0
\(607\) −765.000 + 765.000i −1.26030 + 1.26030i −0.309347 + 0.950949i \(0.600111\pi\)
−0.950949 + 0.309347i \(0.899889\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 569.210 0.931604
\(612\) 0 0
\(613\) −540.000 540.000i −0.880914 0.880914i 0.112714 0.993627i \(-0.464046\pi\)
−0.993627 + 0.112714i \(0.964046\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 332.039 332.039i 0.538151 0.538151i −0.384835 0.922986i \(-0.625742\pi\)
0.922986 + 0.384835i \(0.125742\pi\)
\(618\) 0 0
\(619\) 174.000i 0.281099i −0.990074 0.140549i \(-0.955113\pi\)
0.990074 0.140549i \(-0.0448868\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 126.491 + 126.491i 0.203035 + 0.203035i
\(624\) 0 0
\(625\) 175.000 600.000i 0.280000 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 948.683i 1.50824i
\(630\) 0 0
\(631\) −236.000 −0.374010 −0.187005 0.982359i \(-0.559878\pi\)
−0.187005 + 0.982359i \(0.559878\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 110.680 221.359i 0.174299 0.348598i
\(636\) 0 0
\(637\) 282.000 282.000i 0.442700 0.442700i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 695.701 1.08534 0.542669 0.839947i \(-0.317414\pi\)
0.542669 + 0.839947i \(0.317414\pi\)
\(642\) 0 0
\(643\) 540.000 + 540.000i 0.839813 + 0.839813i 0.988834 0.149021i \(-0.0476121\pi\)
−0.149021 + 0.988834i \(0.547612\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −110.680 + 110.680i −0.171066 + 0.171066i −0.787448 0.616382i \(-0.788598\pi\)
0.616382 + 0.787448i \(0.288598\pi\)
\(648\) 0 0
\(649\) 1250.00i 1.92604i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −521.776 521.776i −0.799044 0.799044i 0.183901 0.982945i \(-0.441128\pi\)
−0.982945 + 0.183901i \(0.941128\pi\)
\(654\) 0 0
\(655\) 975.000 325.000i 1.48855 0.496183i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 15.8114i 0.0239930i 0.999928 + 0.0119965i \(0.00381870\pi\)
−0.999928 + 0.0119965i \(0.996181\pi\)
\(660\) 0 0
\(661\) 878.000 1.32829 0.664145 0.747604i \(-0.268796\pi\)
0.664145 + 0.747604i \(0.268796\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −88.5438 44.2719i −0.133149 0.0665743i
\(666\) 0 0
\(667\) 250.000 250.000i 0.374813 0.374813i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 853.815 1.27245
\(672\) 0 0
\(673\) −425.000 425.000i −0.631501 0.631501i 0.316944 0.948444i \(-0.397343\pi\)
−0.948444 + 0.316944i \(0.897343\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15.8114 15.8114i 0.0233551 0.0233551i −0.695333 0.718688i \(-0.744743\pi\)
0.718688 + 0.695333i \(0.244743\pi\)
\(678\) 0 0
\(679\) 138.000i 0.203240i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −521.776 521.776i −0.763947 0.763947i 0.213086 0.977033i \(-0.431648\pi\)
−0.977033 + 0.213086i \(0.931648\pi\)
\(684\) 0 0
\(685\) 150.000 300.000i 0.218978 0.437956i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 758.947i 1.10152i
\(690\) 0 0
\(691\) 318.000 0.460203 0.230101 0.973167i \(-0.426094\pi\)
0.230101 + 0.973167i \(0.426094\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 34.7851 + 104.355i 0.0500504 + 0.150151i
\(696\) 0 0
\(697\) −500.000 + 500.000i −0.717360 + 0.717360i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −173.925 −0.248110 −0.124055 0.992275i \(-0.539590\pi\)
−0.124055 + 0.992275i \(0.539590\pi\)
\(702\) 0 0
\(703\) −420.000 420.000i −0.597440 0.597440i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −79.0569 + 79.0569i −0.111820 + 0.111820i
\(708\) 0 0
\(709\) 734.000i 1.03526i 0.855604 + 0.517630i \(0.173186\pi\)
−0.855604 + 0.517630i \(0.826814\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 252.982 + 252.982i 0.354814 + 0.354814i
\(714\) 0 0
\(715\) −600.000 300.000i −0.839161 0.419580i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 442.719i 0.615743i −0.951428 0.307871i \(-0.900383\pi\)
0.951428 0.307871i \(-0.0996166\pi\)
\(720\) 0 0
\(721\) 190.000 0.263523
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −237.171 316.228i −0.327132 0.436176i
\(726\) 0 0
\(727\) −429.000 + 429.000i −0.590096 + 0.590096i −0.937657 0.347561i \(-0.887010\pi\)
0.347561 + 0.937657i \(0.387010\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1707.63 −2.33602
\(732\) 0 0
\(733\) −50.0000 50.0000i −0.0682128 0.0682128i 0.672177 0.740390i \(-0.265359\pi\)
−0.740390 + 0.672177i \(0.765359\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −537.587 + 537.587i −0.729426 + 0.729426i
\(738\) 0 0
\(739\) 278.000i 0.376184i −0.982151 0.188092i \(-0.939770\pi\)
0.982151 0.188092i \(-0.0602303\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −15.8114 15.8114i −0.0212805 0.0212805i 0.696386 0.717667i \(-0.254790\pi\)
−0.717667 + 0.696386i \(0.754790\pi\)
\(744\) 0 0
\(745\) 225.000 + 675.000i 0.302013 + 0.906040i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 221.359i 0.295540i
\(750\) 0 0
\(751\) 48.0000 0.0639148 0.0319574 0.999489i \(-0.489826\pi\)
0.0319574 + 0.999489i \(0.489826\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −635.618 + 211.873i −0.841878 + 0.280626i
\(756\) 0 0
\(757\) 414.000 414.000i 0.546896 0.546896i −0.378646 0.925542i \(-0.623610\pi\)
0.925542 + 0.378646i \(0.123610\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1170.04 −1.53751 −0.768753 0.639545i \(-0.779123\pi\)
−0.768753 + 0.639545i \(0.779123\pi\)
\(762\) 0 0
\(763\) −46.0000 46.0000i −0.0602883 0.0602883i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 474.342 474.342i 0.618438 0.618438i
\(768\) 0 0
\(769\) 1154.00i 1.50065i −0.661069 0.750325i \(-0.729897\pi\)
0.661069 0.750325i \(-0.270103\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 711.512 + 711.512i 0.920456 + 0.920456i 0.997061 0.0766055i \(-0.0244082\pi\)
−0.0766055 + 0.997061i \(0.524408\pi\)
\(774\) 0 0
\(775\) 320.000 240.000i 0.412903 0.309677i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 442.719i 0.568317i
\(780\) 0 0
\(781\) −1000.00 −1.28041
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −455.368 + 910.736i −0.580087 + 1.16017i
\(786\) 0 0
\(787\) −446.000 + 446.000i −0.566709 + 0.566709i −0.931205 0.364496i \(-0.881241\pi\)
0.364496 + 0.931205i \(0.381241\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −158.114 −0.199891
\(792\) 0 0
\(793\) −324.000 324.000i −0.408575 0.408575i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1090.99 + 1090.99i −1.36887 + 1.36887i −0.506804 + 0.862061i \(0.669173\pi\)
−0.862061 + 0.506804i \(0.830827\pi\)
\(798\) 0 0
\(799\) 1500.00i 1.87735i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1027.74 1027.74i −1.27988 1.27988i
\(804\) 0 0
\(805\) −150.000 + 50.0000i −0.186335 + 0.0621118i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1075.17i 1.32902i −0.747281 0.664508i \(-0.768641\pi\)
0.747281 0.664508i \(-0.231359\pi\)
\(810\) 0 0
\(811\) 386.000 0.475956 0.237978 0.971271i \(-0.423515\pi\)
0.237978 + 0.971271i \(0.423515\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −25.2982 12.6491i −0.0310408 0.0155204i
\(816\) 0 0
\(817\) 756.000 756.000i 0.925337 0.925337i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 300.416 0.365915 0.182958 0.983121i \(-0.441433\pi\)
0.182958 + 0.983121i \(0.441433\pi\)
\(822\) 0 0
\(823\) 281.000 + 281.000i 0.341434 + 0.341434i 0.856906 0.515472i \(-0.172384\pi\)
−0.515472 + 0.856906i \(0.672384\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −379.473 + 379.473i −0.458855 + 0.458855i −0.898280 0.439424i \(-0.855182\pi\)
0.439424 + 0.898280i \(0.355182\pi\)
\(828\) 0 0
\(829\) 458.000i 0.552473i −0.961090 0.276236i \(-0.910913\pi\)
0.961090 0.276236i \(-0.0890873\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 743.135 + 743.135i 0.892119 + 0.892119i
\(834\) 0 0
\(835\) −350.000 + 700.000i −0.419162 + 0.838323i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 347.851i 0.414601i 0.978277 + 0.207301i \(0.0664678\pi\)
−0.978277 + 0.207301i \(0.933532\pi\)
\(840\) 0 0
\(841\) 591.000 0.702735
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −153.370 460.111i −0.181504 0.544511i
\(846\) 0 0
\(847\) −129.000 + 129.000i −0.152302 + 0.152302i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −948.683 −1.11479
\(852\) 0 0
\(853\) 304.000 + 304.000i 0.356389 + 0.356389i 0.862480 0.506091i \(-0.168910\pi\)
−0.506091 + 0.862480i \(0.668910\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 47.4342 47.4342i 0.0553491 0.0553491i −0.678890 0.734240i \(-0.737539\pi\)
0.734240 + 0.678890i \(0.237539\pi\)
\(858\) 0 0
\(859\) 1082.00i 1.25960i −0.776756 0.629802i \(-0.783136\pi\)
0.776756 0.629802i \(-0.216864\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −648.267 648.267i −0.751178 0.751178i 0.223521 0.974699i \(-0.428245\pi\)
−0.974699 + 0.223521i \(0.928245\pi\)
\(864\) 0 0
\(865\) 100.000 + 50.0000i 0.115607 + 0.0578035i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1707.63i 1.96505i
\(870\) 0 0
\(871\) 408.000 0.468427
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 31.6228 + 173.925i 0.0361403 + 0.198772i
\(876\) 0 0
\(877\) 84.0000 84.0000i 0.0957811 0.0957811i −0.657593 0.753374i \(-0.728425\pi\)
0.753374 + 0.657593i \(0.228425\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 822.192 0.933249 0.466624 0.884456i \(-0.345470\pi\)
0.466624 + 0.884456i \(0.345470\pi\)
\(882\) 0 0
\(883\) 1096.00 + 1096.00i 1.24122 + 1.24122i 0.959494 + 0.281729i \(0.0909080\pi\)
0.281729 + 0.959494i \(0.409092\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1185.85 1185.85i 1.33693 1.33693i 0.437906 0.899021i \(-0.355720\pi\)
0.899021 0.437906i \(-0.144280\pi\)
\(888\) 0 0
\(889\) 70.0000i 0.0787402i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −664.078 664.078i −0.743649 0.743649i
\(894\) 0 0
\(895\) −425.000 1275.00i −0.474860 1.42458i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 252.982i 0.281404i
\(900\) 0 0
\(901\) −2000.00 −2.21976
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 123.329 41.1096i 0.136275 0.0454250i
\(906\) 0 0
\(907\) 280.000 280.000i 0.308710 0.308710i −0.535699 0.844409i \(-0.679952\pi\)
0.844409 + 0.535699i \(0.179952\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 980.306 1.07608 0.538038 0.842920i \(-0.319166\pi\)
0.538038 + 0.842920i \(0.319166\pi\)
\(912\) 0 0
\(913\) 750.000 + 750.000i 0.821468 + 0.821468i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −205.548 + 205.548i −0.224153 + 0.224153i
\(918\) 0 0
\(919\) 896.000i 0.974973i −0.873131 0.487486i \(-0.837914\pi\)
0.873131 0.487486i \(-0.162086\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 379.473 + 379.473i 0.411130 + 0.411130i
\(924\) 0 0
\(925\) −150.000 + 1050.00i −0.162162 + 1.13514i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 411.096i 0.442515i 0.975215 + 0.221257i \(0.0710161\pi\)
−0.975215 + 0.221257i \(0.928984\pi\)
\(930\) 0 0
\(931\) −658.000 −0.706767
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 790.569 1581.14i 0.845529 1.69106i
\(936\) 0 0
\(937\) 289.000 289.000i 0.308431 0.308431i −0.535870 0.844301i \(-0.680016\pi\)
0.844301 + 0.535870i \(0.180016\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1280.72 1.36102 0.680511 0.732737i \(-0.261758\pi\)
0.680511 + 0.732737i \(0.261758\pi\)
\(942\) 0 0
\(943\) −500.000 500.000i −0.530223 0.530223i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −158.114 + 158.114i −0.166963 + 0.166963i −0.785643 0.618680i \(-0.787668\pi\)
0.618680 + 0.785643i \(0.287668\pi\)
\(948\) 0 0
\(949\) 780.000i 0.821918i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 142.302 + 142.302i 0.149321 + 0.149321i 0.777814 0.628494i \(-0.216328\pi\)
−0.628494 + 0.777814i \(0.716328\pi\)
\(954\) 0 0
\(955\) −1650.00 + 550.000i −1.72775 + 0.575916i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 94.8683i 0.0989242i
\(960\) 0 0
\(961\) −705.000 −0.733611
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1385.08 + 692.539i 1.43531 + 0.717657i
\(966\) 0 0
\(967\) −365.000 + 365.000i −0.377456 + 0.377456i −0.870184 0.492728i \(-0.836000\pi\)
0.492728 + 0.870184i \(0.336000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −395.285 −0.407090 −0.203545 0.979066i \(-0.565246\pi\)
−0.203545 + 0.979066i \(0.565246\pi\)
\(972\) 0 0
\(973\) −22.0000 22.0000i −0.0226105 0.0226105i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 142.302 142.302i 0.145653 0.145653i −0.630520 0.776173i \(-0.717158\pi\)
0.776173 + 0.630520i \(0.217158\pi\)
\(978\) 0 0
\(979\) 2000.00i 2.04290i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 932.872 + 932.872i 0.949005 + 0.949005i 0.998761 0.0497564i \(-0.0158445\pi\)
−0.0497564 + 0.998761i \(0.515844\pi\)
\(984\) 0 0
\(985\) −300.000 + 600.000i −0.304569 + 0.609137i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1707.63i 1.72662i
\(990\) 0 0
\(991\) 1714.00 1.72957 0.864783 0.502146i \(-0.167456\pi\)
0.864783 + 0.502146i \(0.167456\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 104.355 + 313.065i 0.104880 + 0.314639i
\(996\) 0 0
\(997\) 1270.00 1270.00i 1.27382 1.27382i 0.329755 0.944067i \(-0.393034\pi\)
0.944067 0.329755i \(-0.106966\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.3.l.c.73.2 yes 4
3.2 odd 2 inner 180.3.l.c.73.1 yes 4
4.3 odd 2 720.3.bh.h.433.2 4
5.2 odd 4 inner 180.3.l.c.37.2 yes 4
5.3 odd 4 900.3.l.h.757.2 4
5.4 even 2 900.3.l.h.793.2 4
12.11 even 2 720.3.bh.h.433.1 4
15.2 even 4 inner 180.3.l.c.37.1 4
15.8 even 4 900.3.l.h.757.1 4
15.14 odd 2 900.3.l.h.793.1 4
20.7 even 4 720.3.bh.h.577.2 4
60.47 odd 4 720.3.bh.h.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.3.l.c.37.1 4 15.2 even 4 inner
180.3.l.c.37.2 yes 4 5.2 odd 4 inner
180.3.l.c.73.1 yes 4 3.2 odd 2 inner
180.3.l.c.73.2 yes 4 1.1 even 1 trivial
720.3.bh.h.433.1 4 12.11 even 2
720.3.bh.h.433.2 4 4.3 odd 2
720.3.bh.h.577.1 4 60.47 odd 4
720.3.bh.h.577.2 4 20.7 even 4
900.3.l.h.757.1 4 15.8 even 4
900.3.l.h.757.2 4 5.3 odd 4
900.3.l.h.793.1 4 15.14 odd 2
900.3.l.h.793.2 4 5.4 even 2