Properties

Label 18.28.a.f
Level $18$
Weight $28$
Character orbit 18.a
Self dual yes
Analytic conductor $83.134$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [18,28,Mod(1,18)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("18.1"); S:= CuspForms(chi, 28); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 28, names="a")
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 18.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-16384,0,134217728,-1074717600] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(83.1340034708\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 38809890 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{4}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 9072\sqrt{155239561}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8192 q^{2} + 67108864 q^{4} + ( - 25 \beta - 537358800) q^{5} + (1052 \beta + 49187299700) q^{7} - 549755813888 q^{8} + (204800 \beta + 4402043289600) q^{10} + (1078748 \beta + 55897597652160) q^{11}+ \cdots + ( - 84\!\cdots\!00 \beta + 40\!\cdots\!24) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16384 q^{2} + 134217728 q^{4} - 1074717600 q^{5} + 98374599400 q^{7} - 1099511627776 q^{8} + 8804086579200 q^{10} + 111795195304320 q^{11} - 15\!\cdots\!40 q^{13} - 805884718284800 q^{14} + 90\!\cdots\!92 q^{16}+ \cdots + 80\!\cdots\!48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6230.26
−6229.26
−8192.00 0 6.71089e7 −3.36318e9 0 1.68098e11 −5.49756e11 0 2.75511e13
1.2 −8192.00 0 6.71089e7 2.28846e9 0 −6.97231e10 −5.49756e11 0 −1.87471e13
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.28.a.f 2
3.b odd 2 1 18.28.a.h yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.28.a.f 2 1.a even 1 1 trivial
18.28.a.h yes 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 1074717600T_{5} - 7696495316275200000 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(18))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8192)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 76\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 11\!\cdots\!96 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 11\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 39\!\cdots\!44 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 35\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 59\!\cdots\!04 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 25\!\cdots\!56 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 13\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 15\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 37\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 78\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 37\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 39\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 19\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 16\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 17\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 20\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 83\!\cdots\!64 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 78\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 10\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 28\!\cdots\!16 \) Copy content Toggle raw display
show more
show less