Properties

Label 177.3.h.a.5.8
Level $177$
Weight $3$
Character 177.5
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.8
Character \(\chi\) \(=\) 177.5
Dual form 177.3.h.a.71.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.892372 + 2.64847i) q^{2} +(0.713097 - 2.91402i) q^{3} +(-3.03367 - 2.30614i) q^{4} +(-2.87136 - 1.14405i) q^{5} +(7.08133 + 4.48900i) q^{6} +(2.33765 - 1.08151i) q^{7} +(-0.437890 + 0.296897i) q^{8} +(-7.98299 - 4.15595i) q^{9} +O(q^{10})\) \(q+(-0.892372 + 2.64847i) q^{2} +(0.713097 - 2.91402i) q^{3} +(-3.03367 - 2.30614i) q^{4} +(-2.87136 - 1.14405i) q^{5} +(7.08133 + 4.48900i) q^{6} +(2.33765 - 1.08151i) q^{7} +(-0.437890 + 0.296897i) q^{8} +(-7.98299 - 4.15595i) q^{9} +(5.59230 - 6.58377i) q^{10} +(-5.90871 - 1.64054i) q^{11} +(-8.88342 + 7.19567i) q^{12} +(11.2971 - 21.3085i) q^{13} +(0.778296 + 7.15631i) q^{14} +(-5.38134 + 7.55136i) q^{15} +(-4.47344 - 16.1119i) q^{16} +(8.75474 - 18.9231i) q^{17} +(18.1307 - 17.4340i) q^{18} +(1.82985 - 0.402779i) q^{19} +(6.07241 + 10.0924i) q^{20} +(-1.48458 - 7.58319i) q^{21} +(9.61769 - 14.1850i) q^{22} +(-21.5222 - 3.52838i) q^{23} +(0.552904 + 1.48773i) q^{24} +(-11.2141 - 10.6225i) q^{25} +(46.3538 + 48.9351i) q^{26} +(-17.8032 + 20.2990i) q^{27} +(-9.58579 - 2.10999i) q^{28} +(2.19392 + 6.51131i) q^{29} +(-15.1974 - 20.9909i) q^{30} +(44.5980 + 9.81675i) q^{31} +(44.5506 + 2.41546i) q^{32} +(-8.99405 + 16.0482i) q^{33} +(42.3046 + 40.0730i) q^{34} +(-7.94955 + 0.431012i) q^{35} +(14.6336 + 31.0177i) q^{36} +(-32.5155 + 47.9568i) q^{37} +(-0.566155 + 5.20571i) q^{38} +(-54.0376 - 48.1149i) q^{39} +(1.59700 - 0.351527i) q^{40} +(4.66989 - 0.765589i) q^{41} +(21.4086 + 2.83518i) q^{42} +(-12.9179 - 46.5262i) q^{43} +(14.1418 + 18.6032i) q^{44} +(18.1674 + 21.0662i) q^{45} +(28.5506 - 53.8521i) q^{46} +(22.9848 - 9.15799i) q^{47} +(-50.1403 + 1.54635i) q^{48} +(-27.4270 + 32.2895i) q^{49} +(38.1405 - 20.2208i) q^{50} +(-48.8991 - 39.0054i) q^{51} +(-83.4120 + 38.5905i) q^{52} +(-4.66273 + 3.96056i) q^{53} +(-37.8741 - 65.2653i) q^{54} +(15.0891 + 11.4705i) q^{55} +(-0.702537 + 1.16763i) q^{56} +(0.131151 - 5.61942i) q^{57} -19.2028 q^{58} +(-5.88414 - 58.7059i) q^{59} +(33.7397 - 10.4982i) q^{60} +(3.40546 + 1.14743i) q^{61} +(-65.7973 + 109.356i) q^{62} +(-23.1562 - 1.08147i) q^{63} +(-21.3961 + 53.7003i) q^{64} +(-56.8160 + 48.2600i) q^{65} +(-34.4771 - 38.1414i) q^{66} +(27.0774 + 39.9362i) q^{67} +(-70.1982 + 37.2167i) q^{68} +(-25.6292 + 60.1999i) q^{69} +(5.95243 - 21.4387i) q^{70} +(-32.5806 + 12.9813i) q^{71} +(4.72955 - 0.550272i) q^{72} +(20.7357 - 2.25515i) q^{73} +(-97.9960 - 128.912i) q^{74} +(-38.9509 + 25.1031i) q^{75} +(-6.48001 - 2.99797i) q^{76} +(-15.5868 + 2.55532i) q^{77} +(175.652 - 100.180i) q^{78} +(-82.7374 + 49.7814i) q^{79} +(-5.58800 + 51.3808i) q^{80} +(46.4561 + 66.3538i) q^{81} +(-2.13964 + 13.0512i) q^{82} +(104.552 - 5.66863i) q^{83} +(-12.9842 + 26.4285i) q^{84} +(-46.7870 + 44.3190i) q^{85} +(134.751 + 7.30597i) q^{86} +(20.5385 - 1.74991i) q^{87} +(3.07443 - 1.03590i) q^{88} +(6.55624 + 19.4582i) q^{89} +(-72.0051 + 29.3168i) q^{90} +(3.36317 - 62.0300i) q^{91} +(57.1543 + 60.3370i) q^{92} +(60.4089 - 122.959i) q^{93} +(3.74361 + 69.0468i) q^{94} +(-5.71494 - 0.936917i) q^{95} +(38.8076 - 128.099i) q^{96} +(-83.6208 - 9.09430i) q^{97} +(-61.0427 - 101.454i) q^{98} +(40.3511 + 37.6527i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.892372 + 2.64847i −0.446186 + 1.32423i 0.454881 + 0.890552i \(0.349682\pi\)
−0.901067 + 0.433681i \(0.857215\pi\)
\(3\) 0.713097 2.91402i 0.237699 0.971339i
\(4\) −3.03367 2.30614i −0.758418 0.576534i
\(5\) −2.87136 1.14405i −0.574271 0.228811i 0.0648781 0.997893i \(-0.479334\pi\)
−0.639149 + 0.769083i \(0.720713\pi\)
\(6\) 7.08133 + 4.48900i 1.18022 + 0.748167i
\(7\) 2.33765 1.08151i 0.333951 0.154502i −0.245746 0.969334i \(-0.579033\pi\)
0.579697 + 0.814832i \(0.303171\pi\)
\(8\) −0.437890 + 0.296897i −0.0547362 + 0.0371121i
\(9\) −7.98299 4.15595i −0.886998 0.461772i
\(10\) 5.59230 6.58377i 0.559230 0.658377i
\(11\) −5.90871 1.64054i −0.537155 0.149140i −0.0116521 0.999932i \(-0.503709\pi\)
−0.525503 + 0.850792i \(0.676123\pi\)
\(12\) −8.88342 + 7.19567i −0.740285 + 0.599639i
\(13\) 11.2971 21.3085i 0.869006 1.63912i 0.104479 0.994527i \(-0.466682\pi\)
0.764527 0.644592i \(-0.222973\pi\)
\(14\) 0.778296 + 7.15631i 0.0555925 + 0.511165i
\(15\) −5.38134 + 7.55136i −0.358756 + 0.503424i
\(16\) −4.47344 16.1119i −0.279590 1.00699i
\(17\) 8.75474 18.9231i 0.514985 1.11312i −0.459399 0.888230i \(-0.651935\pi\)
0.974384 0.224891i \(-0.0722027\pi\)
\(18\) 18.1307 17.4340i 1.00726 0.968556i
\(19\) 1.82985 0.402779i 0.0963076 0.0211989i −0.166555 0.986032i \(-0.553264\pi\)
0.262863 + 0.964833i \(0.415333\pi\)
\(20\) 6.07241 + 10.0924i 0.303620 + 0.504621i
\(21\) −1.48458 7.58319i −0.0706941 0.361104i
\(22\) 9.61769 14.1850i 0.437168 0.644774i
\(23\) −21.5222 3.52838i −0.935747 0.153408i −0.325431 0.945566i \(-0.605509\pi\)
−0.610316 + 0.792158i \(0.708958\pi\)
\(24\) 0.552904 + 1.48773i 0.0230377 + 0.0619889i
\(25\) −11.2141 10.6225i −0.448562 0.424901i
\(26\) 46.3538 + 48.9351i 1.78284 + 1.88212i
\(27\) −17.8032 + 20.2990i −0.659376 + 0.751813i
\(28\) −9.58579 2.10999i −0.342350 0.0753569i
\(29\) 2.19392 + 6.51131i 0.0756523 + 0.224528i 0.978806 0.204789i \(-0.0656508\pi\)
−0.903154 + 0.429317i \(0.858754\pi\)
\(30\) −15.1974 20.9909i −0.506579 0.699698i
\(31\) 44.5980 + 9.81675i 1.43864 + 0.316669i 0.864726 0.502243i \(-0.167492\pi\)
0.573918 + 0.818913i \(0.305423\pi\)
\(32\) 44.5506 + 2.41546i 1.39221 + 0.0754833i
\(33\) −8.99405 + 16.0482i −0.272547 + 0.486309i
\(34\) 42.3046 + 40.0730i 1.24425 + 1.17862i
\(35\) −7.94955 + 0.431012i −0.227130 + 0.0123146i
\(36\) 14.6336 + 31.0177i 0.406488 + 0.861601i
\(37\) −32.5155 + 47.9568i −0.878798 + 1.29613i 0.0754617 + 0.997149i \(0.475957\pi\)
−0.954259 + 0.298981i \(0.903353\pi\)
\(38\) −0.566155 + 5.20571i −0.0148988 + 0.136992i
\(39\) −54.0376 48.1149i −1.38558 1.23372i
\(40\) 1.59700 0.351527i 0.0399251 0.00878817i
\(41\) 4.66989 0.765589i 0.113900 0.0186729i −0.104563 0.994518i \(-0.533344\pi\)
0.218462 + 0.975845i \(0.429896\pi\)
\(42\) 21.4086 + 2.83518i 0.509729 + 0.0675042i
\(43\) −12.9179 46.5262i −0.300417 1.08201i −0.947545 0.319623i \(-0.896444\pi\)
0.647127 0.762382i \(-0.275970\pi\)
\(44\) 14.1418 + 18.6032i 0.321403 + 0.422799i
\(45\) 18.1674 + 21.0662i 0.403719 + 0.468137i
\(46\) 28.5506 53.8521i 0.620665 1.17070i
\(47\) 22.9848 9.15799i 0.489039 0.194851i −0.112567 0.993644i \(-0.535907\pi\)
0.601606 + 0.798793i \(0.294528\pi\)
\(48\) −50.1403 + 1.54635i −1.04459 + 0.0322156i
\(49\) −27.4270 + 32.2895i −0.559734 + 0.658970i
\(50\) 38.1405 20.2208i 0.762810 0.404416i
\(51\) −48.8991 39.0054i −0.958806 0.764812i
\(52\) −83.4120 + 38.5905i −1.60408 + 0.742125i
\(53\) −4.66273 + 3.96056i −0.0879761 + 0.0747276i −0.690295 0.723528i \(-0.742519\pi\)
0.602319 + 0.798255i \(0.294243\pi\)
\(54\) −37.8741 65.2653i −0.701371 1.20862i
\(55\) 15.0891 + 11.4705i 0.274348 + 0.208554i
\(56\) −0.702537 + 1.16763i −0.0125453 + 0.0208504i
\(57\) 0.131151 5.61942i 0.00230090 0.0985863i
\(58\) −19.2028 −0.331082
\(59\) −5.88414 58.7059i −0.0997312 0.995014i
\(60\) 33.7397 10.4982i 0.562328 0.174970i
\(61\) 3.40546 + 1.14743i 0.0558273 + 0.0188104i 0.347077 0.937837i \(-0.387174\pi\)
−0.291249 + 0.956647i \(0.594071\pi\)
\(62\) −65.7973 + 109.356i −1.06125 + 1.76381i
\(63\) −23.1562 1.08147i −0.367558 0.0171662i
\(64\) −21.3961 + 53.7003i −0.334315 + 0.839067i
\(65\) −56.8160 + 48.2600i −0.874093 + 0.742461i
\(66\) −34.4771 38.1414i −0.522380 0.577900i
\(67\) 27.0774 + 39.9362i 0.404141 + 0.596063i 0.974240 0.225513i \(-0.0724057\pi\)
−0.570100 + 0.821576i \(0.693095\pi\)
\(68\) −70.1982 + 37.2167i −1.03233 + 0.547305i
\(69\) −25.6292 + 60.1999i −0.371437 + 0.872462i
\(70\) 5.95243 21.4387i 0.0850348 0.306268i
\(71\) −32.5806 + 12.9813i −0.458881 + 0.182835i −0.588112 0.808779i \(-0.700129\pi\)
0.129231 + 0.991615i \(0.458749\pi\)
\(72\) 4.72955 0.550272i 0.0656883 0.00764267i
\(73\) 20.7357 2.25515i 0.284051 0.0308924i 0.0350157 0.999387i \(-0.488852\pi\)
0.249036 + 0.968494i \(0.419886\pi\)
\(74\) −97.9960 128.912i −1.32427 1.74205i
\(75\) −38.9509 + 25.1031i −0.519345 + 0.334708i
\(76\) −6.48001 2.99797i −0.0852633 0.0394470i
\(77\) −15.5868 + 2.55532i −0.202426 + 0.0331860i
\(78\) 175.652 100.180i 2.25195 1.28436i
\(79\) −82.7374 + 49.7814i −1.04731 + 0.630144i −0.931729 0.363154i \(-0.881700\pi\)
−0.115579 + 0.993298i \(0.536872\pi\)
\(80\) −5.58800 + 51.3808i −0.0698500 + 0.642260i
\(81\) 46.4561 + 66.3538i 0.573532 + 0.819183i
\(82\) −2.13964 + 13.0512i −0.0260932 + 0.159161i
\(83\) 104.552 5.66863i 1.25966 0.0682968i 0.587819 0.808992i \(-0.299987\pi\)
0.671841 + 0.740695i \(0.265504\pi\)
\(84\) −12.9842 + 26.4285i −0.154573 + 0.314625i
\(85\) −46.7870 + 44.3190i −0.550435 + 0.521399i
\(86\) 134.751 + 7.30597i 1.56687 + 0.0849532i
\(87\) 20.5385 1.74991i 0.236075 0.0201139i
\(88\) 3.07443 1.03590i 0.0349367 0.0117716i
\(89\) 6.55624 + 19.4582i 0.0736656 + 0.218632i 0.978160 0.207854i \(-0.0666479\pi\)
−0.904494 + 0.426486i \(0.859751\pi\)
\(90\) −72.0051 + 29.3168i −0.800057 + 0.325742i
\(91\) 3.36317 62.0300i 0.0369579 0.681648i
\(92\) 57.1543 + 60.3370i 0.621242 + 0.655837i
\(93\) 60.4089 122.959i 0.649558 1.32214i
\(94\) 3.74361 + 69.0468i 0.0398256 + 0.734541i
\(95\) −5.71494 0.936917i −0.0601572 0.00986228i
\(96\) 38.8076 128.099i 0.404246 1.33436i
\(97\) −83.6208 9.09430i −0.862070 0.0937557i −0.333607 0.942712i \(-0.608266\pi\)
−0.528463 + 0.848957i \(0.677231\pi\)
\(98\) −61.0427 101.454i −0.622884 1.03524i
\(99\) 40.3511 + 37.6527i 0.407587 + 0.380331i
\(100\) 9.52278 + 58.0864i 0.0952278 + 0.580864i
\(101\) 73.0548 157.905i 0.723315 1.56342i −0.0994537 0.995042i \(-0.531710\pi\)
0.822768 0.568377i \(-0.192428\pi\)
\(102\) 146.941 94.7003i 1.44060 0.928434i
\(103\) 98.8081 75.1120i 0.959302 0.729242i −0.00334714 0.999994i \(-0.501065\pi\)
0.962649 + 0.270752i \(0.0872723\pi\)
\(104\) 1.37956 + 12.6849i 0.0132650 + 0.121970i
\(105\) −4.41282 + 23.4725i −0.0420269 + 0.223547i
\(106\) −6.32852 15.8834i −0.0597030 0.149843i
\(107\) 159.735 + 44.3501i 1.49285 + 0.414487i 0.915603 0.402084i \(-0.131714\pi\)
0.577245 + 0.816571i \(0.304128\pi\)
\(108\) 100.821 20.5238i 0.933529 0.190036i
\(109\) 14.4971 + 27.3444i 0.133001 + 0.250866i 0.941063 0.338231i \(-0.109828\pi\)
−0.808062 + 0.589097i \(0.799484\pi\)
\(110\) −43.8442 + 29.7271i −0.398584 + 0.270247i
\(111\) 116.560 + 128.949i 1.05009 + 1.16170i
\(112\) −27.8826 32.8259i −0.248952 0.293088i
\(113\) 38.4138 + 15.3055i 0.339945 + 0.135447i 0.533862 0.845571i \(-0.320740\pi\)
−0.193917 + 0.981018i \(0.562119\pi\)
\(114\) 14.7658 + 5.36196i 0.129525 + 0.0470348i
\(115\) 57.7612 + 34.7538i 0.502271 + 0.302207i
\(116\) 8.36035 24.8126i 0.0720720 0.213902i
\(117\) −178.742 + 123.156i −1.52771 + 1.05261i
\(118\) 160.731 + 36.8035i 1.36213 + 0.311894i
\(119\) 53.7039i 0.451294i
\(120\) 0.114462 4.90436i 0.000953854 0.0408697i
\(121\) −71.4583 42.9950i −0.590564 0.355331i
\(122\) −6.07788 + 7.99531i −0.0498187 + 0.0655354i
\(123\) 1.09914 14.1541i 0.00893611 0.115074i
\(124\) −112.657 132.630i −0.908522 1.06960i
\(125\) 52.4925 + 113.461i 0.419940 + 0.907686i
\(126\) 23.5282 60.3633i 0.186731 0.479074i
\(127\) 67.2804 + 126.904i 0.529767 + 0.999247i 0.993560 + 0.113303i \(0.0361432\pi\)
−0.463793 + 0.885943i \(0.653512\pi\)
\(128\) 12.8887 + 10.9477i 0.100693 + 0.0855292i
\(129\) −144.790 + 4.46539i −1.12240 + 0.0346155i
\(130\) −77.1139 193.541i −0.593184 1.48878i
\(131\) −131.894 69.9259i −1.00683 0.533785i −0.118478 0.992957i \(-0.537802\pi\)
−0.888348 + 0.459171i \(0.848146\pi\)
\(132\) 64.2944 27.9434i 0.487078 0.211693i
\(133\) 3.84193 2.92056i 0.0288867 0.0219591i
\(134\) −129.933 + 36.0757i −0.969648 + 0.269221i
\(135\) 74.3423 37.9178i 0.550684 0.280872i
\(136\) 1.78458 + 10.8855i 0.0131219 + 0.0800402i
\(137\) 6.31632 + 28.6953i 0.0461045 + 0.209455i 0.994041 0.109003i \(-0.0347659\pi\)
−0.947937 + 0.318458i \(0.896835\pi\)
\(138\) −136.567 121.599i −0.989613 0.881150i
\(139\) 155.999 + 16.9659i 1.12229 + 0.122057i 0.650396 0.759596i \(-0.274603\pi\)
0.471899 + 0.881653i \(0.343569\pi\)
\(140\) 25.1103 + 17.0252i 0.179359 + 0.121609i
\(141\) −10.2961 73.5087i −0.0730222 0.521338i
\(142\) −5.30650 97.8727i −0.0373697 0.689244i
\(143\) −101.709 + 107.373i −0.711250 + 0.750857i
\(144\) −31.2488 + 147.212i −0.217005 + 1.02231i
\(145\) 1.14977 21.2063i 0.00792945 0.146250i
\(146\) −12.5313 + 56.9303i −0.0858309 + 0.389934i
\(147\) 74.5341 + 102.948i 0.507035 + 0.700328i
\(148\) 209.236 70.4999i 1.41376 0.476351i
\(149\) 44.5971 202.607i 0.299310 1.35978i −0.551444 0.834212i \(-0.685923\pi\)
0.850753 0.525565i \(-0.176146\pi\)
\(150\) −31.7259 125.561i −0.211506 0.837076i
\(151\) −14.7692 + 13.9901i −0.0978090 + 0.0926496i −0.735042 0.678022i \(-0.762838\pi\)
0.637233 + 0.770671i \(0.280079\pi\)
\(152\) −0.681686 + 0.719648i −0.00448478 + 0.00473452i
\(153\) −148.532 + 114.678i −0.970799 + 0.749531i
\(154\) 7.14152 43.5614i 0.0463735 0.282866i
\(155\) −116.826 79.2098i −0.753715 0.511031i
\(156\) 52.9726 + 270.583i 0.339568 + 1.73451i
\(157\) 207.974 125.134i 1.32467 0.797029i 0.335256 0.942127i \(-0.391177\pi\)
0.989417 + 0.145098i \(0.0463497\pi\)
\(158\) −58.0119 263.551i −0.367164 1.66804i
\(159\) 8.21616 + 16.4115i 0.0516740 + 0.103217i
\(160\) −125.157 57.9039i −0.782233 0.361900i
\(161\) −54.1274 + 15.0284i −0.336195 + 0.0933441i
\(162\) −217.192 + 63.8252i −1.34069 + 0.393982i
\(163\) 38.1996 4.15446i 0.234353 0.0254875i 0.00981135 0.999952i \(-0.496877\pi\)
0.224542 + 0.974464i \(0.427911\pi\)
\(164\) −15.9324 8.44685i −0.0971491 0.0515052i
\(165\) 44.1851 35.7904i 0.267789 0.216912i
\(166\) −78.2859 + 281.960i −0.471602 + 1.69856i
\(167\) −61.2162 51.9975i −0.366564 0.311362i 0.445107 0.895478i \(-0.353166\pi\)
−0.811671 + 0.584115i \(0.801442\pi\)
\(168\) 2.90150 + 2.87983i 0.0172708 + 0.0171419i
\(169\) −231.590 341.569i −1.37035 2.02112i
\(170\) −75.6259 163.463i −0.444858 0.961545i
\(171\) −16.2816 4.38937i −0.0952138 0.0256688i
\(172\) −68.1070 + 170.936i −0.395971 + 0.993813i
\(173\) −175.955 + 231.465i −1.01708 + 1.33795i −0.0769872 + 0.997032i \(0.524530\pi\)
−0.940094 + 0.340915i \(0.889263\pi\)
\(174\) −13.6934 + 55.9572i −0.0786979 + 0.321593i
\(175\) −37.7030 12.7036i −0.215446 0.0725921i
\(176\) 102.539i 0.582609i
\(177\) −175.266 24.7165i −0.990202 0.139641i
\(178\) −57.3851 −0.322388
\(179\) −5.74119 + 17.0392i −0.0320737 + 0.0951913i −0.962494 0.271303i \(-0.912545\pi\)
0.930420 + 0.366494i \(0.119442\pi\)
\(180\) −6.53233 105.804i −0.0362907 0.587802i
\(181\) −27.0512 20.5638i −0.149454 0.113612i 0.527775 0.849384i \(-0.323026\pi\)
−0.677229 + 0.735772i \(0.736820\pi\)
\(182\) 161.283 + 64.2610i 0.886170 + 0.353083i
\(183\) 5.77207 9.10534i 0.0315413 0.0497560i
\(184\) 10.4719 4.84482i 0.0569125 0.0263305i
\(185\) 148.229 100.502i 0.801236 0.543252i
\(186\) 271.745 + 269.716i 1.46100 + 1.45009i
\(187\) −82.7733 + 97.4483i −0.442638 + 0.521114i
\(188\) −90.8479 25.2238i −0.483234 0.134169i
\(189\) −19.6640 + 66.7063i −0.104042 + 0.352943i
\(190\) 7.58124 14.2997i 0.0399013 0.0752618i
\(191\) −20.2374 186.080i −0.105955 0.974240i −0.919594 0.392870i \(-0.871482\pi\)
0.813639 0.581370i \(-0.197483\pi\)
\(192\) 141.226 + 100.642i 0.735552 + 0.524178i
\(193\) −9.90674 35.6809i −0.0513303 0.184875i 0.933441 0.358732i \(-0.116791\pi\)
−0.984771 + 0.173857i \(0.944377\pi\)
\(194\) 98.7068 213.351i 0.508798 1.09975i
\(195\) 100.115 + 199.977i 0.513410 + 1.02552i
\(196\) 157.668 34.7055i 0.804431 0.177069i
\(197\) 4.33209 + 7.19999i 0.0219903 + 0.0365482i 0.867657 0.497163i \(-0.165625\pi\)
−0.845667 + 0.533711i \(0.820797\pi\)
\(198\) −135.730 + 73.2682i −0.685506 + 0.370042i
\(199\) 172.066 253.778i 0.864651 1.27526i −0.0953999 0.995439i \(-0.530413\pi\)
0.960051 0.279826i \(-0.0902767\pi\)
\(200\) 8.06431 + 1.32208i 0.0403215 + 0.00661038i
\(201\) 135.684 50.4257i 0.675043 0.250874i
\(202\) 353.015 + 334.393i 1.74760 + 1.65541i
\(203\) 12.1707 + 12.8484i 0.0599541 + 0.0632928i
\(204\) 58.3920 + 231.098i 0.286235 + 1.13283i
\(205\) −14.2848 3.14432i −0.0696818 0.0153381i
\(206\) 110.758 + 328.718i 0.537660 + 1.59572i
\(207\) 157.147 + 117.612i 0.759167 + 0.568175i
\(208\) −393.857 86.6946i −1.89355 0.416801i
\(209\) −11.4728 0.622037i −0.0548938 0.00297625i
\(210\) −58.2281 32.6334i −0.277277 0.155397i
\(211\) 179.990 + 170.496i 0.853035 + 0.808037i 0.983024 0.183478i \(-0.0587357\pi\)
−0.129989 + 0.991515i \(0.541494\pi\)
\(212\) 23.2788 1.26214i 0.109806 0.00595349i
\(213\) 14.5946 + 104.197i 0.0685192 + 0.489189i
\(214\) −260.003 + 383.475i −1.21497 + 1.79194i
\(215\) −16.1364 + 148.372i −0.0750532 + 0.690103i
\(216\) 1.76913 14.1744i 0.00819040 0.0656222i
\(217\) 114.872 25.2851i 0.529362 0.116521i
\(218\) −85.3576 + 13.9937i −0.391549 + 0.0641912i
\(219\) 8.21505 62.0324i 0.0375117 0.283253i
\(220\) −19.3230 69.5952i −0.0878319 0.316342i
\(221\) −304.320 400.326i −1.37701 1.81143i
\(222\) −445.531 + 193.636i −2.00690 + 0.872232i
\(223\) 53.8667 101.603i 0.241555 0.455621i −0.732860 0.680380i \(-0.761815\pi\)
0.974414 + 0.224759i \(0.0721596\pi\)
\(224\) 106.756 42.5356i 0.476591 0.189891i
\(225\) 45.3750 + 131.405i 0.201667 + 0.584020i
\(226\) −74.8154 + 88.0795i −0.331042 + 0.389732i
\(227\) 290.188 153.848i 1.27836 0.677745i 0.315806 0.948824i \(-0.397725\pi\)
0.962557 + 0.271078i \(0.0873803\pi\)
\(228\) −13.3570 + 16.7450i −0.0585834 + 0.0734431i
\(229\) 131.236 60.7164i 0.573084 0.265137i −0.111870 0.993723i \(-0.535684\pi\)
0.684955 + 0.728586i \(0.259822\pi\)
\(230\) −143.589 + 121.965i −0.624298 + 0.530284i
\(231\) −3.66863 + 47.2423i −0.0158815 + 0.204512i
\(232\) −2.89388 2.19987i −0.0124736 0.00948220i
\(233\) 80.8218 134.327i 0.346875 0.576510i −0.633478 0.773760i \(-0.718373\pi\)
0.980353 + 0.197250i \(0.0632010\pi\)
\(234\) −166.670 583.292i −0.712263 2.49270i
\(235\) −76.4748 −0.325425
\(236\) −117.533 + 191.664i −0.498022 + 0.812135i
\(237\) 86.0641 + 276.597i 0.363140 + 1.16708i
\(238\) 142.233 + 47.9239i 0.597618 + 0.201361i
\(239\) 52.6710 87.5399i 0.220381 0.366276i −0.726867 0.686778i \(-0.759024\pi\)
0.947248 + 0.320503i \(0.103852\pi\)
\(240\) 145.740 + 52.9230i 0.607249 + 0.220512i
\(241\) −123.387 + 309.678i −0.511979 + 1.28497i 0.414988 + 0.909827i \(0.363786\pi\)
−0.926967 + 0.375143i \(0.877593\pi\)
\(242\) 177.638 150.887i 0.734042 0.623501i
\(243\) 226.484 88.0572i 0.932032 0.362375i
\(244\) −7.68491 11.3344i −0.0314955 0.0464525i
\(245\) 115.694 61.3368i 0.472219 0.250354i
\(246\) 36.5057 + 15.5417i 0.148397 + 0.0631778i
\(247\) 12.0893 43.5416i 0.0489444 0.176282i
\(248\) −22.4435 + 8.94233i −0.0904982 + 0.0360578i
\(249\) 58.0371 308.708i 0.233081 1.23979i
\(250\) −347.340 + 37.7755i −1.38936 + 0.151102i
\(251\) −37.7196 49.6193i −0.150277 0.197687i 0.714794 0.699335i \(-0.246520\pi\)
−0.865072 + 0.501648i \(0.832727\pi\)
\(252\) 67.7542 + 56.6821i 0.268866 + 0.224929i
\(253\) 121.380 + 56.1563i 0.479762 + 0.221962i
\(254\) −396.141 + 64.9440i −1.55961 + 0.255685i
\(255\) 95.7825 + 167.942i 0.375618 + 0.658595i
\(256\) −238.622 + 143.574i −0.932115 + 0.560835i
\(257\) −44.1134 + 405.616i −0.171648 + 1.57827i 0.518803 + 0.854894i \(0.326378\pi\)
−0.690451 + 0.723379i \(0.742588\pi\)
\(258\) 117.380 387.456i 0.454961 1.50177i
\(259\) −24.1441 + 147.272i −0.0932204 + 0.568619i
\(260\) 283.655 15.3793i 1.09098 0.0591513i
\(261\) 9.54670 61.0975i 0.0365774 0.234090i
\(262\) 302.895 286.917i 1.15609 1.09510i
\(263\) −37.5384 2.03527i −0.142732 0.00773869i −0.0173654 0.999849i \(-0.505528\pi\)
−0.125366 + 0.992111i \(0.540011\pi\)
\(264\) −0.826253 9.69764i −0.00312975 0.0367335i
\(265\) 17.9195 6.03777i 0.0676206 0.0227840i
\(266\) 4.30657 + 12.7815i 0.0161901 + 0.0480506i
\(267\) 61.3769 5.22939i 0.229876 0.0195857i
\(268\) 9.95437 183.598i 0.0371432 0.685066i
\(269\) −271.047 286.141i −1.00761 1.06372i −0.997965 0.0637670i \(-0.979689\pi\)
−0.00964472 0.999953i \(-0.503070\pi\)
\(270\) 34.0830 + 230.730i 0.126233 + 0.854555i
\(271\) −20.1884 372.354i −0.0744961 1.37400i −0.761886 0.647711i \(-0.775726\pi\)
0.687390 0.726289i \(-0.258756\pi\)
\(272\) −344.050 56.4041i −1.26489 0.207368i
\(273\) −178.358 54.0337i −0.653326 0.197926i
\(274\) −81.6351 8.87835i −0.297938 0.0324027i
\(275\) 48.8339 + 81.1625i 0.177578 + 0.295136i
\(276\) 216.580 123.522i 0.784709 0.447545i
\(277\) 44.9739 + 274.329i 0.162361 + 0.990357i 0.934776 + 0.355239i \(0.115600\pi\)
−0.772415 + 0.635118i \(0.780951\pi\)
\(278\) −184.143 + 398.018i −0.662384 + 1.43172i
\(279\) −315.227 263.714i −1.12985 0.945212i
\(280\) 3.35306 2.54893i 0.0119752 0.00910332i
\(281\) 13.1942 + 121.318i 0.0469543 + 0.431738i 0.993895 + 0.110330i \(0.0351907\pi\)
−0.946941 + 0.321408i \(0.895844\pi\)
\(282\) 203.873 + 38.3281i 0.722955 + 0.135915i
\(283\) 77.6928 + 194.994i 0.274533 + 0.689025i 1.00000 0.000768288i \(0.000244554\pi\)
−0.725467 + 0.688257i \(0.758376\pi\)
\(284\) 128.775 + 35.7543i 0.453435 + 0.125895i
\(285\) −6.80550 + 15.9853i −0.0238789 + 0.0560888i
\(286\) −193.611 365.188i −0.676960 1.27688i
\(287\) 10.0886 6.84023i 0.0351519 0.0238335i
\(288\) −345.608 204.433i −1.20003 0.709836i
\(289\) −94.3420 111.068i −0.326443 0.384318i
\(290\) 55.1380 + 21.9690i 0.190131 + 0.0757551i
\(291\) −86.1306 + 237.187i −0.295982 + 0.815076i
\(292\) −68.1061 40.9781i −0.233240 0.140336i
\(293\) 138.312 410.494i 0.472053 1.40100i −0.402208 0.915548i \(-0.631757\pi\)
0.874261 0.485455i \(-0.161346\pi\)
\(294\) −339.167 + 105.533i −1.15363 + 0.358956i
\(295\) −50.2671 + 175.297i −0.170397 + 0.594228i
\(296\) 30.6535i 0.103559i
\(297\) 138.495 90.7337i 0.466313 0.305501i
\(298\) 496.800 + 298.915i 1.66711 + 1.00307i
\(299\) −318.322 + 418.746i −1.06462 + 1.40049i
\(300\) 176.055 + 13.6717i 0.586851 + 0.0455723i
\(301\) −80.5164 94.7913i −0.267496 0.314921i
\(302\) −23.8727 51.6000i −0.0790487 0.170861i
\(303\) −408.044 325.485i −1.34668 1.07421i
\(304\) −14.6752 27.6804i −0.0482738 0.0910540i
\(305\) −8.46557 7.19072i −0.0277560 0.0235761i
\(306\) −171.175 495.718i −0.559396 1.61999i
\(307\) −57.4802 144.264i −0.187232 0.469917i 0.805157 0.593062i \(-0.202081\pi\)
−0.992389 + 0.123145i \(0.960702\pi\)
\(308\) 53.1781 + 28.1932i 0.172656 + 0.0915365i
\(309\) −148.418 341.491i −0.480316 1.10515i
\(310\) 314.037 238.724i 1.01302 0.770079i
\(311\) 456.752 126.817i 1.46866 0.407771i 0.561117 0.827736i \(-0.310372\pi\)
0.907540 + 0.419966i \(0.137958\pi\)
\(312\) 37.9476 + 5.02547i 0.121627 + 0.0161073i
\(313\) −23.7265 144.725i −0.0758034 0.462380i −0.997265 0.0739106i \(-0.976452\pi\)
0.921461 0.388470i \(-0.126996\pi\)
\(314\) 145.822 + 662.477i 0.464402 + 2.10980i
\(315\) 65.2524 + 29.5972i 0.207150 + 0.0939593i
\(316\) 365.801 + 39.7832i 1.15760 + 0.125896i
\(317\) 291.929 + 197.933i 0.920911 + 0.624393i 0.926786 0.375590i \(-0.122560\pi\)
−0.00587506 + 0.999983i \(0.501870\pi\)
\(318\) −50.7973 + 7.11501i −0.159740 + 0.0223743i
\(319\) −2.28111 42.0726i −0.00715082 0.131889i
\(320\) 122.872 129.714i 0.383975 0.405357i
\(321\) 243.143 433.844i 0.757456 1.35154i
\(322\) 8.49958 156.766i 0.0263962 0.486849i
\(323\) 8.39800 38.1525i 0.0260000 0.118119i
\(324\) 12.0884 308.430i 0.0373098 0.951944i
\(325\) −353.037 + 118.952i −1.08627 + 0.366006i
\(326\) −23.0853 + 104.878i −0.0708139 + 0.321711i
\(327\) 90.0200 22.7456i 0.275290 0.0695583i
\(328\) −1.81759 + 1.72172i −0.00554144 + 0.00524913i
\(329\) 43.8261 46.2666i 0.133210 0.140628i
\(330\) 55.3602 + 148.961i 0.167758 + 0.451397i
\(331\) −82.8893 + 505.603i −0.250421 + 1.52750i 0.499699 + 0.866199i \(0.333444\pi\)
−0.750120 + 0.661301i \(0.770004\pi\)
\(332\) −330.248 223.914i −0.994724 0.674440i
\(333\) 458.877 247.705i 1.37801 0.743860i
\(334\) 192.341 115.728i 0.575872 0.346491i
\(335\) −32.0598 145.649i −0.0957009 0.434773i
\(336\) −115.538 + 57.8422i −0.343864 + 0.172149i
\(337\) −445.741 206.222i −1.32267 0.611933i −0.373775 0.927519i \(-0.621937\pi\)
−0.948897 + 0.315586i \(0.897799\pi\)
\(338\) 1111.30 308.550i 3.28786 0.912871i
\(339\) 71.9931 101.024i 0.212369 0.298007i
\(340\) 244.142 26.5520i 0.718064 0.0780942i
\(341\) −247.411 131.169i −0.725547 0.384661i
\(342\) 26.1543 39.2042i 0.0764746 0.114632i
\(343\) −62.9579 + 226.754i −0.183551 + 0.661090i
\(344\) 19.4701 + 16.5381i 0.0565991 + 0.0480757i
\(345\) 142.462 143.534i 0.412934 0.416041i
\(346\) −456.010 672.564i −1.31795 1.94383i
\(347\) 126.577 + 273.592i 0.364776 + 0.788451i 0.999872 + 0.0160170i \(0.00509860\pi\)
−0.635096 + 0.772434i \(0.719039\pi\)
\(348\) −66.3427 42.0560i −0.190640 0.120851i
\(349\) −177.452 + 445.370i −0.508458 + 1.27613i 0.420952 + 0.907083i \(0.361696\pi\)
−0.929410 + 0.369049i \(0.879683\pi\)
\(350\) 67.2902 88.5187i 0.192258 0.252911i
\(351\) 231.418 + 608.678i 0.659310 + 1.73413i
\(352\) −259.274 87.3595i −0.736573 0.248181i
\(353\) 695.446i 1.97010i 0.172262 + 0.985051i \(0.444892\pi\)
−0.172262 + 0.985051i \(0.555108\pi\)
\(354\) 221.863 442.129i 0.626732 1.24895i
\(355\) 108.402 0.305357
\(356\) 24.9839 74.1495i 0.0701794 0.208285i
\(357\) −156.494 38.2961i −0.438359 0.107272i
\(358\) −40.0046 30.4107i −0.111745 0.0849461i
\(359\) −140.697 56.0589i −0.391914 0.156153i 0.165853 0.986151i \(-0.446962\pi\)
−0.557767 + 0.829998i \(0.688342\pi\)
\(360\) −14.2098 3.83083i −0.0394716 0.0106412i
\(361\) −324.449 + 150.106i −0.898750 + 0.415806i
\(362\) 78.6023 53.2937i 0.217133 0.147220i
\(363\) −176.245 + 177.571i −0.485523 + 0.489176i
\(364\) −153.252 + 180.423i −0.421023 + 0.495666i
\(365\) −62.1197 17.2475i −0.170191 0.0472533i
\(366\) 18.9644 + 23.4125i 0.0518152 + 0.0639685i
\(367\) 29.3932 55.4415i 0.0800905 0.151067i −0.840232 0.542227i \(-0.817581\pi\)
0.920323 + 0.391160i \(0.127926\pi\)
\(368\) 39.4293 + 362.547i 0.107145 + 0.985181i
\(369\) −40.4614 13.2961i −0.109651 0.0360329i
\(370\) 133.900 + 482.263i 0.361891 + 1.30341i
\(371\) −6.61645 + 14.3012i −0.0178341 + 0.0385478i
\(372\) −466.821 + 233.706i −1.25489 + 0.628241i
\(373\) 455.087 100.172i 1.22007 0.268558i 0.442163 0.896935i \(-0.354211\pi\)
0.777909 + 0.628377i \(0.216280\pi\)
\(374\) −184.224 306.182i −0.492577 0.818669i
\(375\) 368.059 72.0556i 0.981490 0.192148i
\(376\) −7.34584 + 10.8343i −0.0195368 + 0.0288146i
\(377\) 163.531 + 26.8096i 0.433770 + 0.0711130i
\(378\) −159.122 111.606i −0.420957 0.295255i
\(379\) 310.165 + 293.804i 0.818378 + 0.775209i 0.977250 0.212090i \(-0.0680271\pi\)
−0.158872 + 0.987299i \(0.550786\pi\)
\(380\) 15.1766 + 16.0217i 0.0399384 + 0.0421624i
\(381\) 417.779 105.561i 1.09653 0.277063i
\(382\) 510.885 + 112.454i 1.33740 + 0.294383i
\(383\) 101.587 + 301.500i 0.265241 + 0.787207i 0.994666 + 0.103147i \(0.0328911\pi\)
−0.729425 + 0.684061i \(0.760212\pi\)
\(384\) 41.0928 29.7510i 0.107012 0.0774766i
\(385\) 47.6786 + 10.4949i 0.123841 + 0.0272594i
\(386\) 103.340 + 5.60293i 0.267720 + 0.0145154i
\(387\) −90.2370 + 425.104i −0.233171 + 1.09846i
\(388\) 232.705 + 220.430i 0.599756 + 0.568119i
\(389\) 73.2051 3.96907i 0.188188 0.0102033i 0.0401960 0.999192i \(-0.487202\pi\)
0.147992 + 0.988989i \(0.452719\pi\)
\(390\) −618.972 + 86.6974i −1.58711 + 0.222301i
\(391\) −255.189 + 376.375i −0.652657 + 0.962597i
\(392\) 2.42334 22.2822i 0.00618198 0.0568424i
\(393\) −297.818 + 334.478i −0.757808 + 0.851089i
\(394\) −22.9348 + 5.04832i −0.0582100 + 0.0128130i
\(395\) 294.521 48.2843i 0.745623 0.122239i
\(396\) −35.5796 207.281i −0.0898474 0.523437i
\(397\) −174.640 628.996i −0.439899 1.58437i −0.768465 0.639892i \(-0.778979\pi\)
0.328566 0.944481i \(-0.393435\pi\)
\(398\) 518.575 + 682.174i 1.30295 + 1.71400i
\(399\) −5.77090 13.2781i −0.0144634 0.0332785i
\(400\) −120.983 + 228.199i −0.302458 + 0.570497i
\(401\) −273.663 + 109.037i −0.682451 + 0.271913i −0.685490 0.728082i \(-0.740412\pi\)
0.00303875 + 0.999995i \(0.499033\pi\)
\(402\) 12.4704 + 404.352i 0.0310209 + 1.00585i
\(403\) 713.007 839.417i 1.76925 2.08292i
\(404\) −585.775 + 310.558i −1.44994 + 0.768709i
\(405\) −57.4798 243.674i −0.141925 0.601663i
\(406\) −44.8894 + 20.7681i −0.110565 + 0.0511529i
\(407\) 270.800 230.019i 0.665356 0.565158i
\(408\) 32.9930 + 2.56209i 0.0808652 + 0.00627963i
\(409\) −29.4274 22.3701i −0.0719496 0.0546947i 0.568581 0.822627i \(-0.307493\pi\)
−0.640531 + 0.767932i \(0.721286\pi\)
\(410\) 21.0750 35.0268i 0.0514023 0.0854313i
\(411\) 88.1228 + 2.05669i 0.214411 + 0.00500411i
\(412\) −472.970 −1.14798
\(413\) −77.2463 130.870i −0.187037 0.316877i
\(414\) −451.726 + 311.246i −1.09113 + 0.751802i
\(415\) −306.691 103.336i −0.739014 0.249003i
\(416\) 554.762 922.021i 1.33356 2.21640i
\(417\) 160.681 442.485i 0.385327 1.06112i
\(418\) 11.8854 29.8302i 0.0284341 0.0713642i
\(419\) 271.283 230.430i 0.647453 0.549951i −0.262360 0.964970i \(-0.584501\pi\)
0.909813 + 0.415019i \(0.136225\pi\)
\(420\) 67.5178 61.0312i 0.160757 0.145312i
\(421\) −322.405 475.511i −0.765807 1.12948i −0.987996 0.154477i \(-0.950631\pi\)
0.222189 0.975004i \(-0.428680\pi\)
\(422\) −612.171 + 324.552i −1.45064 + 0.769081i
\(423\) −221.548 22.4157i −0.523753 0.0529922i
\(424\) 0.865885 3.11864i 0.00204218 0.00735528i
\(425\) −299.187 + 119.207i −0.703969 + 0.280487i
\(426\) −288.987 54.3295i −0.678373 0.127534i
\(427\) 9.20176 1.00075i 0.0215498 0.00234368i
\(428\) −382.305 502.914i −0.893236 1.17503i
\(429\) 240.357 + 372.948i 0.560274 + 0.869343i
\(430\) −378.559 175.140i −0.880369 0.407302i
\(431\) 241.577 39.6045i 0.560502 0.0918897i 0.125130 0.992140i \(-0.460065\pi\)
0.435372 + 0.900251i \(0.356617\pi\)
\(432\) 406.696 + 196.036i 0.941425 + 0.453787i
\(433\) −727.554 + 437.755i −1.68026 + 1.01098i −0.738764 + 0.673964i \(0.764590\pi\)
−0.941499 + 0.337017i \(0.890582\pi\)
\(434\) −35.5413 + 326.797i −0.0818925 + 0.752989i
\(435\) −60.9755 18.4726i −0.140173 0.0424657i
\(436\) 19.0806 116.386i 0.0437628 0.266941i
\(437\) −40.8034 + 2.21230i −0.0933717 + 0.00506246i
\(438\) 156.960 + 77.1133i 0.358356 + 0.176058i
\(439\) −375.190 + 355.399i −0.854648 + 0.809566i −0.983275 0.182127i \(-0.941702\pi\)
0.128627 + 0.991693i \(0.458943\pi\)
\(440\) −10.0129 0.542884i −0.0227566 0.00123383i
\(441\) 353.143 143.782i 0.800778 0.326036i
\(442\) 1331.82 448.741i 3.01316 1.01525i
\(443\) 221.998 + 658.867i 0.501125 + 1.48728i 0.837966 + 0.545723i \(0.183745\pi\)
−0.336841 + 0.941562i \(0.609358\pi\)
\(444\) −56.2322 659.991i −0.126649 1.48647i
\(445\) 3.43594 63.3722i 0.00772122 0.142409i
\(446\) 221.024 + 233.332i 0.495570 + 0.523166i
\(447\) −558.597 274.435i −1.24966 0.613949i
\(448\) 8.06081 + 148.673i 0.0179929 + 0.331859i
\(449\) 68.1535 + 11.1732i 0.151790 + 0.0248846i 0.237198 0.971461i \(-0.423771\pi\)
−0.0854080 + 0.996346i \(0.527219\pi\)
\(450\) −388.512 + 2.91237i −0.863359 + 0.00647193i
\(451\) −28.8490 3.13751i −0.0639667 0.00695679i
\(452\) −81.2384 135.019i −0.179731 0.298715i
\(453\) 30.2355 + 53.0139i 0.0667451 + 0.117028i
\(454\) 148.506 + 905.844i 0.327105 + 1.99525i
\(455\) −80.6224 + 174.262i −0.177192 + 0.382994i
\(456\) 1.61096 + 2.49962i 0.00353280 + 0.00548163i
\(457\) 306.050 232.654i 0.669695 0.509089i −0.214191 0.976792i \(-0.568711\pi\)
0.883886 + 0.467703i \(0.154918\pi\)
\(458\) 43.6936 + 401.756i 0.0954010 + 0.877197i
\(459\) 228.256 + 514.602i 0.497291 + 1.12114i
\(460\) −95.0815 238.637i −0.206699 0.518775i
\(461\) −657.172 182.463i −1.42554 0.395798i −0.532748 0.846274i \(-0.678841\pi\)
−0.892789 + 0.450476i \(0.851254\pi\)
\(462\) −121.846 51.8740i −0.263736 0.112281i
\(463\) −135.066 254.761i −0.291718 0.550239i 0.693726 0.720239i \(-0.255968\pi\)
−0.985444 + 0.170000i \(0.945623\pi\)
\(464\) 95.0951 64.4761i 0.204946 0.138957i
\(465\) −314.127 + 283.948i −0.675542 + 0.610641i
\(466\) 283.637 + 333.923i 0.608663 + 0.716574i
\(467\) −829.110 330.348i −1.77540 0.707382i −0.996807 0.0798484i \(-0.974556\pi\)
−0.778589 0.627534i \(-0.784064\pi\)
\(468\) 826.258 + 38.5889i 1.76551 + 0.0824549i
\(469\) 106.489 + 64.0724i 0.227056 + 0.136615i
\(470\) 68.2440 202.541i 0.145200 0.430938i
\(471\) −216.336 695.271i −0.459312 1.47616i
\(472\) 20.0062 + 23.9597i 0.0423859 + 0.0507621i
\(473\) 296.102i 0.626009i
\(474\) −809.359 18.8895i −1.70751 0.0398514i
\(475\) −24.7985 14.9208i −0.0522074 0.0314122i
\(476\) −123.849 + 162.920i −0.260186 + 0.342269i
\(477\) 53.6824 12.2390i 0.112542 0.0256583i
\(478\) 184.844 + 217.615i 0.386703 + 0.455262i
\(479\) −369.356 798.351i −0.771099 1.66670i −0.745019 0.667044i \(-0.767559\pi\)
−0.0260804 0.999660i \(-0.508303\pi\)
\(480\) −257.982 + 323.419i −0.537463 + 0.673790i
\(481\) 654.559 + 1234.63i 1.36083 + 2.56680i
\(482\) −710.064 603.134i −1.47316 1.25132i
\(483\) 5.19492 + 168.445i 0.0107555 + 0.348747i
\(484\) 117.629 + 295.225i 0.243034 + 0.609970i
\(485\) 229.701 + 121.780i 0.473609 + 0.251092i
\(486\) 31.1087 + 678.414i 0.0640096 + 1.39591i
\(487\) 282.270 214.576i 0.579610 0.440608i −0.273846 0.961774i \(-0.588296\pi\)
0.853455 + 0.521166i \(0.174503\pi\)
\(488\) −1.83189 + 0.508621i −0.00375386 + 0.00104226i
\(489\) 15.1339 114.277i 0.0309486 0.233695i
\(490\) 59.2068 + 361.146i 0.120830 + 0.737032i
\(491\) 118.050 + 536.304i 0.240427 + 1.09227i 0.929858 + 0.367918i \(0.119929\pi\)
−0.689431 + 0.724351i \(0.742140\pi\)
\(492\) −35.9756 + 40.4040i −0.0731212 + 0.0821219i
\(493\) 142.421 + 15.4892i 0.288887 + 0.0314183i
\(494\) 104.530 + 70.8733i 0.211600 + 0.143468i
\(495\) −72.7856 154.278i −0.147042 0.311673i
\(496\) −41.3400 762.471i −0.0833468 1.53724i
\(497\) −62.1227 + 65.5821i −0.124995 + 0.131956i
\(498\) 765.812 + 429.192i 1.53777 + 0.861830i
\(499\) 14.8153 273.252i 0.0296899 0.547599i −0.945417 0.325863i \(-0.894345\pi\)
0.975107 0.221736i \(-0.0711722\pi\)
\(500\) 102.411 465.257i 0.204822 0.930515i
\(501\) −195.175 + 141.306i −0.389570 + 0.282047i
\(502\) 165.075 55.6203i 0.328835 0.110797i
\(503\) −20.1606 + 91.5903i −0.0400806 + 0.182088i −0.992408 0.122990i \(-0.960752\pi\)
0.952327 + 0.305078i \(0.0986827\pi\)
\(504\) 10.4609 6.40143i 0.0207558 0.0127012i
\(505\) −390.418 + 369.824i −0.773106 + 0.732325i
\(506\) −257.044 + 271.358i −0.507992 + 0.536280i
\(507\) −1160.48 + 431.284i −2.28892 + 0.850659i
\(508\) 88.5521 540.144i 0.174315 1.06328i
\(509\) 212.054 + 143.776i 0.416610 + 0.282468i 0.751429 0.659814i \(-0.229365\pi\)
−0.334819 + 0.942282i \(0.608675\pi\)
\(510\) −530.261 + 103.810i −1.03973 + 0.203550i
\(511\) 46.0340 27.6978i 0.0900861 0.0542030i
\(512\) −152.770 694.041i −0.298379 1.35555i
\(513\) −24.4010 + 44.3147i −0.0475653 + 0.0863834i
\(514\) −1034.89 478.793i −2.01341 0.931505i
\(515\) −369.645 + 102.632i −0.717758 + 0.199285i
\(516\) 449.543 + 320.359i 0.871207 + 0.620850i
\(517\) −150.835 + 16.4043i −0.291750 + 0.0317297i
\(518\) −368.500 195.366i −0.711391 0.377155i
\(519\) 549.020 + 677.793i 1.05784 + 1.30596i
\(520\) 10.5509 38.0010i 0.0202903 0.0730789i
\(521\) −431.831 366.800i −0.828849 0.704031i 0.128893 0.991659i \(-0.458858\pi\)
−0.957742 + 0.287627i \(0.907134\pi\)
\(522\) 153.295 + 79.8058i 0.293670 + 0.152885i
\(523\) 105.654 + 155.829i 0.202016 + 0.297951i 0.915180 0.403046i \(-0.132049\pi\)
−0.713163 + 0.700998i \(0.752738\pi\)
\(524\) 238.865 + 516.298i 0.455849 + 0.985302i
\(525\) −63.9044 + 100.808i −0.121723 + 0.192016i
\(526\) 38.8886 97.6030i 0.0739327 0.185557i
\(527\) 576.207 757.987i 1.09337 1.43830i
\(528\) 298.801 + 73.1204i 0.565911 + 0.138486i
\(529\) −50.5538 17.0335i −0.0955648 0.0321995i
\(530\) 52.8470i 0.0997113i
\(531\) −197.006 + 493.102i −0.371009 + 0.928629i
\(532\) −18.3904 −0.0345684
\(533\) 36.4425 108.157i 0.0683724 0.202922i
\(534\) −40.9211 + 167.221i −0.0766313 + 0.313148i
\(535\) −407.916 310.090i −0.762461 0.579607i
\(536\) −23.7138 9.44846i −0.0442422 0.0176277i
\(537\) 45.5586 + 28.8806i 0.0848391 + 0.0537813i
\(538\) 999.709 462.515i 1.85819 0.859693i
\(539\) 215.030 145.794i 0.398943 0.270490i
\(540\) −312.974 56.4134i −0.579581 0.104469i
\(541\) 257.592 303.261i 0.476141 0.560557i −0.470685 0.882301i \(-0.655993\pi\)
0.946827 + 0.321744i \(0.104269\pi\)
\(542\) 1004.18 + 278.810i 1.85273 + 0.514409i
\(543\) −79.2134 + 64.1637i −0.145881 + 0.118165i
\(544\) 435.737 821.887i 0.800987 1.51082i
\(545\) −10.3429 95.1011i −0.0189777 0.174497i
\(546\) 302.268 424.157i 0.553605 0.776844i
\(547\) 76.9415 + 277.118i 0.140661 + 0.506615i 0.999988 0.00481097i \(-0.00153139\pi\)
−0.859328 + 0.511426i \(0.829118\pi\)
\(548\) 47.0137 101.618i 0.0857914 0.185435i
\(549\) −22.4171 23.3129i −0.0408326 0.0424643i
\(550\) −258.534 + 56.9077i −0.470062 + 0.103468i
\(551\) 6.63715 + 11.0310i 0.0120456 + 0.0200200i
\(552\) −6.65040 33.9701i −0.0120478 0.0615401i
\(553\) −139.572 + 205.853i −0.252391 + 0.372248i
\(554\) −766.684 125.692i −1.38391 0.226880i
\(555\) −187.162 503.608i −0.337228 0.907402i
\(556\) −434.124 411.224i −0.780798 0.739611i
\(557\) 82.4431 + 87.0342i 0.148013 + 0.156255i 0.795786 0.605578i \(-0.207058\pi\)
−0.647773 + 0.761833i \(0.724299\pi\)
\(558\) 979.737 599.537i 1.75580 1.07444i
\(559\) −1137.34 250.348i −2.03460 0.447849i
\(560\) 42.5062 + 126.154i 0.0759040 + 0.225275i
\(561\) 224.940 + 310.693i 0.400963 + 0.553820i
\(562\) −333.082 73.3168i −0.592672 0.130457i
\(563\) 1053.44 + 57.1158i 1.87112 + 0.101449i 0.954480 0.298274i \(-0.0964110\pi\)
0.916636 + 0.399723i \(0.130894\pi\)
\(564\) −138.286 + 246.745i −0.245188 + 0.437492i
\(565\) −92.7895 87.8949i −0.164229 0.155566i
\(566\) −585.766 + 31.7593i −1.03492 + 0.0561119i
\(567\) 180.361 + 104.869i 0.318097 + 0.184955i
\(568\) 10.4126 15.3574i 0.0183320 0.0270377i
\(569\) −51.7403 + 475.744i −0.0909319 + 0.836105i 0.856500 + 0.516147i \(0.172634\pi\)
−0.947432 + 0.319958i \(0.896331\pi\)
\(570\) −36.2635 32.2890i −0.0636202 0.0566473i
\(571\) 101.635 22.3715i 0.177995 0.0391796i −0.125079 0.992147i \(-0.539918\pi\)
0.303073 + 0.952967i \(0.401987\pi\)
\(572\) 556.167 91.1789i 0.972319 0.159404i
\(573\) −556.671 73.7208i −0.971502 0.128658i
\(574\) 9.11334 + 32.8233i 0.0158769 + 0.0571834i
\(575\) 203.871 + 268.187i 0.354558 + 0.466413i
\(576\) 393.981 339.767i 0.683994 0.589873i
\(577\) 316.687 597.335i 0.548851 1.03524i −0.441579 0.897223i \(-0.645581\pi\)
0.990429 0.138020i \(-0.0440738\pi\)
\(578\) 378.348 150.748i 0.654581 0.260809i
\(579\) −111.039 + 3.42450i −0.191777 + 0.00591451i
\(580\) −52.3925 + 61.6813i −0.0903320 + 0.106347i
\(581\) 238.275 126.326i 0.410112 0.217428i
\(582\) −551.321 439.773i −0.947288 0.755624i
\(583\) 34.0482 15.7524i 0.0584017 0.0270195i
\(584\) −8.41042 + 7.14388i −0.0144014 + 0.0122327i
\(585\) 654.128 149.134i 1.11817 0.254930i
\(586\) 963.754 + 732.627i 1.64463 + 1.25022i
\(587\) 369.067 613.394i 0.628734 1.04496i −0.364763 0.931100i \(-0.618850\pi\)
0.993496 0.113863i \(-0.0363225\pi\)
\(588\) 11.3006 484.197i 0.0192187 0.823464i
\(589\) 85.5614 0.145265
\(590\) −419.412 289.561i −0.710867 0.490781i
\(591\) 24.0701 7.48949i 0.0407277 0.0126726i
\(592\) 918.130 + 309.354i 1.55090 + 0.522557i
\(593\) −104.579 + 173.811i −0.176355 + 0.293105i −0.932409 0.361405i \(-0.882297\pi\)
0.756054 + 0.654509i \(0.227125\pi\)
\(594\) 116.716 + 447.767i 0.196492 + 0.753817i
\(595\) −61.4401 + 154.203i −0.103261 + 0.259165i
\(596\) −602.532 + 511.795i −1.01096 + 0.858717i
\(597\) −616.813 682.370i −1.03319 1.14300i
\(598\) −824.972 1216.74i −1.37955 2.03469i
\(599\) −466.115 + 247.118i −0.778155 + 0.412552i −0.809621 0.586953i \(-0.800327\pi\)
0.0314659 + 0.999505i \(0.489982\pi\)
\(600\) 9.60319 22.5568i 0.0160053 0.0375946i
\(601\) 95.6952 344.663i 0.159227 0.573482i −0.840282 0.542149i \(-0.817611\pi\)
0.999509 0.0313333i \(-0.00997533\pi\)
\(602\) 322.902 128.656i 0.536382 0.213714i
\(603\) −50.1857 431.343i −0.0832267 0.715328i
\(604\) 77.0678 8.38163i 0.127596 0.0138769i
\(605\) 155.994 + 205.206i 0.257841 + 0.339184i
\(606\) 1226.16 790.236i 2.02337 1.30402i
\(607\) −92.9607 43.0082i −0.153148 0.0708537i 0.341818 0.939766i \(-0.388957\pi\)
−0.494966 + 0.868912i \(0.664819\pi\)
\(608\) 82.4936 13.5241i 0.135680 0.0222437i
\(609\) 46.1195 26.3034i 0.0757298 0.0431912i
\(610\) 26.5988 16.0040i 0.0436046 0.0262360i
\(611\) 64.5178 593.232i 0.105594 0.970919i
\(612\) 715.062 5.36026i 1.16840 0.00875859i
\(613\) −114.317 + 697.301i −0.186487 + 1.13752i 0.713191 + 0.700970i \(0.247249\pi\)
−0.899679 + 0.436553i \(0.856199\pi\)
\(614\) 433.373 23.4968i 0.705819 0.0382684i
\(615\) −19.3490 + 39.3839i −0.0314618 + 0.0640388i
\(616\) 6.06662 5.74661i 0.00984841 0.00932891i
\(617\) −774.324 41.9826i −1.25498 0.0680432i −0.585378 0.810761i \(-0.699054\pi\)
−0.669605 + 0.742718i \(0.733536\pi\)
\(618\) 1036.87 88.3428i 1.67778 0.142949i
\(619\) 791.810 266.792i 1.27918 0.431005i 0.403978 0.914769i \(-0.367627\pi\)
0.875198 + 0.483764i \(0.160731\pi\)
\(620\) 171.742 + 509.713i 0.277004 + 0.822117i
\(621\) 454.785 374.061i 0.732343 0.602353i
\(622\) −71.7234 + 1322.86i −0.115311 + 2.12679i
\(623\) 36.3706 + 38.3960i 0.0583797 + 0.0616307i
\(624\) −533.488 + 1085.89i −0.854949 + 1.74020i
\(625\) −0.0132959 0.245228i −2.12734e−5 0.000392364i
\(626\) 404.472 + 66.3099i 0.646122 + 0.105926i
\(627\) −9.99384 + 32.9883i −0.0159391 + 0.0526130i
\(628\) −919.499 100.002i −1.46417 0.159238i
\(629\) 622.824 + 1035.14i 0.990182 + 1.64569i
\(630\) −136.617 + 146.407i −0.216852 + 0.232392i
\(631\) −98.1898 598.931i −0.155610 0.949178i −0.943017 0.332744i \(-0.892025\pi\)
0.787407 0.616433i \(-0.211423\pi\)
\(632\) 21.4499 46.3632i 0.0339397 0.0733595i
\(633\) 625.178 402.915i 0.987643 0.636516i
\(634\) −784.727 + 596.534i −1.23774 + 0.940905i
\(635\) −48.0008 441.360i −0.0755918 0.695055i
\(636\) 12.9221 68.7348i 0.0203178 0.108074i
\(637\) 378.198 + 949.206i 0.593718 + 1.49012i
\(638\) 113.464 + 31.5030i 0.177843 + 0.0493777i
\(639\) 314.040 + 31.7739i 0.491455 + 0.0497244i
\(640\) −24.4832 46.1802i −0.0382550 0.0721565i
\(641\) −146.120 + 99.0721i −0.227957 + 0.154559i −0.669819 0.742524i \(-0.733628\pi\)
0.441862 + 0.897083i \(0.354318\pi\)
\(642\) 932.046 + 1031.11i 1.45178 + 1.60609i
\(643\) 95.8311 + 112.821i 0.149037 + 0.175460i 0.831615 0.555353i \(-0.187417\pi\)
−0.682577 + 0.730813i \(0.739141\pi\)
\(644\) 198.862 + 79.2340i 0.308792 + 0.123034i
\(645\) 420.852 + 152.826i 0.652484 + 0.236939i
\(646\) 93.5514 + 56.2880i 0.144816 + 0.0871332i
\(647\) −12.9927 + 38.5609i −0.0200814 + 0.0595995i −0.957225 0.289344i \(-0.906563\pi\)
0.937144 + 0.348943i \(0.113459\pi\)
\(648\) −40.0429 15.2630i −0.0617946 0.0235540i
\(649\) −61.5419 + 356.529i −0.0948257 + 0.549351i
\(650\) 1041.15i 1.60178i
\(651\) 8.23322 352.768i 0.0126470 0.541887i
\(652\) −125.466 75.4903i −0.192432 0.115783i
\(653\) 200.187 263.341i 0.306565 0.403279i −0.616851 0.787080i \(-0.711592\pi\)
0.923416 + 0.383801i \(0.125385\pi\)
\(654\) −20.0905 + 258.712i −0.0307194 + 0.395585i
\(655\) 298.716 + 351.676i 0.456055 + 0.536910i
\(656\) −33.2255 71.8158i −0.0506487 0.109475i
\(657\) −174.905 68.1739i −0.266218 0.103766i
\(658\) 83.4264 + 157.359i 0.126788 + 0.239147i
\(659\) −598.816 508.639i −0.908674 0.771835i 0.0654481 0.997856i \(-0.479152\pi\)
−0.974122 + 0.226021i \(0.927428\pi\)
\(660\) −216.581 + 6.67946i −0.328153 + 0.0101204i
\(661\) −435.943 1094.13i −0.659520 1.65527i −0.751681 0.659527i \(-0.770757\pi\)
0.0921609 0.995744i \(-0.470623\pi\)
\(662\) −1265.10 670.715i −1.91103 1.01316i
\(663\) −1383.57 + 601.322i −2.08683 + 0.906971i
\(664\) −44.0992 + 33.5233i −0.0664144 + 0.0504869i
\(665\) −14.3728 + 3.99060i −0.0216133 + 0.00600090i
\(666\) 246.550 + 1436.37i 0.370196 + 2.15670i
\(667\) −24.2435 147.879i −0.0363470 0.221707i
\(668\) 65.7965 + 298.916i 0.0984977 + 0.447480i
\(669\) −257.662 229.422i −0.385145 0.342932i
\(670\) 414.356 + 45.0639i 0.618442 + 0.0672596i
\(671\) −18.2395 12.3667i −0.0271825 0.0184302i
\(672\) −47.8219 341.422i −0.0711635 0.508068i
\(673\) 4.39956 + 81.1451i 0.00653724 + 0.120572i 0.999980 + 0.00624596i \(0.00198816\pi\)
−0.993443 + 0.114326i \(0.963529\pi\)
\(674\) 943.937 996.502i 1.40050 1.47849i
\(675\) 415.272 38.5193i 0.615217 0.0570656i
\(676\) −85.1384 + 1570.29i −0.125944 + 2.32291i
\(677\) −268.075 + 1217.88i −0.395975 + 1.79893i 0.182470 + 0.983211i \(0.441591\pi\)
−0.578445 + 0.815721i \(0.696340\pi\)
\(678\) 203.315 + 280.823i 0.299874 + 0.414193i
\(679\) −205.312 + 69.1777i −0.302374 + 0.101882i
\(680\) 7.32938 33.2977i 0.0107785 0.0489672i
\(681\) −241.384 955.323i −0.354455 1.40282i
\(682\) 568.180 538.209i 0.833109 0.789163i
\(683\) −503.588 + 531.632i −0.737318 + 0.778378i −0.981523 0.191346i \(-0.938715\pi\)
0.244204 + 0.969724i \(0.421473\pi\)
\(684\) 39.2704 + 50.8634i 0.0574129 + 0.0743617i
\(685\) 14.6926 89.6207i 0.0214490 0.130833i
\(686\) −544.368 369.091i −0.793540 0.538033i
\(687\) −83.3443 425.721i −0.121316 0.619682i
\(688\) −691.837 + 416.264i −1.00558 + 0.605036i
\(689\) 31.7185 + 144.099i 0.0460356 + 0.209142i
\(690\) 253.016 + 505.393i 0.366690 + 0.732453i
\(691\) 424.718 + 196.496i 0.614643 + 0.284364i 0.702405 0.711777i \(-0.252109\pi\)
−0.0877621 + 0.996141i \(0.527972\pi\)
\(692\) 1067.58 296.412i 1.54274 0.428341i
\(693\) 135.049 + 44.3788i 0.194876 + 0.0640387i
\(694\) −837.554 + 91.0895i −1.20685 + 0.131253i
\(695\) −428.519 227.186i −0.616574 0.326887i
\(696\) −8.47407 + 6.86409i −0.0121754 + 0.00986220i
\(697\) 26.3963 95.0710i 0.0378714 0.136400i
\(698\) −1021.19 867.411i −1.46303 1.24271i
\(699\) −333.797 331.304i −0.477535 0.473969i
\(700\) 85.0822 + 125.487i 0.121546 + 0.179267i
\(701\) 309.916 + 669.871i 0.442105 + 0.955594i 0.992676 + 0.120806i \(0.0385479\pi\)
−0.550571 + 0.834788i \(0.685590\pi\)
\(702\) −1818.57 + 69.7343i −2.59056 + 0.0993366i
\(703\) −40.1823 + 100.850i −0.0571584 + 0.143457i
\(704\) 214.521 282.198i 0.304718 0.400849i
\(705\) −54.5340 + 222.849i −0.0773531 + 0.316098i
\(706\) −1841.87 620.597i −2.60887 0.879032i
\(707\) 448.138i 0.633858i
\(708\) 474.699 + 479.169i 0.670479 + 0.676792i
\(709\) 1140.45 1.60854 0.804268 0.594267i \(-0.202558\pi\)
0.804268 + 0.594267i \(0.202558\pi\)
\(710\) −96.7347 + 287.098i −0.136246 + 0.404364i
\(711\) 867.380 53.5518i 1.21994 0.0753190i
\(712\) −8.64799 6.57403i −0.0121461 0.00923319i
\(713\) −925.208 368.637i −1.29763 0.517022i
\(714\) 241.077 380.295i 0.337643 0.532626i
\(715\) 414.882 191.945i 0.580254 0.268454i
\(716\) 56.7117 38.4515i 0.0792063 0.0537032i
\(717\) −217.533 215.909i −0.303393 0.301128i
\(718\) 274.024 322.606i 0.381649 0.449312i
\(719\) 6.69354 + 1.85845i 0.00930951 + 0.00258477i 0.272180 0.962246i \(-0.412255\pi\)
−0.262870 + 0.964831i \(0.584669\pi\)
\(720\) 258.145 386.949i 0.358535 0.537429i
\(721\) 149.745 282.448i 0.207690 0.391745i
\(722\) −108.022 993.241i −0.149614 1.37568i
\(723\) 814.420 + 580.382i 1.12644 + 0.802741i
\(724\) 34.6416 + 124.768i 0.0478475 + 0.172331i
\(725\) 44.5638 96.3231i 0.0614674 0.132860i
\(726\) −313.015 625.238i −0.431150 0.861209i
\(727\) 785.416 172.883i 1.08035 0.237803i 0.361082 0.932534i \(-0.382408\pi\)
0.719270 + 0.694731i \(0.244476\pi\)
\(728\) 16.9438 + 28.1608i 0.0232744 + 0.0386824i
\(729\) −95.0953 722.771i −0.130446 0.991455i
\(730\) 101.113 149.131i 0.138511 0.204289i
\(731\) −993.512 162.878i −1.35911 0.222815i
\(732\) −38.5087 + 14.3114i −0.0526075 + 0.0195511i
\(733\) 312.835 + 296.333i 0.426787 + 0.404274i 0.870715 0.491789i \(-0.163657\pi\)
−0.443928 + 0.896063i \(0.646415\pi\)
\(734\) 120.605 + 127.321i 0.164312 + 0.173462i
\(735\) −96.2359 380.872i −0.130933 0.518193i
\(736\) −950.304 209.178i −1.29117 0.284209i
\(737\) −94.4754 280.393i −0.128189 0.380452i
\(738\) 71.3210 95.2955i 0.0966409 0.129127i
\(739\) −860.862 189.490i −1.16490 0.256414i −0.409896 0.912132i \(-0.634435\pi\)
−0.755006 + 0.655718i \(0.772366\pi\)
\(740\) −681.448 36.9470i −0.920875 0.0499284i
\(741\) −118.260 66.2777i −0.159595 0.0894435i
\(742\) −31.9720 30.2855i −0.0430889 0.0408160i
\(743\) 745.662 40.4286i 1.00358 0.0544127i 0.454985 0.890499i \(-0.349645\pi\)
0.548598 + 0.836086i \(0.315162\pi\)
\(744\) 10.0537 + 71.7776i 0.0135130 + 0.0964753i
\(745\) −359.847 + 530.735i −0.483016 + 0.712396i
\(746\) −140.804 + 1294.67i −0.188745 + 1.73549i
\(747\) −858.194 389.260i −1.14885 0.521097i
\(748\) 475.836 104.739i 0.636144 0.140026i
\(749\) 421.370 69.0801i 0.562577 0.0922297i
\(750\) −137.608 + 1039.09i −0.183478 + 1.38545i
\(751\) 251.710 + 906.576i 0.335166 + 1.20716i 0.918663 + 0.395043i \(0.129270\pi\)
−0.583497 + 0.812116i \(0.698316\pi\)
\(752\) −250.374 329.361i −0.332944 0.437980i
\(753\) −171.489 + 74.5323i −0.227741 + 0.0989804i
\(754\) −216.935 + 409.183i −0.287713 + 0.542683i
\(755\) 58.4129 23.2738i 0.0773681 0.0308263i
\(756\) 213.488 157.017i 0.282392 0.207695i
\(757\) −130.817 + 154.009i −0.172809 + 0.203447i −0.841748 0.539871i \(-0.818473\pi\)
0.668938 + 0.743318i \(0.266749\pi\)
\(758\) −1054.91 + 559.280i −1.39171 + 0.737836i
\(759\) 250.196 313.658i 0.329639 0.413251i
\(760\) 2.78068 1.28648i 0.00365879 0.00169274i
\(761\) −187.680 + 159.417i −0.246622 + 0.209483i −0.762168 0.647379i \(-0.775865\pi\)
0.515546 + 0.856862i \(0.327589\pi\)
\(762\) −93.2389 + 1200.67i −0.122361 + 1.57569i
\(763\) 63.4626 + 48.2430i 0.0831751 + 0.0632281i
\(764\) −367.732 + 611.175i −0.481324 + 0.799967i
\(765\) 557.687 159.353i 0.729003 0.208305i
\(766\) −889.167 −1.16079
\(767\) −1317.41 537.822i −1.71761 0.701202i
\(768\) 248.216 + 797.729i 0.323198 + 1.03871i
\(769\) 875.543 + 295.005i 1.13855 + 0.383621i 0.824543 0.565800i \(-0.191433\pi\)
0.314005 + 0.949421i \(0.398329\pi\)
\(770\) −70.3424 + 116.910i −0.0913537 + 0.151831i
\(771\) 1150.52 + 417.791i 1.49224 + 0.541882i
\(772\) −52.2312 + 131.090i −0.0676569 + 0.169806i
\(773\) −673.866 + 572.387i −0.871754 + 0.740474i −0.966945