Defining parameters
| Level: | \( N \) | \(=\) | \( 1792 = 2^{8} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1792.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 16 \) | ||
| Sturm bound: | \(512\) | ||
| Trace bound: | \(17\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\), \(11\), \(23\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1792, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 280 | 48 | 232 |
| Cusp forms | 232 | 48 | 184 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1792, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1792, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1792, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(896, [\chi])\)\(^{\oplus 2}\)