Properties

Label 177.3.h.a.71.8
Level $177$
Weight $3$
Character 177.71
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 71.8
Character \(\chi\) \(=\) 177.71
Dual form 177.3.h.a.5.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.892372 - 2.64847i) q^{2} +(0.713097 + 2.91402i) q^{3} +(-3.03367 + 2.30614i) q^{4} +(-2.87136 + 1.14405i) q^{5} +(7.08133 - 4.48900i) q^{6} +(2.33765 + 1.08151i) q^{7} +(-0.437890 - 0.296897i) q^{8} +(-7.98299 + 4.15595i) q^{9} +O(q^{10})\) \(q+(-0.892372 - 2.64847i) q^{2} +(0.713097 + 2.91402i) q^{3} +(-3.03367 + 2.30614i) q^{4} +(-2.87136 + 1.14405i) q^{5} +(7.08133 - 4.48900i) q^{6} +(2.33765 + 1.08151i) q^{7} +(-0.437890 - 0.296897i) q^{8} +(-7.98299 + 4.15595i) q^{9} +(5.59230 + 6.58377i) q^{10} +(-5.90871 + 1.64054i) q^{11} +(-8.88342 - 7.19567i) q^{12} +(11.2971 + 21.3085i) q^{13} +(0.778296 - 7.15631i) q^{14} +(-5.38134 - 7.55136i) q^{15} +(-4.47344 + 16.1119i) q^{16} +(8.75474 + 18.9231i) q^{17} +(18.1307 + 17.4340i) q^{18} +(1.82985 + 0.402779i) q^{19} +(6.07241 - 10.0924i) q^{20} +(-1.48458 + 7.58319i) q^{21} +(9.61769 + 14.1850i) q^{22} +(-21.5222 + 3.52838i) q^{23} +(0.552904 - 1.48773i) q^{24} +(-11.2141 + 10.6225i) q^{25} +(46.3538 - 48.9351i) q^{26} +(-17.8032 - 20.2990i) q^{27} +(-9.58579 + 2.10999i) q^{28} +(2.19392 - 6.51131i) q^{29} +(-15.1974 + 20.9909i) q^{30} +(44.5980 - 9.81675i) q^{31} +(44.5506 - 2.41546i) q^{32} +(-8.99405 - 16.0482i) q^{33} +(42.3046 - 40.0730i) q^{34} +(-7.94955 - 0.431012i) q^{35} +(14.6336 - 31.0177i) q^{36} +(-32.5155 - 47.9568i) q^{37} +(-0.566155 - 5.20571i) q^{38} +(-54.0376 + 48.1149i) q^{39} +(1.59700 + 0.351527i) q^{40} +(4.66989 + 0.765589i) q^{41} +(21.4086 - 2.83518i) q^{42} +(-12.9179 + 46.5262i) q^{43} +(14.1418 - 18.6032i) q^{44} +(18.1674 - 21.0662i) q^{45} +(28.5506 + 53.8521i) q^{46} +(22.9848 + 9.15799i) q^{47} +(-50.1403 - 1.54635i) q^{48} +(-27.4270 - 32.2895i) q^{49} +(38.1405 + 20.2208i) q^{50} +(-48.8991 + 39.0054i) q^{51} +(-83.4120 - 38.5905i) q^{52} +(-4.66273 - 3.96056i) q^{53} +(-37.8741 + 65.2653i) q^{54} +(15.0891 - 11.4705i) q^{55} +(-0.702537 - 1.16763i) q^{56} +(0.131151 + 5.61942i) q^{57} -19.2028 q^{58} +(-5.88414 + 58.7059i) q^{59} +(33.7397 + 10.4982i) q^{60} +(3.40546 - 1.14743i) q^{61} +(-65.7973 - 109.356i) q^{62} +(-23.1562 + 1.08147i) q^{63} +(-21.3961 - 53.7003i) q^{64} +(-56.8160 - 48.2600i) q^{65} +(-34.4771 + 38.1414i) q^{66} +(27.0774 - 39.9362i) q^{67} +(-70.1982 - 37.2167i) q^{68} +(-25.6292 - 60.1999i) q^{69} +(5.95243 + 21.4387i) q^{70} +(-32.5806 - 12.9813i) q^{71} +(4.72955 + 0.550272i) q^{72} +(20.7357 + 2.25515i) q^{73} +(-97.9960 + 128.912i) q^{74} +(-38.9509 - 25.1031i) q^{75} +(-6.48001 + 2.99797i) q^{76} +(-15.5868 - 2.55532i) q^{77} +(175.652 + 100.180i) q^{78} +(-82.7374 - 49.7814i) q^{79} +(-5.58800 - 51.3808i) q^{80} +(46.4561 - 66.3538i) q^{81} +(-2.13964 - 13.0512i) q^{82} +(104.552 + 5.66863i) q^{83} +(-12.9842 - 26.4285i) q^{84} +(-46.7870 - 44.3190i) q^{85} +(134.751 - 7.30597i) q^{86} +(20.5385 + 1.74991i) q^{87} +(3.07443 + 1.03590i) q^{88} +(6.55624 - 19.4582i) q^{89} +(-72.0051 - 29.3168i) q^{90} +(3.36317 + 62.0300i) q^{91} +(57.1543 - 60.3370i) q^{92} +(60.4089 + 122.959i) q^{93} +(3.74361 - 69.0468i) q^{94} +(-5.71494 + 0.936917i) q^{95} +(38.8076 + 128.099i) q^{96} +(-83.6208 + 9.09430i) q^{97} +(-61.0427 + 101.454i) q^{98} +(40.3511 - 37.6527i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{26}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.892372 2.64847i −0.446186 1.32423i −0.901067 0.433681i \(-0.857215\pi\)
0.454881 0.890552i \(-0.349682\pi\)
\(3\) 0.713097 + 2.91402i 0.237699 + 0.971339i
\(4\) −3.03367 + 2.30614i −0.758418 + 0.576534i
\(5\) −2.87136 + 1.14405i −0.574271 + 0.228811i −0.639149 0.769083i \(-0.720713\pi\)
0.0648781 + 0.997893i \(0.479334\pi\)
\(6\) 7.08133 4.48900i 1.18022 0.748167i
\(7\) 2.33765 + 1.08151i 0.333951 + 0.154502i 0.579697 0.814832i \(-0.303171\pi\)
−0.245746 + 0.969334i \(0.579033\pi\)
\(8\) −0.437890 0.296897i −0.0547362 0.0371121i
\(9\) −7.98299 + 4.15595i −0.886998 + 0.461772i
\(10\) 5.59230 + 6.58377i 0.559230 + 0.658377i
\(11\) −5.90871 + 1.64054i −0.537155 + 0.149140i −0.525503 0.850792i \(-0.676123\pi\)
−0.0116521 + 0.999932i \(0.503709\pi\)
\(12\) −8.88342 7.19567i −0.740285 0.599639i
\(13\) 11.2971 + 21.3085i 0.869006 + 1.63912i 0.764527 + 0.644592i \(0.222973\pi\)
0.104479 + 0.994527i \(0.466682\pi\)
\(14\) 0.778296 7.15631i 0.0555925 0.511165i
\(15\) −5.38134 7.55136i −0.358756 0.503424i
\(16\) −4.47344 + 16.1119i −0.279590 + 1.00699i
\(17\) 8.75474 + 18.9231i 0.514985 + 1.11312i 0.974384 + 0.224891i \(0.0722027\pi\)
−0.459399 + 0.888230i \(0.651935\pi\)
\(18\) 18.1307 + 17.4340i 1.00726 + 0.968556i
\(19\) 1.82985 + 0.402779i 0.0963076 + 0.0211989i 0.262863 0.964833i \(-0.415333\pi\)
−0.166555 + 0.986032i \(0.553264\pi\)
\(20\) 6.07241 10.0924i 0.303620 0.504621i
\(21\) −1.48458 + 7.58319i −0.0706941 + 0.361104i
\(22\) 9.61769 + 14.1850i 0.437168 + 0.644774i
\(23\) −21.5222 + 3.52838i −0.935747 + 0.153408i −0.610316 0.792158i \(-0.708958\pi\)
−0.325431 + 0.945566i \(0.605509\pi\)
\(24\) 0.552904 1.48773i 0.0230377 0.0619889i
\(25\) −11.2141 + 10.6225i −0.448562 + 0.424901i
\(26\) 46.3538 48.9351i 1.78284 1.88212i
\(27\) −17.8032 20.2990i −0.659376 0.751813i
\(28\) −9.58579 + 2.10999i −0.342350 + 0.0753569i
\(29\) 2.19392 6.51131i 0.0756523 0.224528i −0.903154 0.429317i \(-0.858754\pi\)
0.978806 + 0.204789i \(0.0656508\pi\)
\(30\) −15.1974 + 20.9909i −0.506579 + 0.699698i
\(31\) 44.5980 9.81675i 1.43864 0.316669i 0.573918 0.818913i \(-0.305423\pi\)
0.864726 + 0.502243i \(0.167492\pi\)
\(32\) 44.5506 2.41546i 1.39221 0.0754833i
\(33\) −8.99405 16.0482i −0.272547 0.486309i
\(34\) 42.3046 40.0730i 1.24425 1.17862i
\(35\) −7.94955 0.431012i −0.227130 0.0123146i
\(36\) 14.6336 31.0177i 0.406488 0.861601i
\(37\) −32.5155 47.9568i −0.878798 1.29613i −0.954259 0.298981i \(-0.903353\pi\)
0.0754617 0.997149i \(-0.475957\pi\)
\(38\) −0.566155 5.20571i −0.0148988 0.136992i
\(39\) −54.0376 + 48.1149i −1.38558 + 1.23372i
\(40\) 1.59700 + 0.351527i 0.0399251 + 0.00878817i
\(41\) 4.66989 + 0.765589i 0.113900 + 0.0186729i 0.218462 0.975845i \(-0.429896\pi\)
−0.104563 + 0.994518i \(0.533344\pi\)
\(42\) 21.4086 2.83518i 0.509729 0.0675042i
\(43\) −12.9179 + 46.5262i −0.300417 + 1.08201i 0.647127 + 0.762382i \(0.275970\pi\)
−0.947545 + 0.319623i \(0.896444\pi\)
\(44\) 14.1418 18.6032i 0.321403 0.422799i
\(45\) 18.1674 21.0662i 0.403719 0.468137i
\(46\) 28.5506 + 53.8521i 0.620665 + 1.17070i
\(47\) 22.9848 + 9.15799i 0.489039 + 0.194851i 0.601606 0.798793i \(-0.294528\pi\)
−0.112567 + 0.993644i \(0.535907\pi\)
\(48\) −50.1403 1.54635i −1.04459 0.0322156i
\(49\) −27.4270 32.2895i −0.559734 0.658970i
\(50\) 38.1405 + 20.2208i 0.762810 + 0.404416i
\(51\) −48.8991 + 39.0054i −0.958806 + 0.764812i
\(52\) −83.4120 38.5905i −1.60408 0.742125i
\(53\) −4.66273 3.96056i −0.0879761 0.0747276i 0.602319 0.798255i \(-0.294243\pi\)
−0.690295 + 0.723528i \(0.742519\pi\)
\(54\) −37.8741 + 65.2653i −0.701371 + 1.20862i
\(55\) 15.0891 11.4705i 0.274348 0.208554i
\(56\) −0.702537 1.16763i −0.0125453 0.0208504i
\(57\) 0.131151 + 5.61942i 0.00230090 + 0.0985863i
\(58\) −19.2028 −0.331082
\(59\) −5.88414 + 58.7059i −0.0997312 + 0.995014i
\(60\) 33.7397 + 10.4982i 0.562328 + 0.174970i
\(61\) 3.40546 1.14743i 0.0558273 0.0188104i −0.291249 0.956647i \(-0.594071\pi\)
0.347077 + 0.937837i \(0.387174\pi\)
\(62\) −65.7973 109.356i −1.06125 1.76381i
\(63\) −23.1562 + 1.08147i −0.367558 + 0.0171662i
\(64\) −21.3961 53.7003i −0.334315 0.839067i
\(65\) −56.8160 48.2600i −0.874093 0.742461i
\(66\) −34.4771 + 38.1414i −0.522380 + 0.577900i
\(67\) 27.0774 39.9362i 0.404141 0.596063i −0.570100 0.821576i \(-0.693095\pi\)
0.974240 + 0.225513i \(0.0724057\pi\)
\(68\) −70.1982 37.2167i −1.03233 0.547305i
\(69\) −25.6292 60.1999i −0.371437 0.872462i
\(70\) 5.95243 + 21.4387i 0.0850348 + 0.306268i
\(71\) −32.5806 12.9813i −0.458881 0.182835i 0.129231 0.991615i \(-0.458749\pi\)
−0.588112 + 0.808779i \(0.700129\pi\)
\(72\) 4.72955 + 0.550272i 0.0656883 + 0.00764267i
\(73\) 20.7357 + 2.25515i 0.284051 + 0.0308924i 0.249036 0.968494i \(-0.419886\pi\)
0.0350157 + 0.999387i \(0.488852\pi\)
\(74\) −97.9960 + 128.912i −1.32427 + 1.74205i
\(75\) −38.9509 25.1031i −0.519345 0.334708i
\(76\) −6.48001 + 2.99797i −0.0852633 + 0.0394470i
\(77\) −15.5868 2.55532i −0.202426 0.0331860i
\(78\) 175.652 + 100.180i 2.25195 + 1.28436i
\(79\) −82.7374 49.7814i −1.04731 0.630144i −0.115579 0.993298i \(-0.536872\pi\)
−0.931729 + 0.363154i \(0.881700\pi\)
\(80\) −5.58800 51.3808i −0.0698500 0.642260i
\(81\) 46.4561 66.3538i 0.573532 0.819183i
\(82\) −2.13964 13.0512i −0.0260932 0.159161i
\(83\) 104.552 + 5.66863i 1.25966 + 0.0682968i 0.671841 0.740695i \(-0.265504\pi\)
0.587819 + 0.808992i \(0.299987\pi\)
\(84\) −12.9842 26.4285i −0.154573 0.314625i
\(85\) −46.7870 44.3190i −0.550435 0.521399i
\(86\) 134.751 7.30597i 1.56687 0.0849532i
\(87\) 20.5385 + 1.74991i 0.236075 + 0.0201139i
\(88\) 3.07443 + 1.03590i 0.0349367 + 0.0117716i
\(89\) 6.55624 19.4582i 0.0736656 0.218632i −0.904494 0.426486i \(-0.859751\pi\)
0.978160 + 0.207854i \(0.0666479\pi\)
\(90\) −72.0051 29.3168i −0.800057 0.325742i
\(91\) 3.36317 + 62.0300i 0.0369579 + 0.681648i
\(92\) 57.1543 60.3370i 0.621242 0.655837i
\(93\) 60.4089 + 122.959i 0.649558 + 1.32214i
\(94\) 3.74361 69.0468i 0.0398256 0.734541i
\(95\) −5.71494 + 0.936917i −0.0601572 + 0.00986228i
\(96\) 38.8076 + 128.099i 0.404246 + 1.33436i
\(97\) −83.6208 + 9.09430i −0.862070 + 0.0937557i −0.528463 0.848957i \(-0.677231\pi\)
−0.333607 + 0.942712i \(0.608266\pi\)
\(98\) −61.0427 + 101.454i −0.622884 + 1.03524i
\(99\) 40.3511 37.6527i 0.407587 0.380331i
\(100\) 9.52278 58.0864i 0.0952278 0.580864i
\(101\) 73.0548 + 157.905i 0.723315 + 1.56342i 0.822768 + 0.568377i \(0.192428\pi\)
−0.0994537 + 0.995042i \(0.531710\pi\)
\(102\) 146.941 + 94.7003i 1.44060 + 0.928434i
\(103\) 98.8081 + 75.1120i 0.959302 + 0.729242i 0.962649 0.270752i \(-0.0872723\pi\)
−0.00334714 + 0.999994i \(0.501065\pi\)
\(104\) 1.37956 12.6849i 0.0132650 0.121970i
\(105\) −4.41282 23.4725i −0.0420269 0.223547i
\(106\) −6.32852 + 15.8834i −0.0597030 + 0.149843i
\(107\) 159.735 44.3501i 1.49285 0.414487i 0.577245 0.816571i \(-0.304128\pi\)
0.915603 + 0.402084i \(0.131714\pi\)
\(108\) 100.821 + 20.5238i 0.933529 + 0.190036i
\(109\) 14.4971 27.3444i 0.133001 0.250866i −0.808062 0.589097i \(-0.799484\pi\)
0.941063 + 0.338231i \(0.109828\pi\)
\(110\) −43.8442 29.7271i −0.398584 0.270247i
\(111\) 116.560 128.949i 1.05009 1.16170i
\(112\) −27.8826 + 32.8259i −0.248952 + 0.293088i
\(113\) 38.4138 15.3055i 0.339945 0.135447i −0.193917 0.981018i \(-0.562119\pi\)
0.533862 + 0.845571i \(0.320740\pi\)
\(114\) 14.7658 5.36196i 0.129525 0.0470348i
\(115\) 57.7612 34.7538i 0.502271 0.302207i
\(116\) 8.36035 + 24.8126i 0.0720720 + 0.213902i
\(117\) −178.742 123.156i −1.52771 1.05261i
\(118\) 160.731 36.8035i 1.36213 0.311894i
\(119\) 53.7039i 0.451294i
\(120\) 0.114462 + 4.90436i 0.000953854 + 0.0408697i
\(121\) −71.4583 + 42.9950i −0.590564 + 0.355331i
\(122\) −6.07788 7.99531i −0.0498187 0.0655354i
\(123\) 1.09914 + 14.1541i 0.00893611 + 0.115074i
\(124\) −112.657 + 132.630i −0.908522 + 1.06960i
\(125\) 52.4925 113.461i 0.419940 0.907686i
\(126\) 23.5282 + 60.3633i 0.186731 + 0.479074i
\(127\) 67.2804 126.904i 0.529767 0.999247i −0.463793 0.885943i \(-0.653512\pi\)
0.993560 0.113303i \(-0.0361432\pi\)
\(128\) 12.8887 10.9477i 0.100693 0.0855292i
\(129\) −144.790 4.46539i −1.12240 0.0346155i
\(130\) −77.1139 + 193.541i −0.593184 + 1.48878i
\(131\) −131.894 + 69.9259i −1.00683 + 0.533785i −0.888348 0.459171i \(-0.848146\pi\)
−0.118478 + 0.992957i \(0.537802\pi\)
\(132\) 64.2944 + 27.9434i 0.487078 + 0.211693i
\(133\) 3.84193 + 2.92056i 0.0288867 + 0.0219591i
\(134\) −129.933 36.0757i −0.969648 0.269221i
\(135\) 74.3423 + 37.9178i 0.550684 + 0.280872i
\(136\) 1.78458 10.8855i 0.0131219 0.0800402i
\(137\) 6.31632 28.6953i 0.0461045 0.209455i −0.947937 0.318458i \(-0.896835\pi\)
0.994041 + 0.109003i \(0.0347659\pi\)
\(138\) −136.567 + 121.599i −0.989613 + 0.881150i
\(139\) 155.999 16.9659i 1.12229 0.122057i 0.471899 0.881653i \(-0.343569\pi\)
0.650396 + 0.759596i \(0.274603\pi\)
\(140\) 25.1103 17.0252i 0.179359 0.121609i
\(141\) −10.2961 + 73.5087i −0.0730222 + 0.521338i
\(142\) −5.30650 + 97.8727i −0.0373697 + 0.689244i
\(143\) −101.709 107.373i −0.711250 0.750857i
\(144\) −31.2488 147.212i −0.217005 1.02231i
\(145\) 1.14977 + 21.2063i 0.00792945 + 0.146250i
\(146\) −12.5313 56.9303i −0.0858309 0.389934i
\(147\) 74.5341 102.948i 0.507035 0.700328i
\(148\) 209.236 + 70.4999i 1.41376 + 0.476351i
\(149\) 44.5971 + 202.607i 0.299310 + 1.35978i 0.850753 + 0.525565i \(0.176146\pi\)
−0.551444 + 0.834212i \(0.685923\pi\)
\(150\) −31.7259 + 125.561i −0.211506 + 0.837076i
\(151\) −14.7692 13.9901i −0.0978090 0.0926496i 0.637233 0.770671i \(-0.280079\pi\)
−0.735042 + 0.678022i \(0.762838\pi\)
\(152\) −0.681686 0.719648i −0.00448478 0.00473452i
\(153\) −148.532 114.678i −0.970799 0.749531i
\(154\) 7.14152 + 43.5614i 0.0463735 + 0.282866i
\(155\) −116.826 + 79.2098i −0.753715 + 0.511031i
\(156\) 52.9726 270.583i 0.339568 1.73451i
\(157\) 207.974 + 125.134i 1.32467 + 0.797029i 0.989417 0.145098i \(-0.0463497\pi\)
0.335256 + 0.942127i \(0.391177\pi\)
\(158\) −58.0119 + 263.551i −0.367164 + 1.66804i
\(159\) 8.21616 16.4115i 0.0516740 0.103217i
\(160\) −125.157 + 57.9039i −0.782233 + 0.361900i
\(161\) −54.1274 15.0284i −0.336195 0.0933441i
\(162\) −217.192 63.8252i −1.34069 0.393982i
\(163\) 38.1996 + 4.15446i 0.234353 + 0.0254875i 0.224542 0.974464i \(-0.427911\pi\)
0.00981135 + 0.999952i \(0.496877\pi\)
\(164\) −15.9324 + 8.44685i −0.0971491 + 0.0515052i
\(165\) 44.1851 + 35.7904i 0.267789 + 0.216912i
\(166\) −78.2859 281.960i −0.471602 1.69856i
\(167\) −61.2162 + 51.9975i −0.366564 + 0.311362i −0.811671 0.584115i \(-0.801442\pi\)
0.445107 + 0.895478i \(0.353166\pi\)
\(168\) 2.90150 2.87983i 0.0172708 0.0171419i
\(169\) −231.590 + 341.569i −1.37035 + 2.02112i
\(170\) −75.6259 + 163.463i −0.444858 + 0.961545i
\(171\) −16.2816 + 4.38937i −0.0952138 + 0.0256688i
\(172\) −68.1070 170.936i −0.395971 0.993813i
\(173\) −175.955 231.465i −1.01708 1.33795i −0.940094 0.340915i \(-0.889263\pi\)
−0.0769872 0.997032i \(-0.524530\pi\)
\(174\) −13.6934 55.9572i −0.0786979 0.321593i
\(175\) −37.7030 + 12.7036i −0.215446 + 0.0725921i
\(176\) 102.539i 0.582609i
\(177\) −175.266 + 24.7165i −0.990202 + 0.139641i
\(178\) −57.3851 −0.322388
\(179\) −5.74119 17.0392i −0.0320737 0.0951913i 0.930420 0.366494i \(-0.119442\pi\)
−0.962494 + 0.271303i \(0.912545\pi\)
\(180\) −6.53233 + 105.804i −0.0362907 + 0.587802i
\(181\) −27.0512 + 20.5638i −0.149454 + 0.113612i −0.677229 0.735772i \(-0.736820\pi\)
0.527775 + 0.849384i \(0.323026\pi\)
\(182\) 161.283 64.2610i 0.886170 0.353083i
\(183\) 5.77207 + 9.10534i 0.0315413 + 0.0497560i
\(184\) 10.4719 + 4.84482i 0.0569125 + 0.0263305i
\(185\) 148.229 + 100.502i 0.801236 + 0.543252i
\(186\) 271.745 269.716i 1.46100 1.45009i
\(187\) −82.7733 97.4483i −0.442638 0.521114i
\(188\) −90.8479 + 25.2238i −0.483234 + 0.134169i
\(189\) −19.6640 66.7063i −0.104042 0.352943i
\(190\) 7.58124 + 14.2997i 0.0399013 + 0.0752618i
\(191\) −20.2374 + 186.080i −0.105955 + 0.974240i 0.813639 + 0.581370i \(0.197483\pi\)
−0.919594 + 0.392870i \(0.871482\pi\)
\(192\) 141.226 100.642i 0.735552 0.524178i
\(193\) −9.90674 + 35.6809i −0.0513303 + 0.184875i −0.984771 0.173857i \(-0.944377\pi\)
0.933441 + 0.358732i \(0.116791\pi\)
\(194\) 98.7068 + 213.351i 0.508798 + 1.09975i
\(195\) 100.115 199.977i 0.513410 1.02552i
\(196\) 157.668 + 34.7055i 0.804431 + 0.177069i
\(197\) 4.33209 7.19999i 0.0219903 0.0365482i −0.845667 0.533711i \(-0.820797\pi\)
0.867657 + 0.497163i \(0.165625\pi\)
\(198\) −135.730 73.2682i −0.685506 0.370042i
\(199\) 172.066 + 253.778i 0.864651 + 1.27526i 0.960051 + 0.279826i \(0.0902767\pi\)
−0.0953999 + 0.995439i \(0.530413\pi\)
\(200\) 8.06431 1.32208i 0.0403215 0.00661038i
\(201\) 135.684 + 50.4257i 0.675043 + 0.250874i
\(202\) 353.015 334.393i 1.74760 1.65541i
\(203\) 12.1707 12.8484i 0.0599541 0.0632928i
\(204\) 58.3920 231.098i 0.286235 1.13283i
\(205\) −14.2848 + 3.14432i −0.0696818 + 0.0153381i
\(206\) 110.758 328.718i 0.537660 1.59572i
\(207\) 157.147 117.612i 0.759167 0.568175i
\(208\) −393.857 + 86.6946i −1.89355 + 0.416801i
\(209\) −11.4728 + 0.622037i −0.0548938 + 0.00297625i
\(210\) −58.2281 + 32.6334i −0.277277 + 0.155397i
\(211\) 179.990 170.496i 0.853035 0.808037i −0.129989 0.991515i \(-0.541494\pi\)
0.983024 + 0.183478i \(0.0587357\pi\)
\(212\) 23.2788 + 1.26214i 0.109806 + 0.00595349i
\(213\) 14.5946 104.197i 0.0685192 0.489189i
\(214\) −260.003 383.475i −1.21497 1.79194i
\(215\) −16.1364 148.372i −0.0750532 0.690103i
\(216\) 1.76913 + 14.1744i 0.00819040 + 0.0656222i
\(217\) 114.872 + 25.2851i 0.529362 + 0.116521i
\(218\) −85.3576 13.9937i −0.391549 0.0641912i
\(219\) 8.21505 + 62.0324i 0.0375117 + 0.283253i
\(220\) −19.3230 + 69.5952i −0.0878319 + 0.316342i
\(221\) −304.320 + 400.326i −1.37701 + 1.81143i
\(222\) −445.531 193.636i −2.00690 0.872232i
\(223\) 53.8667 + 101.603i 0.241555 + 0.455621i 0.974414 0.224759i \(-0.0721596\pi\)
−0.732860 + 0.680380i \(0.761815\pi\)
\(224\) 106.756 + 42.5356i 0.476591 + 0.189891i
\(225\) 45.3750 131.405i 0.201667 0.584020i
\(226\) −74.8154 88.0795i −0.331042 0.389732i
\(227\) 290.188 + 153.848i 1.27836 + 0.677745i 0.962557 0.271078i \(-0.0873803\pi\)
0.315806 + 0.948824i \(0.397725\pi\)
\(228\) −13.3570 16.7450i −0.0585834 0.0734431i
\(229\) 131.236 + 60.7164i 0.573084 + 0.265137i 0.684955 0.728586i \(-0.259822\pi\)
−0.111870 + 0.993723i \(0.535684\pi\)
\(230\) −143.589 121.965i −0.624298 0.530284i
\(231\) −3.66863 47.2423i −0.0158815 0.204512i
\(232\) −2.89388 + 2.19987i −0.0124736 + 0.00948220i
\(233\) 80.8218 + 134.327i 0.346875 + 0.576510i 0.980353 0.197250i \(-0.0632010\pi\)
−0.633478 + 0.773760i \(0.718373\pi\)
\(234\) −166.670 + 583.292i −0.712263 + 2.49270i
\(235\) −76.4748 −0.325425
\(236\) −117.533 191.664i −0.498022 0.812135i
\(237\) 86.0641 276.597i 0.363140 1.16708i
\(238\) 142.233 47.9239i 0.597618 0.201361i
\(239\) 52.6710 + 87.5399i 0.220381 + 0.366276i 0.947248 0.320503i \(-0.103852\pi\)
−0.726867 + 0.686778i \(0.759024\pi\)
\(240\) 145.740 52.9230i 0.607249 0.220512i
\(241\) −123.387 309.678i −0.511979 1.28497i −0.926967 0.375143i \(-0.877593\pi\)
0.414988 0.909827i \(-0.363786\pi\)
\(242\) 177.638 + 150.887i 0.734042 + 0.623501i
\(243\) 226.484 + 88.0572i 0.932032 + 0.362375i
\(244\) −7.68491 + 11.3344i −0.0314955 + 0.0464525i
\(245\) 115.694 + 61.3368i 0.472219 + 0.250354i
\(246\) 36.5057 15.5417i 0.148397 0.0631778i
\(247\) 12.0893 + 43.5416i 0.0489444 + 0.176282i
\(248\) −22.4435 8.94233i −0.0904982 0.0360578i
\(249\) 58.0371 + 308.708i 0.233081 + 1.23979i
\(250\) −347.340 37.7755i −1.38936 0.151102i
\(251\) −37.7196 + 49.6193i −0.150277 + 0.197687i −0.865072 0.501648i \(-0.832727\pi\)
0.714794 + 0.699335i \(0.246520\pi\)
\(252\) 67.7542 56.6821i 0.268866 0.224929i
\(253\) 121.380 56.1563i 0.479762 0.221962i
\(254\) −396.141 64.9440i −1.55961 0.255685i
\(255\) 95.7825 167.942i 0.375618 0.658595i
\(256\) −238.622 143.574i −0.932115 0.560835i
\(257\) −44.1134 405.616i −0.171648 1.57827i −0.690451 0.723379i \(-0.742588\pi\)
0.518803 0.854894i \(-0.326378\pi\)
\(258\) 117.380 + 387.456i 0.454961 + 1.50177i
\(259\) −24.1441 147.272i −0.0932204 0.568619i
\(260\) 283.655 + 15.3793i 1.09098 + 0.0591513i
\(261\) 9.54670 + 61.0975i 0.0365774 + 0.234090i
\(262\) 302.895 + 286.917i 1.15609 + 1.09510i
\(263\) −37.5384 + 2.03527i −0.142732 + 0.00773869i −0.125366 0.992111i \(-0.540011\pi\)
−0.0173654 + 0.999849i \(0.505528\pi\)
\(264\) −0.826253 + 9.69764i −0.00312975 + 0.0367335i
\(265\) 17.9195 + 6.03777i 0.0676206 + 0.0227840i
\(266\) 4.30657 12.7815i 0.0161901 0.0480506i
\(267\) 61.3769 + 5.22939i 0.229876 + 0.0195857i
\(268\) 9.95437 + 183.598i 0.0371432 + 0.685066i
\(269\) −271.047 + 286.141i −1.00761 + 1.06372i −0.00964472 + 0.999953i \(0.503070\pi\)
−0.997965 + 0.0637670i \(0.979689\pi\)
\(270\) 34.0830 230.730i 0.126233 0.854555i
\(271\) −20.1884 + 372.354i −0.0744961 + 1.37400i 0.687390 + 0.726289i \(0.258756\pi\)
−0.761886 + 0.647711i \(0.775726\pi\)
\(272\) −344.050 + 56.4041i −1.26489 + 0.207368i
\(273\) −178.358 + 54.0337i −0.653326 + 0.197926i
\(274\) −81.6351 + 8.87835i −0.297938 + 0.0324027i
\(275\) 48.8339 81.1625i 0.177578 0.295136i
\(276\) 216.580 + 123.522i 0.784709 + 0.447545i
\(277\) 44.9739 274.329i 0.162361 0.990357i −0.772415 0.635118i \(-0.780951\pi\)
0.934776 0.355239i \(-0.115600\pi\)
\(278\) −184.143 398.018i −0.662384 1.43172i
\(279\) −315.227 + 263.714i −1.12985 + 0.945212i
\(280\) 3.35306 + 2.54893i 0.0119752 + 0.00910332i
\(281\) 13.1942 121.318i 0.0469543 0.431738i −0.946941 0.321408i \(-0.895844\pi\)
0.993895 0.110330i \(-0.0351907\pi\)
\(282\) 203.873 38.3281i 0.722955 0.135915i
\(283\) 77.6928 194.994i 0.274533 0.689025i −0.725467 0.688257i \(-0.758376\pi\)
1.00000 0.000768288i \(-0.000244554\pi\)
\(284\) 128.775 35.7543i 0.453435 0.125895i
\(285\) −6.80550 15.9853i −0.0238789 0.0560888i
\(286\) −193.611 + 365.188i −0.676960 + 1.27688i
\(287\) 10.0886 + 6.84023i 0.0351519 + 0.0238335i
\(288\) −345.608 + 204.433i −1.20003 + 0.709836i
\(289\) −94.3420 + 111.068i −0.326443 + 0.384318i
\(290\) 55.1380 21.9690i 0.190131 0.0757551i
\(291\) −86.1306 237.187i −0.295982 0.815076i
\(292\) −68.1061 + 40.9781i −0.233240 + 0.140336i
\(293\) 138.312 + 410.494i 0.472053 + 1.40100i 0.874261 + 0.485455i \(0.161346\pi\)
−0.402208 + 0.915548i \(0.631757\pi\)
\(294\) −339.167 105.533i −1.15363 0.358956i
\(295\) −50.2671 175.297i −0.170397 0.594228i
\(296\) 30.6535i 0.103559i
\(297\) 138.495 + 90.7337i 0.466313 + 0.305501i
\(298\) 496.800 298.915i 1.66711 1.00307i
\(299\) −318.322 418.746i −1.06462 1.40049i
\(300\) 176.055 13.6717i 0.586851 0.0455723i
\(301\) −80.5164 + 94.7913i −0.267496 + 0.314921i
\(302\) −23.8727 + 51.6000i −0.0790487 + 0.170861i
\(303\) −408.044 + 325.485i −1.34668 + 1.07421i
\(304\) −14.6752 + 27.6804i −0.0482738 + 0.0910540i
\(305\) −8.46557 + 7.19072i −0.0277560 + 0.0235761i
\(306\) −171.175 + 495.718i −0.559396 + 1.61999i
\(307\) −57.4802 + 144.264i −0.187232 + 0.469917i −0.992389 0.123145i \(-0.960702\pi\)
0.805157 + 0.593062i \(0.202081\pi\)
\(308\) 53.1781 28.1932i 0.172656 0.0915365i
\(309\) −148.418 + 341.491i −0.480316 + 1.10515i
\(310\) 314.037 + 238.724i 1.01302 + 0.770079i
\(311\) 456.752 + 126.817i 1.46866 + 0.407771i 0.907540 0.419966i \(-0.137958\pi\)
0.561117 + 0.827736i \(0.310372\pi\)
\(312\) 37.9476 5.02547i 0.121627 0.0161073i
\(313\) −23.7265 + 144.725i −0.0758034 + 0.462380i 0.921461 + 0.388470i \(0.126996\pi\)
−0.997265 + 0.0739106i \(0.976452\pi\)
\(314\) 145.822 662.477i 0.464402 2.10980i
\(315\) 65.2524 29.5972i 0.207150 0.0939593i
\(316\) 365.801 39.7832i 1.15760 0.125896i
\(317\) 291.929 197.933i 0.920911 0.624393i −0.00587506 0.999983i \(-0.501870\pi\)
0.926786 + 0.375590i \(0.122560\pi\)
\(318\) −50.7973 7.11501i −0.159740 0.0223743i
\(319\) −2.28111 + 42.0726i −0.00715082 + 0.131889i
\(320\) 122.872 + 129.714i 0.383975 + 0.405357i
\(321\) 243.143 + 433.844i 0.757456 + 1.35154i
\(322\) 8.49958 + 156.766i 0.0263962 + 0.486849i
\(323\) 8.39800 + 38.1525i 0.0260000 + 0.118119i
\(324\) 12.0884 + 308.430i 0.0373098 + 0.951944i
\(325\) −353.037 118.952i −1.08627 0.366006i
\(326\) −23.0853 104.878i −0.0708139 0.321711i
\(327\) 90.0200 + 22.7456i 0.275290 + 0.0695583i
\(328\) −1.81759 1.72172i −0.00554144 0.00524913i
\(329\) 43.8261 + 46.2666i 0.133210 + 0.140628i
\(330\) 55.3602 148.961i 0.167758 0.451397i
\(331\) −82.8893 505.603i −0.250421 1.52750i −0.750120 0.661301i \(-0.770004\pi\)
0.499699 0.866199i \(-0.333444\pi\)
\(332\) −330.248 + 223.914i −0.994724 + 0.674440i
\(333\) 458.877 + 247.705i 1.37801 + 0.743860i
\(334\) 192.341 + 115.728i 0.575872 + 0.346491i
\(335\) −32.0598 + 145.649i −0.0957009 + 0.434773i
\(336\) −115.538 57.8422i −0.343864 0.172149i
\(337\) −445.741 + 206.222i −1.32267 + 0.611933i −0.948897 0.315586i \(-0.897799\pi\)
−0.373775 + 0.927519i \(0.621937\pi\)
\(338\) 1111.30 + 308.550i 3.28786 + 0.912871i
\(339\) 71.9931 + 101.024i 0.212369 + 0.298007i
\(340\) 244.142 + 26.5520i 0.718064 + 0.0780942i
\(341\) −247.411 + 131.169i −0.725547 + 0.384661i
\(342\) 26.1543 + 39.2042i 0.0764746 + 0.114632i
\(343\) −62.9579 226.754i −0.183551 0.661090i
\(344\) 19.4701 16.5381i 0.0565991 0.0480757i
\(345\) 142.462 + 143.534i 0.412934 + 0.416041i
\(346\) −456.010 + 672.564i −1.31795 + 1.94383i
\(347\) 126.577 273.592i 0.364776 0.788451i −0.635096 0.772434i \(-0.719039\pi\)
0.999872 0.0160170i \(-0.00509860\pi\)
\(348\) −66.3427 + 42.0560i −0.190640 + 0.120851i
\(349\) −177.452 445.370i −0.508458 1.27613i −0.929410 0.369049i \(-0.879683\pi\)
0.420952 0.907083i \(-0.361696\pi\)
\(350\) 67.2902 + 88.5187i 0.192258 + 0.252911i
\(351\) 231.418 608.678i 0.659310 1.73413i
\(352\) −259.274 + 87.3595i −0.736573 + 0.248181i
\(353\) 695.446i 1.97010i −0.172262 0.985051i \(-0.555108\pi\)
0.172262 0.985051i \(-0.444892\pi\)
\(354\) 221.863 + 442.129i 0.626732 + 1.24895i
\(355\) 108.402 0.305357
\(356\) 24.9839 + 74.1495i 0.0701794 + 0.208285i
\(357\) −156.494 + 38.2961i −0.438359 + 0.107272i
\(358\) −40.0046 + 30.4107i −0.111745 + 0.0849461i
\(359\) −140.697 + 56.0589i −0.391914 + 0.156153i −0.557767 0.829998i \(-0.688342\pi\)
0.165853 + 0.986151i \(0.446962\pi\)
\(360\) −14.2098 + 3.83083i −0.0394716 + 0.0106412i
\(361\) −324.449 150.106i −0.898750 0.415806i
\(362\) 78.6023 + 53.2937i 0.217133 + 0.147220i
\(363\) −176.245 177.571i −0.485523 0.489176i
\(364\) −153.252 180.423i −0.421023 0.495666i
\(365\) −62.1197 + 17.2475i −0.170191 + 0.0472533i
\(366\) 18.9644 23.4125i 0.0518152 0.0639685i
\(367\) 29.3932 + 55.4415i 0.0800905 + 0.151067i 0.920323 0.391160i \(-0.127926\pi\)
−0.840232 + 0.542227i \(0.817581\pi\)
\(368\) 39.4293 362.547i 0.107145 0.985181i
\(369\) −40.4614 + 13.2961i −0.109651 + 0.0360329i
\(370\) 133.900 482.263i 0.361891 1.30341i
\(371\) −6.61645 14.3012i −0.0178341 0.0385478i
\(372\) −466.821 233.706i −1.25489 0.628241i
\(373\) 455.087 + 100.172i 1.22007 + 0.268558i 0.777909 0.628377i \(-0.216280\pi\)
0.442163 + 0.896935i \(0.354211\pi\)
\(374\) −184.224 + 306.182i −0.492577 + 0.818669i
\(375\) 368.059 + 72.0556i 0.981490 + 0.192148i
\(376\) −7.34584 10.8343i −0.0195368 0.0288146i
\(377\) 163.531 26.8096i 0.433770 0.0711130i
\(378\) −159.122 + 111.606i −0.420957 + 0.295255i
\(379\) 310.165 293.804i 0.818378 0.775209i −0.158872 0.987299i \(-0.550786\pi\)
0.977250 + 0.212090i \(0.0680271\pi\)
\(380\) 15.1766 16.0217i 0.0399384 0.0421624i
\(381\) 417.779 + 105.561i 1.09653 + 0.277063i
\(382\) 510.885 112.454i 1.33740 0.294383i
\(383\) 101.587 301.500i 0.265241 0.787207i −0.729425 0.684061i \(-0.760212\pi\)
0.994666 0.103147i \(-0.0328911\pi\)
\(384\) 41.0928 + 29.7510i 0.107012 + 0.0774766i
\(385\) 47.6786 10.4949i 0.123841 0.0272594i
\(386\) 103.340 5.60293i 0.267720 0.0145154i
\(387\) −90.2370 425.104i −0.233171 1.09846i
\(388\) 232.705 220.430i 0.599756 0.568119i
\(389\) 73.2051 + 3.96907i 0.188188 + 0.0102033i 0.147992 0.988989i \(-0.452719\pi\)
0.0401960 + 0.999192i \(0.487202\pi\)
\(390\) −618.972 86.6974i −1.58711 0.222301i
\(391\) −255.189 376.375i −0.652657 0.962597i
\(392\) 2.42334 + 22.2822i 0.00618198 + 0.0568424i
\(393\) −297.818 334.478i −0.757808 0.851089i
\(394\) −22.9348 5.04832i −0.0582100 0.0128130i
\(395\) 294.521 + 48.2843i 0.745623 + 0.122239i
\(396\) −35.5796 + 207.281i −0.0898474 + 0.523437i
\(397\) −174.640 + 628.996i −0.439899 + 1.58437i 0.328566 + 0.944481i \(0.393435\pi\)
−0.768465 + 0.639892i \(0.778979\pi\)
\(398\) 518.575 682.174i 1.30295 1.71400i
\(399\) −5.77090 + 13.2781i −0.0144634 + 0.0332785i
\(400\) −120.983 228.199i −0.302458 0.570497i
\(401\) −273.663 109.037i −0.682451 0.271913i 0.00303875 0.999995i \(-0.499033\pi\)
−0.685490 + 0.728082i \(0.740412\pi\)
\(402\) 12.4704 404.352i 0.0310209 1.00585i
\(403\) 713.007 + 839.417i 1.76925 + 2.08292i
\(404\) −585.775 310.558i −1.44994 0.768709i
\(405\) −57.4798 + 243.674i −0.141925 + 0.601663i
\(406\) −44.8894 20.7681i −0.110565 0.0511529i
\(407\) 270.800 + 230.019i 0.665356 + 0.565158i
\(408\) 32.9930 2.56209i 0.0808652 0.00627963i
\(409\) −29.4274 + 22.3701i −0.0719496 + 0.0546947i −0.640531 0.767932i \(-0.721286\pi\)
0.568581 + 0.822627i \(0.307493\pi\)
\(410\) 21.0750 + 35.0268i 0.0514023 + 0.0854313i
\(411\) 88.1228 2.05669i 0.214411 0.00500411i
\(412\) −472.970 −1.14798
\(413\) −77.2463 + 130.870i −0.187037 + 0.316877i
\(414\) −451.726 311.246i −1.09113 0.751802i
\(415\) −306.691 + 103.336i −0.739014 + 0.249003i
\(416\) 554.762 + 922.021i 1.33356 + 2.21640i
\(417\) 160.681 + 442.485i 0.385327 + 1.06112i
\(418\) 11.8854 + 29.8302i 0.0284341 + 0.0713642i
\(419\) 271.283 + 230.430i 0.647453 + 0.549951i 0.909813 0.415019i \(-0.136225\pi\)
−0.262360 + 0.964970i \(0.584501\pi\)
\(420\) 67.5178 + 61.0312i 0.160757 + 0.145312i
\(421\) −322.405 + 475.511i −0.765807 + 1.12948i 0.222189 + 0.975004i \(0.428680\pi\)
−0.987996 + 0.154477i \(0.950631\pi\)
\(422\) −612.171 324.552i −1.45064 0.769081i
\(423\) −221.548 + 22.4157i −0.523753 + 0.0529922i
\(424\) 0.865885 + 3.11864i 0.00204218 + 0.00735528i
\(425\) −299.187 119.207i −0.703969 0.280487i
\(426\) −288.987 + 54.3295i −0.678373 + 0.127534i
\(427\) 9.20176 + 1.00075i 0.0215498 + 0.00234368i
\(428\) −382.305 + 502.914i −0.893236 + 1.17503i
\(429\) 240.357 372.948i 0.560274 0.869343i
\(430\) −378.559 + 175.140i −0.880369 + 0.407302i
\(431\) 241.577 + 39.6045i 0.560502 + 0.0918897i 0.435372 0.900251i \(-0.356617\pi\)
0.125130 + 0.992140i \(0.460065\pi\)
\(432\) 406.696 196.036i 0.941425 0.453787i
\(433\) −727.554 437.755i −1.68026 1.01098i −0.941499 0.337017i \(-0.890582\pi\)
−0.738764 0.673964i \(-0.764590\pi\)
\(434\) −35.5413 326.797i −0.0818925 0.752989i
\(435\) −60.9755 + 18.4726i −0.140173 + 0.0424657i
\(436\) 19.0806 + 116.386i 0.0437628 + 0.266941i
\(437\) −40.8034 2.21230i −0.0933717 0.00506246i
\(438\) 156.960 77.1133i 0.358356 0.176058i
\(439\) −375.190 355.399i −0.854648 0.809566i 0.128627 0.991693i \(-0.458943\pi\)
−0.983275 + 0.182127i \(0.941702\pi\)
\(440\) −10.0129 + 0.542884i −0.0227566 + 0.00123383i
\(441\) 353.143 + 143.782i 0.800778 + 0.326036i
\(442\) 1331.82 + 448.741i 3.01316 + 1.01525i
\(443\) 221.998 658.867i 0.501125 1.48728i −0.336841 0.941562i \(-0.609358\pi\)
0.837966 0.545723i \(-0.183745\pi\)
\(444\) −56.2322 + 659.991i −0.126649 + 1.48647i
\(445\) 3.43594 + 63.3722i 0.00772122 + 0.142409i
\(446\) 221.024 233.332i 0.495570 0.523166i
\(447\) −558.597 + 274.435i −1.24966 + 0.613949i
\(448\) 8.06081 148.673i 0.0179929 0.331859i
\(449\) 68.1535 11.1732i 0.151790 0.0248846i −0.0854080 0.996346i \(-0.527219\pi\)
0.237198 + 0.971461i \(0.423771\pi\)
\(450\) −388.512 2.91237i −0.863359 0.00647193i
\(451\) −28.8490 + 3.13751i −0.0639667 + 0.00695679i
\(452\) −81.2384 + 135.019i −0.179731 + 0.298715i
\(453\) 30.2355 53.0139i 0.0667451 0.117028i
\(454\) 148.506 905.844i 0.327105 1.99525i
\(455\) −80.6224 174.262i −0.177192 0.382994i
\(456\) 1.61096 2.49962i 0.00353280 0.00548163i
\(457\) 306.050 + 232.654i 0.669695 + 0.509089i 0.883886 0.467703i \(-0.154918\pi\)
−0.214191 + 0.976792i \(0.568711\pi\)
\(458\) 43.6936 401.756i 0.0954010 0.877197i
\(459\) 228.256 514.602i 0.497291 1.12114i
\(460\) −95.0815 + 238.637i −0.206699 + 0.518775i
\(461\) −657.172 + 182.463i −1.42554 + 0.395798i −0.892789 0.450476i \(-0.851254\pi\)
−0.532748 + 0.846274i \(0.678841\pi\)
\(462\) −121.846 + 51.8740i −0.263736 + 0.112281i
\(463\) −135.066 + 254.761i −0.291718 + 0.550239i −0.985444 0.170000i \(-0.945623\pi\)
0.693726 + 0.720239i \(0.255968\pi\)
\(464\) 95.0951 + 64.4761i 0.204946 + 0.138957i
\(465\) −314.127 283.948i −0.675542 0.610641i
\(466\) 283.637 333.923i 0.608663 0.716574i
\(467\) −829.110 + 330.348i −1.77540 + 0.707382i −0.778589 + 0.627534i \(0.784064\pi\)
−0.996807 + 0.0798484i \(0.974556\pi\)
\(468\) 826.258 38.5889i 1.76551 0.0824549i
\(469\) 106.489 64.0724i 0.227056 0.136615i
\(470\) 68.2440 + 202.541i 0.145200 + 0.430938i
\(471\) −216.336 + 695.271i −0.459312 + 1.47616i
\(472\) 20.0062 23.9597i 0.0423859 0.0507621i
\(473\) 296.102i 0.626009i
\(474\) −809.359 + 18.8895i −1.70751 + 0.0398514i
\(475\) −24.7985 + 14.9208i −0.0522074 + 0.0314122i
\(476\) −123.849 162.920i −0.260186 0.342269i
\(477\) 53.6824 + 12.2390i 0.112542 + 0.0256583i
\(478\) 184.844 217.615i 0.386703 0.455262i
\(479\) −369.356 + 798.351i −0.771099 + 1.66670i −0.0260804 + 0.999660i \(0.508303\pi\)
−0.745019 + 0.667044i \(0.767559\pi\)
\(480\) −257.982 323.419i −0.537463 0.673790i
\(481\) 654.559 1234.63i 1.36083 2.56680i
\(482\) −710.064 + 603.134i −1.47316 + 1.25132i
\(483\) 5.19492 168.445i 0.0107555 0.348747i
\(484\) 117.629 295.225i 0.243034 0.609970i
\(485\) 229.701 121.780i 0.473609 0.251092i
\(486\) 31.1087 678.414i 0.0640096 1.39591i
\(487\) 282.270 + 214.576i 0.579610 + 0.440608i 0.853455 0.521166i \(-0.174503\pi\)
−0.273846 + 0.961774i \(0.588296\pi\)
\(488\) −1.83189 0.508621i −0.00375386 0.00104226i
\(489\) 15.1339 + 114.277i 0.0309486 + 0.233695i
\(490\) 59.2068 361.146i 0.120830 0.737032i
\(491\) 118.050 536.304i 0.240427 1.09227i −0.689431 0.724351i \(-0.742140\pi\)
0.929858 0.367918i \(-0.119929\pi\)
\(492\) −35.9756 40.4040i −0.0731212 0.0821219i
\(493\) 142.421 15.4892i 0.288887 0.0314183i
\(494\) 104.530 70.8733i 0.211600 0.143468i
\(495\) −72.7856 + 154.278i −0.147042 + 0.311673i
\(496\) −41.3400 + 762.471i −0.0833468 + 1.53724i
\(497\) −62.1227 65.5821i −0.124995 0.131956i
\(498\) 765.812 429.192i 1.53777 0.861830i
\(499\) 14.8153 + 273.252i 0.0296899 + 0.547599i 0.975107 + 0.221736i \(0.0711722\pi\)
−0.945417 + 0.325863i \(0.894345\pi\)
\(500\) 102.411 + 465.257i 0.204822 + 0.930515i
\(501\) −195.175 141.306i −0.389570 0.282047i
\(502\) 165.075 + 55.6203i 0.328835 + 0.110797i
\(503\) −20.1606 91.5903i −0.0400806 0.182088i 0.952327 0.305078i \(-0.0986827\pi\)
−0.992408 + 0.122990i \(0.960752\pi\)
\(504\) 10.4609 + 6.40143i 0.0207558 + 0.0127012i
\(505\) −390.418 369.824i −0.773106 0.732325i
\(506\) −257.044 271.358i −0.507992 0.536280i
\(507\) −1160.48 431.284i −2.28892 0.850659i
\(508\) 88.5521 + 540.144i 0.174315 + 1.06328i
\(509\) 212.054 143.776i 0.416610 0.282468i −0.334819 0.942282i \(-0.608675\pi\)
0.751429 + 0.659814i \(0.229365\pi\)
\(510\) −530.261 103.810i −1.03973 0.203550i
\(511\) 46.0340 + 27.6978i 0.0900861 + 0.0542030i
\(512\) −152.770 + 694.041i −0.298379 + 1.35555i
\(513\) −24.4010 44.3147i −0.0475653 0.0863834i
\(514\) −1034.89 + 478.793i −2.01341 + 0.931505i
\(515\) −369.645 102.632i −0.717758 0.199285i
\(516\) 449.543 320.359i 0.871207 0.620850i
\(517\) −150.835 16.4043i −0.291750 0.0317297i
\(518\) −368.500 + 195.366i −0.711391 + 0.377155i
\(519\) 549.020 677.793i 1.05784 1.30596i
\(520\) 10.5509 + 38.0010i 0.0202903 + 0.0730789i
\(521\) −431.831 + 366.800i −0.828849 + 0.704031i −0.957742 0.287627i \(-0.907134\pi\)
0.128893 + 0.991659i \(0.458858\pi\)
\(522\) 153.295 79.8058i 0.293670 0.152885i
\(523\) 105.654 155.829i 0.202016 0.297951i −0.713163 0.700998i \(-0.752738\pi\)
0.915180 + 0.403046i \(0.132049\pi\)
\(524\) 238.865 516.298i 0.455849 0.985302i
\(525\) −63.9044 100.808i −0.121723 0.192016i
\(526\) 38.8886 + 97.6030i 0.0739327 + 0.185557i
\(527\) 576.207 + 757.987i 1.09337 + 1.43830i
\(528\) 298.801 73.1204i 0.565911 0.138486i
\(529\) −50.5538 + 17.0335i −0.0955648 + 0.0321995i
\(530\) 52.8470i 0.0997113i
\(531\) −197.006 493.102i −0.371009 0.928629i
\(532\) −18.3904 −0.0345684
\(533\) 36.4425 + 108.157i 0.0683724 + 0.202922i
\(534\) −40.9211 167.221i −0.0766313 0.313148i
\(535\) −407.916 + 310.090i −0.762461 + 0.579607i
\(536\) −23.7138 + 9.44846i −0.0442422 + 0.0176277i
\(537\) 45.5586 28.8806i 0.0848391 0.0537813i
\(538\) 999.709 + 462.515i 1.85819 + 0.859693i
\(539\) 215.030 + 145.794i 0.398943 + 0.270490i
\(540\) −312.974 + 56.4134i −0.579581 + 0.104469i
\(541\) 257.592 + 303.261i 0.476141 + 0.560557i 0.946827 0.321744i \(-0.104269\pi\)
−0.470685 + 0.882301i \(0.655993\pi\)
\(542\) 1004.18 278.810i 1.85273 0.514409i
\(543\) −79.2134 64.1637i −0.145881 0.118165i
\(544\) 435.737 + 821.887i 0.800987 + 1.51082i
\(545\) −10.3429 + 95.1011i −0.0189777 + 0.174497i
\(546\) 302.268 + 424.157i 0.553605 + 0.776844i
\(547\) 76.9415 277.118i 0.140661 0.506615i −0.859328 0.511426i \(-0.829118\pi\)
0.999988 + 0.00481097i \(0.00153139\pi\)
\(548\) 47.0137 + 101.618i 0.0857914 + 0.185435i
\(549\) −22.4171 + 23.3129i −0.0408326 + 0.0424643i
\(550\) −258.534 56.9077i −0.470062 0.103468i
\(551\) 6.63715 11.0310i 0.0120456 0.0200200i
\(552\) −6.65040 + 33.9701i −0.0120478 + 0.0615401i
\(553\) −139.572 205.853i −0.252391 0.372248i
\(554\) −766.684 + 125.692i −1.38391 + 0.226880i
\(555\) −187.162 + 503.608i −0.337228 + 0.907402i
\(556\) −434.124 + 411.224i −0.780798 + 0.739611i
\(557\) 82.4431 87.0342i 0.148013 0.156255i −0.647773 0.761833i \(-0.724299\pi\)
0.795786 + 0.605578i \(0.207058\pi\)
\(558\) 979.737 + 599.537i 1.75580 + 1.07444i
\(559\) −1137.34 + 250.348i −2.03460 + 0.447849i
\(560\) 42.5062 126.154i 0.0759040 0.225275i
\(561\) 224.940 310.693i 0.400963 0.553820i
\(562\) −333.082 + 73.3168i −0.592672 + 0.130457i
\(563\) 1053.44 57.1158i 1.87112 0.101449i 0.916636 0.399723i \(-0.130894\pi\)
0.954480 + 0.298274i \(0.0964110\pi\)
\(564\) −138.286 246.745i −0.245188 0.437492i
\(565\) −92.7895 + 87.8949i −0.164229 + 0.155566i
\(566\) −585.766 31.7593i −1.03492 0.0561119i
\(567\) 180.361 104.869i 0.318097 0.184955i
\(568\) 10.4126 + 15.3574i 0.0183320 + 0.0270377i
\(569\) −51.7403 475.744i −0.0909319 0.836105i −0.947432 0.319958i \(-0.896331\pi\)
0.856500 0.516147i \(-0.172634\pi\)
\(570\) −36.2635 + 32.2890i −0.0636202 + 0.0566473i
\(571\) 101.635 + 22.3715i 0.177995 + 0.0391796i 0.303073 0.952967i \(-0.401987\pi\)
−0.125079 + 0.992147i \(0.539918\pi\)
\(572\) 556.167 + 91.1789i 0.972319 + 0.159404i
\(573\) −556.671 + 73.7208i −0.971502 + 0.128658i
\(574\) 9.11334 32.8233i 0.0158769 0.0571834i
\(575\) 203.871 268.187i 0.354558 0.466413i
\(576\) 393.981 + 339.767i 0.683994 + 0.589873i
\(577\) 316.687 + 597.335i 0.548851 + 1.03524i 0.990429 + 0.138020i \(0.0440738\pi\)
−0.441579 + 0.897223i \(0.645581\pi\)
\(578\) 378.348 + 150.748i 0.654581 + 0.260809i
\(579\) −111.039 3.42450i −0.191777 0.00591451i
\(580\) −52.3925 61.6813i −0.0903320 0.106347i
\(581\) 238.275 + 126.326i 0.410112 + 0.217428i
\(582\) −551.321 + 439.773i −0.947288 + 0.755624i
\(583\) 34.0482 + 15.7524i 0.0584017 + 0.0270195i
\(584\) −8.41042 7.14388i −0.0144014 0.0122327i
\(585\) 654.128 + 149.134i 1.11817 + 0.254930i
\(586\) 963.754 732.627i 1.64463 1.25022i
\(587\) 369.067 + 613.394i 0.628734 + 1.04496i 0.993496 + 0.113863i \(0.0363225\pi\)
−0.364763 + 0.931100i \(0.618850\pi\)
\(588\) 11.3006 + 484.197i 0.0192187 + 0.823464i
\(589\) 85.5614 0.145265
\(590\) −419.412 + 289.561i −0.710867 + 0.490781i
\(591\) 24.0701 + 7.48949i 0.0407277 + 0.0126726i
\(592\) 918.130 309.354i 1.55090 0.522557i
\(593\) −104.579 173.811i −0.176355 0.293105i 0.756054 0.654509i \(-0.227125\pi\)
−0.932409 + 0.361405i \(0.882297\pi\)
\(594\) 116.716 447.767i 0.196492 0.753817i
\(595\) −61.4401 154.203i −0.103261 0.259165i
\(596\) −602.532 511.795i −1.01096 0.858717i
\(597\) −616.813 + 682.370i −1.03319 + 1.14300i
\(598\) −824.972 + 1216.74i −1.37955 + 2.03469i
\(599\) −466.115 247.118i −0.778155 0.412552i 0.0314659 0.999505i \(-0.489982\pi\)
−0.809621 + 0.586953i \(0.800327\pi\)
\(600\) 9.60319 + 22.5568i 0.0160053 + 0.0375946i
\(601\) 95.6952 + 344.663i 0.159227 + 0.573482i 0.999509 + 0.0313333i \(0.00997533\pi\)
−0.840282 + 0.542149i \(0.817611\pi\)
\(602\) 322.902 + 128.656i 0.536382 + 0.213714i
\(603\) −50.1857 + 431.343i −0.0832267 + 0.715328i
\(604\) 77.0678 + 8.38163i 0.127596 + 0.0138769i
\(605\) 155.994 205.206i 0.257841 0.339184i
\(606\) 1226.16 + 790.236i 2.02337 + 1.30402i
\(607\) −92.9607 + 43.0082i −0.153148 + 0.0708537i −0.494966 0.868912i \(-0.664819\pi\)
0.341818 + 0.939766i \(0.388957\pi\)
\(608\) 82.4936 + 13.5241i 0.135680 + 0.0222437i
\(609\) 46.1195 + 26.3034i 0.0757298 + 0.0431912i
\(610\) 26.5988 + 16.0040i 0.0436046 + 0.0262360i
\(611\) 64.5178 + 593.232i 0.105594 + 0.970919i
\(612\) 715.062 + 5.36026i 1.16840 + 0.00875859i
\(613\) −114.317 697.301i −0.186487 1.13752i −0.899679 0.436553i \(-0.856199\pi\)
0.713191 0.700970i \(-0.247249\pi\)
\(614\) 433.373 + 23.4968i 0.705819 + 0.0382684i
\(615\) −19.3490 39.3839i −0.0314618 0.0640388i
\(616\) 6.06662 + 5.74661i 0.00984841 + 0.00932891i
\(617\) −774.324 + 41.9826i −1.25498 + 0.0680432i −0.669605 0.742718i \(-0.733536\pi\)
−0.585378 + 0.810761i \(0.699054\pi\)
\(618\) 1036.87 + 88.3428i 1.67778 + 0.142949i
\(619\) 791.810 + 266.792i 1.27918 + 0.431005i 0.875198 0.483764i \(-0.160731\pi\)
0.403978 + 0.914769i \(0.367627\pi\)
\(620\) 171.742 509.713i 0.277004 0.822117i
\(621\) 454.785 + 374.061i 0.732343 + 0.602353i
\(622\) −71.7234 1322.86i −0.115311 2.12679i
\(623\) 36.3706 38.3960i 0.0583797 0.0616307i
\(624\) −533.488 1085.89i −0.854949 1.74020i
\(625\) −0.0132959 + 0.245228i −2.12734e−5 + 0.000392364i
\(626\) 404.472 66.3099i 0.646122 0.105926i
\(627\) −9.99384 32.9883i −0.0159391 0.0526130i
\(628\) −919.499 + 100.002i −1.46417 + 0.159238i
\(629\) 622.824 1035.14i 0.990182 1.64569i
\(630\) −136.617 146.407i −0.216852 0.232392i
\(631\) −98.1898 + 598.931i −0.155610 + 0.949178i 0.787407 + 0.616433i \(0.211423\pi\)
−0.943017 + 0.332744i \(0.892025\pi\)
\(632\) 21.4499 + 46.3632i 0.0339397 + 0.0733595i
\(633\) 625.178 + 402.915i 0.987643 + 0.636516i
\(634\) −784.727 596.534i −1.23774 0.940905i
\(635\) −48.0008 + 441.360i −0.0755918 + 0.695055i
\(636\) 12.9221 + 68.7348i 0.0203178 + 0.108074i
\(637\) 378.198 949.206i 0.593718 1.49012i
\(638\) 113.464 31.5030i 0.177843 0.0493777i
\(639\) 314.040 31.7739i 0.491455 0.0497244i
\(640\) −24.4832 + 46.1802i −0.0382550 + 0.0721565i
\(641\) −146.120 99.0721i −0.227957 0.154559i 0.441862 0.897083i \(-0.354318\pi\)
−0.669819 + 0.742524i \(0.733628\pi\)
\(642\) 932.046 1031.11i 1.45178 1.60609i
\(643\) 95.8311 112.821i 0.149037 0.175460i −0.682577 0.730813i \(-0.739141\pi\)
0.831615 + 0.555353i \(0.187417\pi\)
\(644\) 198.862 79.2340i 0.308792 0.123034i
\(645\) 420.852 152.826i 0.652484 0.236939i
\(646\) 93.5514 56.2880i 0.144816 0.0871332i
\(647\) −12.9927 38.5609i −0.0200814 0.0595995i 0.937144 0.348943i \(-0.113459\pi\)
−0.957225 + 0.289344i \(0.906563\pi\)
\(648\) −40.0429 + 15.2630i −0.0617946 + 0.0235540i
\(649\) −61.5419 356.529i −0.0948257 0.549351i
\(650\) 1041.15i 1.60178i
\(651\) 8.23322 + 352.768i 0.0126470 + 0.541887i
\(652\) −125.466 + 75.4903i −0.192432 + 0.115783i
\(653\) 200.187 + 263.341i 0.306565 + 0.403279i 0.923416 0.383801i \(-0.125385\pi\)
−0.616851 + 0.787080i \(0.711592\pi\)
\(654\) −20.0905 258.712i −0.0307194 0.395585i
\(655\) 298.716 351.676i 0.456055 0.536910i
\(656\) −33.2255 + 71.8158i −0.0506487 + 0.109475i
\(657\) −174.905 + 68.1739i −0.266218 + 0.103766i
\(658\) 83.4264 157.359i 0.126788 0.239147i
\(659\) −598.816 + 508.639i −0.908674 + 0.771835i −0.974122 0.226021i \(-0.927428\pi\)
0.0654481 + 0.997856i \(0.479152\pi\)
\(660\) −216.581 6.67946i −0.328153 0.0101204i
\(661\) −435.943 + 1094.13i −0.659520 + 1.65527i 0.0921609 + 0.995744i \(0.470623\pi\)
−0.751681 + 0.659527i \(0.770757\pi\)
\(662\) −1265.10 + 670.715i −1.91103 + 1.01316i
\(663\) −1383.57 601.322i −2.08683 0.906971i
\(664\) −44.0992 33.5233i −0.0664144 0.0504869i
\(665\) −14.3728 3.99060i −0.0216133 0.00600090i
\(666\) 246.550 1436.37i 0.370196 2.15670i
\(667\) −24.2435 + 147.879i −0.0363470 + 0.221707i
\(668\) 65.7965 298.916i 0.0984977 0.447480i
\(669\) −257.662 + 229.422i −0.385145 + 0.342932i
\(670\) 414.356 45.0639i 0.618442 0.0672596i
\(671\) −18.2395 + 12.3667i −0.0271825 + 0.0184302i
\(672\) −47.8219 + 341.422i −0.0711635 + 0.508068i
\(673\) 4.39956 81.1451i 0.00653724 0.120572i −0.993443 0.114326i \(-0.963529\pi\)
0.999980 0.00624596i \(-0.00198816\pi\)
\(674\) 943.937 + 996.502i 1.40050 + 1.47849i
\(675\) 415.272 + 38.5193i 0.615217 + 0.0570656i
\(676\) −85.1384 1570.29i −0.125944 2.32291i
\(677\) −268.075 1217.88i −0.395975 1.79893i −0.578445 0.815721i \(-0.696340\pi\)
0.182470 0.983211i \(-0.441591\pi\)
\(678\) 203.315 280.823i 0.299874 0.414193i
\(679\) −205.312 69.1777i −0.302374 0.101882i
\(680\) 7.32938 + 33.2977i 0.0107785 + 0.0489672i
\(681\) −241.384 + 955.323i −0.354455 + 1.40282i
\(682\) 568.180 + 538.209i 0.833109 + 0.789163i
\(683\) −503.588 531.632i −0.737318 0.778378i 0.244204 0.969724i \(-0.421473\pi\)
−0.981523 + 0.191346i \(0.938715\pi\)
\(684\) 39.2704 50.8634i 0.0574129 0.0743617i
\(685\) 14.6926 + 89.6207i 0.0214490 + 0.130833i
\(686\) −544.368 + 369.091i −0.793540 + 0.538033i
\(687\) −83.3443 + 425.721i −0.121316 + 0.619682i
\(688\) −691.837 416.264i −1.00558 0.605036i
\(689\) 31.7185 144.099i 0.0460356 0.209142i
\(690\) 253.016 505.393i 0.366690 0.732453i
\(691\) 424.718 196.496i 0.614643 0.284364i −0.0877621 0.996141i \(-0.527972\pi\)
0.702405 + 0.711777i \(0.252109\pi\)
\(692\) 1067.58 + 296.412i 1.54274 + 0.428341i
\(693\) 135.049 44.3788i 0.194876 0.0640387i
\(694\) −837.554 91.0895i −1.20685 0.131253i
\(695\) −428.519 + 227.186i −0.616574 + 0.326887i
\(696\) −8.47407 6.86409i −0.0121754 0.00986220i
\(697\) 26.3963 + 95.0710i 0.0378714 + 0.136400i
\(698\) −1021.19 + 867.411i −1.46303 + 1.24271i
\(699\) −333.797 + 331.304i −0.477535 + 0.473969i
\(700\) 85.0822 125.487i 0.121546 0.179267i
\(701\) 309.916 669.871i 0.442105 0.955594i −0.550571 0.834788i \(-0.685590\pi\)
0.992676 0.120806i \(-0.0385479\pi\)
\(702\) −1818.57 69.7343i −2.59056 0.0993366i
\(703\) −40.1823 100.850i −0.0571584 0.143457i
\(704\) 214.521 + 282.198i 0.304718 + 0.400849i
\(705\) −54.5340 222.849i −0.0773531 0.316098i
\(706\) −1841.87 + 620.597i −2.60887 + 0.879032i
\(707\) 448.138i 0.633858i
\(708\) 474.699 479.169i 0.670479 0.676792i
\(709\) 1140.45 1.60854 0.804268 0.594267i \(-0.202558\pi\)
0.804268 + 0.594267i \(0.202558\pi\)
\(710\) −96.7347 287.098i −0.136246 0.404364i
\(711\) 867.380 + 53.5518i 1.21994 + 0.0753190i
\(712\) −8.64799 + 6.57403i −0.0121461 + 0.00923319i
\(713\) −925.208 + 368.637i −1.29763 + 0.517022i
\(714\) 241.077 + 380.295i 0.337643 + 0.532626i
\(715\) 414.882 + 191.945i 0.580254 + 0.268454i
\(716\) 56.7117 + 38.4515i 0.0792063 + 0.0537032i
\(717\) −217.533 + 215.909i −0.303393 + 0.301128i
\(718\) 274.024 + 322.606i 0.381649 + 0.449312i
\(719\) 6.69354 1.85845i 0.00930951 0.00258477i −0.262870 0.964831i \(-0.584669\pi\)
0.272180 + 0.962246i \(0.412255\pi\)
\(720\) 258.145 + 386.949i 0.358535 + 0.537429i
\(721\) 149.745 + 282.448i 0.207690 + 0.391745i
\(722\) −108.022 + 993.241i −0.149614 + 1.37568i
\(723\) 814.420 580.382i 1.12644 0.802741i
\(724\) 34.6416 124.768i 0.0478475 0.172331i
\(725\) 44.5638 + 96.3231i 0.0614674 + 0.132860i
\(726\) −313.015 + 625.238i −0.431150 + 0.861209i
\(727\) 785.416 + 172.883i 1.08035 + 0.237803i 0.719270 0.694731i \(-0.244476\pi\)
0.361082 + 0.932534i \(0.382408\pi\)
\(728\) 16.9438 28.1608i 0.0232744 0.0386824i
\(729\) −95.0953 + 722.771i −0.130446 + 0.991455i
\(730\) 101.113 + 149.131i 0.138511 + 0.204289i
\(731\) −993.512 + 162.878i −1.35911 + 0.222815i
\(732\) −38.5087 14.3114i −0.0526075 0.0195511i
\(733\) 312.835 296.333i 0.426787 0.404274i −0.443928 0.896063i \(-0.646415\pi\)
0.870715 + 0.491789i \(0.163657\pi\)
\(734\) 120.605 127.321i 0.164312 0.173462i
\(735\) −96.2359 + 380.872i −0.130933 + 0.518193i
\(736\) −950.304 + 209.178i −1.29117 + 0.284209i
\(737\) −94.4754 + 280.393i −0.128189 + 0.380452i
\(738\) 71.3210 + 95.2955i 0.0966409 + 0.129127i
\(739\) −860.862 + 189.490i −1.16490 + 0.256414i −0.755006 0.655718i \(-0.772366\pi\)
−0.409896 + 0.912132i \(0.634435\pi\)
\(740\) −681.448 + 36.9470i −0.920875 + 0.0499284i
\(741\) −118.260 + 66.2777i −0.159595 + 0.0894435i
\(742\) −31.9720 + 30.2855i −0.0430889 + 0.0408160i
\(743\) 745.662 + 40.4286i 1.00358 + 0.0544127i 0.548598 0.836086i \(-0.315162\pi\)
0.454985 + 0.890499i \(0.349645\pi\)
\(744\) 10.0537 71.7776i 0.0135130 0.0964753i
\(745\) −359.847 530.735i −0.483016 0.712396i
\(746\) −140.804 1294.67i −0.188745 1.73549i
\(747\) −858.194 + 389.260i −1.14885 + 0.521097i
\(748\) 475.836 + 104.739i 0.636144 + 0.140026i
\(749\) 421.370 + 69.0801i 0.562577 + 0.0922297i
\(750\) −137.608 1039.09i −0.183478 1.38545i
\(751\) 251.710 906.576i 0.335166 1.20716i −0.583497 0.812116i \(-0.698316\pi\)
0.918663 0.395043i \(-0.129270\pi\)
\(752\) −250.374 + 329.361i −0.332944 + 0.437980i
\(753\) −171.489 74.5323i −0.227741 0.0989804i
\(754\) −216.935 409.183i −0.287713 0.542683i
\(755\) 58.4129 + 23.2738i 0.0773681 + 0.0308263i
\(756\) 213.488 + 157.017i 0.282392 + 0.207695i
\(757\) −130.817 154.009i −0.172809 0.203447i 0.668938 0.743318i \(-0.266749\pi\)
−0.841748 + 0.539871i \(0.818473\pi\)
\(758\) −1054.91 559.280i −1.39171 0.737836i
\(759\) 250.196 + 313.658i 0.329639 + 0.413251i
\(760\) 2.78068 + 1.28648i 0.00365879 + 0.00169274i
\(761\) −187.680 159.417i −0.246622 0.209483i 0.515546 0.856862i \(-0.327589\pi\)
−0.762168 + 0.647379i \(0.775865\pi\)
\(762\) −93.2389 1200.67i −0.122361 1.57569i
\(763\) 63.4626 48.2430i 0.0831751 0.0632281i
\(764\) −367.732 611.175i −0.481324 0.799967i
\(765\) 557.687 + 159.353i 0.729003 + 0.208305i
\(766\) −889.167 −1.16079
\(767\) −1317.41 + 537.822i −1.71761 + 0.701202i
\(768\) 248.216 797.729i 0.323198 1.03871i
\(769\) 875.543 295.005i 1.13855 0.383621i 0.314005 0.949421i \(-0.398329\pi\)
0.824543 + 0.565800i \(0.191433\pi\)
\(770\) −70.3424 116.910i −0.0913537 0.151831i
\(771\) 1150.52 417.791i 1.49224 0.541882i
\(772\) −52.2312 131.090i −0.0676569 0.169806i
\(773\) −673.866 572.387i −0.871754 0.740474i 0.0951914 0.995459i