Properties

Label 18.46.a.g
Level $18$
Weight $46$
Character orbit 18.a
Self dual yes
Analytic conductor $230.860$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [18,46,Mod(1,18)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 46, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("18.1"); S:= CuspForms(chi, 46); N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 46 \)
Character orbit: \([\chi]\) \(=\) 18.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-16777216,0,70368744177664,-3822893977672896] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(230.860306934\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + \cdots - 31\!\cdots\!80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{26}\cdot 5\cdot 7^{2}\cdot 11 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4194304 q^{2} + 17592186044416 q^{4} + (\beta_1 - 955723494418224) q^{5} + (\beta_{2} + 454 \beta_1 - 18\!\cdots\!00) q^{7} - 73\!\cdots\!64 q^{8} + ( - 4194304 \beta_1 + 40\!\cdots\!96) q^{10} + ( - 13 \beta_{3} + \cdots - 12\!\cdots\!40) q^{11}+ \cdots + ( - 10\!\cdots\!20 \beta_{3} + \cdots - 27\!\cdots\!88) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16777216 q^{2} + 70368744177664 q^{4} - 38\!\cdots\!96 q^{5} - 75\!\cdots\!00 q^{7} - 29\!\cdots\!56 q^{8} + 16\!\cdots\!84 q^{10} - 51\!\cdots\!60 q^{11} + 10\!\cdots\!60 q^{13} + 31\!\cdots\!00 q^{14}+ \cdots - 11\!\cdots\!52 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + \cdots - 31\!\cdots\!80 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 46050393747888 \nu^{3} + \cdots - 77\!\cdots\!60 ) / 67\!\cdots\!45 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 366920244333792 \nu^{3} + \cdots - 10\!\cdots\!00 ) / 67\!\cdots\!45 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 44\!\cdots\!92 \nu^{3} + \cdots + 64\!\cdots\!40 ) / 96\!\cdots\!35 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 29\beta_{3} + 27931\beta_{2} - 19296698\beta _1 + 1257091799040 ) / 5028367196160 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 1661845552603 \beta_{3} + \cdots + 47\!\cdots\!40 ) / 1676122398720 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 15\!\cdots\!19 \beta_{3} + \cdots - 14\!\cdots\!60 ) / 457124290560 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.37037e9
1.85482e11
−2.68934e11
7.50817e10
−4.19430e6 0 1.75922e13 −9.60262e15 0 −1.99306e19 −7.37870e19 0 4.02763e22
1.2 −4.19430e6 0 1.75922e13 −4.39541e15 0 1.69267e19 −7.37870e19 0 1.84357e22
1.3 −4.19430e6 0 1.75922e13 1.65959e15 0 −1.80250e18 −7.37870e19 0 −6.96082e21
1.4 −4.19430e6 0 1.75922e13 8.51555e15 0 −2.76759e18 −7.37870e19 0 −3.57168e22
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.46.a.g 4
3.b odd 2 1 18.46.a.h yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.46.a.g 4 1.a even 1 1 trivial
18.46.a.h yes 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + \cdots + 59\!\cdots\!00 \) acting on \(S_{46}^{\mathrm{new}}(\Gamma_0(18))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4194304)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 59\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots - 16\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 10\!\cdots\!24 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 15\!\cdots\!24 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 30\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 34\!\cdots\!96 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 83\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 56\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 79\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 71\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 40\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 45\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 34\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 61\!\cdots\!96 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 61\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 49\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 73\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 38\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 95\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 52\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 57\!\cdots\!76 \) Copy content Toggle raw display
show more
show less