Properties

Label 18.16.a.b
Level $18$
Weight $16$
Character orbit 18.a
Self dual yes
Analytic conductor $25.685$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 18.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(25.6848309180\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 128 q^{2} + 16384 q^{4} + 114810 q^{5} - 3034528 q^{7} - 2097152 q^{8} + O(q^{10}) \) \( q - 128 q^{2} + 16384 q^{4} + 114810 q^{5} - 3034528 q^{7} - 2097152 q^{8} - 14695680 q^{10} + 103451700 q^{11} - 104365834 q^{13} + 388419584 q^{14} + 268435456 q^{16} - 997689762 q^{17} + 4934015444 q^{19} + 1881047040 q^{20} - 13241817600 q^{22} - 8324920200 q^{23} - 17336242025 q^{25} + 13358826752 q^{26} - 49717706752 q^{28} - 104128242846 q^{29} - 296696681512 q^{31} - 34359738368 q^{32} + 127704289536 q^{34} - 348394159680 q^{35} - 178337455666 q^{37} - 631553976832 q^{38} - 240774021120 q^{40} + 1790882416086 q^{41} - 2863459422772 q^{43} + 1694952652800 q^{44} + 1065589785600 q^{46} - 4332907521600 q^{47} + 4460798672841 q^{49} + 2219038979200 q^{50} - 1709929824256 q^{52} - 9732317104422 q^{53} + 11877289677000 q^{55} + 6363866464256 q^{56} + 13328415084288 q^{58} + 13514837176500 q^{59} + 5352663511190 q^{61} + 37977175233536 q^{62} + 4398046511104 q^{64} - 11982241401540 q^{65} - 53233909720108 q^{67} - 16346149060608 q^{68} + 44594452439040 q^{70} + 20229661643400 q^{71} + 26264166466106 q^{73} + 22827194325248 q^{74} + 80838909034496 q^{76} - 313927080297600 q^{77} - 339031361615128 q^{79} + 30819074703360 q^{80} - 229232949259008 q^{82} - 131684771045076 q^{83} - 114544761575220 q^{85} + 366522806114816 q^{86} - 216953939558400 q^{88} + 39352148322678 q^{89} + 316701045516352 q^{91} - 136395492556800 q^{92} + 554612162764800 q^{94} + 566474313125640 q^{95} + 1128750908801474 q^{97} - 570982230123648 q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−128.000 0 16384.0 114810. 0 −3.03453e6 −2.09715e6 0 −1.46957e7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.16.a.b 1
3.b odd 2 1 6.16.a.b 1
4.b odd 2 1 144.16.a.j 1
12.b even 2 1 48.16.a.d 1
15.d odd 2 1 150.16.a.f 1
15.e even 4 2 150.16.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.16.a.b 1 3.b odd 2 1
18.16.a.b 1 1.a even 1 1 trivial
48.16.a.d 1 12.b even 2 1
144.16.a.j 1 4.b odd 2 1
150.16.a.f 1 15.d odd 2 1
150.16.c.a 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 114810 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(18))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 128 + T \)
$3$ \( T \)
$5$ \( -114810 + T \)
$7$ \( 3034528 + T \)
$11$ \( -103451700 + T \)
$13$ \( 104365834 + T \)
$17$ \( 997689762 + T \)
$19$ \( -4934015444 + T \)
$23$ \( 8324920200 + T \)
$29$ \( 104128242846 + T \)
$31$ \( 296696681512 + T \)
$37$ \( 178337455666 + T \)
$41$ \( -1790882416086 + T \)
$43$ \( 2863459422772 + T \)
$47$ \( 4332907521600 + T \)
$53$ \( 9732317104422 + T \)
$59$ \( -13514837176500 + T \)
$61$ \( -5352663511190 + T \)
$67$ \( 53233909720108 + T \)
$71$ \( -20229661643400 + T \)
$73$ \( -26264166466106 + T \)
$79$ \( 339031361615128 + T \)
$83$ \( 131684771045076 + T \)
$89$ \( -39352148322678 + T \)
$97$ \( -1128750908801474 + T \)
show more
show less