Properties

Label 1792.2.b
Level $1792$
Weight $2$
Character orbit 1792.b
Rep. character $\chi_{1792}(897,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $16$
Sturm bound $512$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1792 = 2^{8} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1792.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(512\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(3\), \(5\), \(11\), \(23\), \(31\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1792, [\chi])\).

Total New Old
Modular forms 280 48 232
Cusp forms 232 48 184
Eisenstein series 48 0 48

Trace form

\( 48 q - 48 q^{9} - 48 q^{25} + 48 q^{49} - 32 q^{65} + 32 q^{73} + 48 q^{81} + 32 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1792, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1792.2.b.a 1792.b 8.b $2$ $14.309$ \(\Q(\sqrt{-1}) \) None 56.2.a.b \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}+2\beta q^{5}-q^{7}-q^{9}-8 q^{15}+\cdots\)
1792.2.b.b 1792.b 8.b $2$ $14.309$ \(\Q(\sqrt{-1}) \) None 224.2.a.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-q^{7}-q^{9}-2\beta q^{11}-2\beta q^{13}+\cdots\)
1792.2.b.c 1792.b 8.b $2$ $14.309$ \(\Q(\sqrt{-1}) \) None 14.2.a.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-q^{7}-q^{9}+2\beta q^{13}+6 q^{17}+\cdots\)
1792.2.b.d 1792.b 8.b $2$ $14.309$ \(\Q(\sqrt{-1}) \) None 56.2.a.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{5}-q^{7}+3 q^{9}-2\beta q^{11}+\beta q^{13}+\cdots\)
1792.2.b.e 1792.b 8.b $2$ $14.309$ \(\Q(\sqrt{-1}) \) None 896.2.a.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{7}+3 q^{9}-\beta q^{11}+2\beta q^{13}-2 q^{17}+\cdots\)
1792.2.b.f 1792.b 8.b $2$ $14.309$ \(\Q(\sqrt{-1}) \) None 224.2.a.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}+q^{7}-q^{9}-2\beta q^{11}+2\beta q^{13}+\cdots\)
1792.2.b.g 1792.b 8.b $2$ $14.309$ \(\Q(\sqrt{-1}) \) None 14.2.a.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}+q^{7}-q^{9}-2\beta q^{13}+6 q^{17}+\cdots\)
1792.2.b.h 1792.b 8.b $2$ $14.309$ \(\Q(\sqrt{-1}) \) None 56.2.a.b \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-2\beta q^{5}+q^{7}-q^{9}+8 q^{15}+\cdots\)
1792.2.b.i 1792.b 8.b $2$ $14.309$ \(\Q(\sqrt{-1}) \) None 56.2.a.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{5}+q^{7}+3 q^{9}+2\beta q^{11}+\beta q^{13}+\cdots\)
1792.2.b.j 1792.b 8.b $2$ $14.309$ \(\Q(\sqrt{-1}) \) None 896.2.a.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{7}+3 q^{9}+\beta q^{11}+2\beta q^{13}-2 q^{17}+\cdots\)
1792.2.b.k 1792.b 8.b $4$ $14.309$ \(\Q(i, \sqrt{5})\) None 224.2.a.c \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-\beta _{1}-\beta _{2})q^{5}-q^{7}+(-3+\cdots)q^{9}+\cdots\)
1792.2.b.l 1792.b 8.b $4$ $14.309$ \(\Q(\zeta_{12})\) None 896.2.a.e \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{2} q^{3}-\beta_1 q^{5}-q^{7}+(\beta_{3}-1)q^{9}+\cdots\)
1792.2.b.m 1792.b 8.b $4$ $14.309$ \(\Q(i, \sqrt{5})\) None 224.2.a.c \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(\beta _{1}+\beta _{2})q^{5}+q^{7}+(-3+\cdots)q^{9}+\cdots\)
1792.2.b.n 1792.b 8.b $4$ $14.309$ \(\Q(\zeta_{12})\) None 896.2.a.e \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{2} q^{3}+\beta_1 q^{5}+q^{7}+(\beta_{3}-1)q^{9}+\cdots\)
1792.2.b.o 1792.b 8.b $6$ $14.309$ 6.0.399424.1 None 896.2.a.i \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}+\beta _{4}q^{5}-q^{7}+(-2-\beta _{3}+\cdots)q^{9}+\cdots\)
1792.2.b.p 1792.b 8.b $6$ $14.309$ 6.0.399424.1 None 896.2.a.i \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}-\beta _{4}q^{5}+q^{7}+(-2-\beta _{3}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1792, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1792, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(896, [\chi])\)\(^{\oplus 2}\)