Properties

Label 1764.3.c.b.197.2
Level $1764$
Weight $3$
Character 1764.197
Analytic conductor $48.066$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,3,Mod(197,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.197"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 197.2
Root \(1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 1764.197
Dual form 1764.3.c.b.197.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.65685i q^{5} +1.41421i q^{11} -16.0000 q^{13} -16.9706i q^{17} +8.00000 q^{19} -12.7279i q^{23} -7.00000 q^{25} -24.0416i q^{29} -56.0000 q^{31} +24.0000 q^{37} -50.9117i q^{41} +40.0000 q^{43} -11.3137i q^{47} +43.8406i q^{53} -8.00000 q^{55} -11.3137i q^{59} +40.0000 q^{61} -90.5097i q^{65} -26.0000 q^{67} -134.350i q^{71} +88.0000 q^{73} +82.0000 q^{79} +101.823i q^{83} +96.0000 q^{85} +62.2254i q^{89} +45.2548i q^{95} +40.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{13} + 16 q^{19} - 14 q^{25} - 112 q^{31} + 48 q^{37} + 80 q^{43} - 16 q^{55} + 80 q^{61} - 52 q^{67} + 176 q^{73} + 164 q^{79} + 192 q^{85} + 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.65685i 1.13137i 0.824621 + 0.565685i \(0.191388\pi\)
−0.824621 + 0.565685i \(0.808612\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.41421i 0.128565i 0.997932 + 0.0642824i \(0.0204759\pi\)
−0.997932 + 0.0642824i \(0.979524\pi\)
\(12\) 0 0
\(13\) −16.0000 −1.23077 −0.615385 0.788227i \(-0.710999\pi\)
−0.615385 + 0.788227i \(0.710999\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 16.9706i − 0.998268i −0.866525 0.499134i \(-0.833651\pi\)
0.866525 0.499134i \(-0.166349\pi\)
\(18\) 0 0
\(19\) 8.00000 0.421053 0.210526 0.977588i \(-0.432482\pi\)
0.210526 + 0.977588i \(0.432482\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 12.7279i − 0.553388i −0.960958 0.276694i \(-0.910761\pi\)
0.960958 0.276694i \(-0.0892388\pi\)
\(24\) 0 0
\(25\) −7.00000 −0.280000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 24.0416i − 0.829022i −0.910044 0.414511i \(-0.863953\pi\)
0.910044 0.414511i \(-0.136047\pi\)
\(30\) 0 0
\(31\) −56.0000 −1.80645 −0.903226 0.429166i \(-0.858808\pi\)
−0.903226 + 0.429166i \(0.858808\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 24.0000 0.648649 0.324324 0.945946i \(-0.394863\pi\)
0.324324 + 0.945946i \(0.394863\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 50.9117i − 1.24175i −0.783910 0.620874i \(-0.786778\pi\)
0.783910 0.620874i \(-0.213222\pi\)
\(42\) 0 0
\(43\) 40.0000 0.930233 0.465116 0.885250i \(-0.346013\pi\)
0.465116 + 0.885250i \(0.346013\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 11.3137i − 0.240717i −0.992730 0.120359i \(-0.961596\pi\)
0.992730 0.120359i \(-0.0384044\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 43.8406i 0.827182i 0.910463 + 0.413591i \(0.135726\pi\)
−0.910463 + 0.413591i \(0.864274\pi\)
\(54\) 0 0
\(55\) −8.00000 −0.145455
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 11.3137i − 0.191758i −0.995393 0.0958789i \(-0.969434\pi\)
0.995393 0.0958789i \(-0.0305662\pi\)
\(60\) 0 0
\(61\) 40.0000 0.655738 0.327869 0.944723i \(-0.393670\pi\)
0.327869 + 0.944723i \(0.393670\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 90.5097i − 1.39246i
\(66\) 0 0
\(67\) −26.0000 −0.388060 −0.194030 0.980996i \(-0.562156\pi\)
−0.194030 + 0.980996i \(0.562156\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 134.350i − 1.89226i −0.323791 0.946129i \(-0.604957\pi\)
0.323791 0.946129i \(-0.395043\pi\)
\(72\) 0 0
\(73\) 88.0000 1.20548 0.602740 0.797938i \(-0.294076\pi\)
0.602740 + 0.797938i \(0.294076\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 82.0000 1.03797 0.518987 0.854782i \(-0.326309\pi\)
0.518987 + 0.854782i \(0.326309\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 101.823i 1.22679i 0.789777 + 0.613394i \(0.210196\pi\)
−0.789777 + 0.613394i \(0.789804\pi\)
\(84\) 0 0
\(85\) 96.0000 1.12941
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 62.2254i 0.699162i 0.936906 + 0.349581i \(0.113676\pi\)
−0.936906 + 0.349581i \(0.886324\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 45.2548i 0.476367i
\(96\) 0 0
\(97\) 40.0000 0.412371 0.206186 0.978513i \(-0.433895\pi\)
0.206186 + 0.978513i \(0.433895\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 107.480i 1.06416i 0.846694 + 0.532080i \(0.178590\pi\)
−0.846694 + 0.532080i \(0.821410\pi\)
\(102\) 0 0
\(103\) −184.000 −1.78641 −0.893204 0.449652i \(-0.851548\pi\)
−0.893204 + 0.449652i \(0.851548\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 145.664i − 1.36135i −0.732587 0.680673i \(-0.761688\pi\)
0.732587 0.680673i \(-0.238312\pi\)
\(108\) 0 0
\(109\) −104.000 −0.954128 −0.477064 0.878868i \(-0.658299\pi\)
−0.477064 + 0.878868i \(0.658299\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 171.120i − 1.51433i −0.653221 0.757167i \(-0.726583\pi\)
0.653221 0.757167i \(-0.273417\pi\)
\(114\) 0 0
\(115\) 72.0000 0.626087
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 119.000 0.983471
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 101.823i 0.814587i
\(126\) 0 0
\(127\) 206.000 1.62205 0.811024 0.585013i \(-0.198911\pi\)
0.811024 + 0.585013i \(0.198911\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 203.647i − 1.55456i −0.629158 0.777278i \(-0.716600\pi\)
0.629158 0.777278i \(-0.283400\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 179.605i 1.31099i 0.755201 + 0.655493i \(0.227539\pi\)
−0.755201 + 0.655493i \(0.772461\pi\)
\(138\) 0 0
\(139\) 192.000 1.38129 0.690647 0.723192i \(-0.257326\pi\)
0.690647 + 0.723192i \(0.257326\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 22.6274i − 0.158234i
\(144\) 0 0
\(145\) 136.000 0.937931
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 236.174i − 1.58506i −0.609834 0.792529i \(-0.708764\pi\)
0.609834 0.792529i \(-0.291236\pi\)
\(150\) 0 0
\(151\) 16.0000 0.105960 0.0529801 0.998596i \(-0.483128\pi\)
0.0529801 + 0.998596i \(0.483128\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 316.784i − 2.04377i
\(156\) 0 0
\(157\) 56.0000 0.356688 0.178344 0.983968i \(-0.442926\pi\)
0.178344 + 0.983968i \(0.442926\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 102.000 0.625767 0.312883 0.949792i \(-0.398705\pi\)
0.312883 + 0.949792i \(0.398705\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 260.215i − 1.55818i −0.626915 0.779088i \(-0.715683\pi\)
0.626915 0.779088i \(-0.284317\pi\)
\(168\) 0 0
\(169\) 87.0000 0.514793
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 96.1665i 0.555876i 0.960599 + 0.277938i \(0.0896510\pi\)
−0.960599 + 0.277938i \(0.910349\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 21.2132i − 0.118510i −0.998243 0.0592548i \(-0.981128\pi\)
0.998243 0.0592548i \(-0.0188724\pi\)
\(180\) 0 0
\(181\) −128.000 −0.707182 −0.353591 0.935400i \(-0.615040\pi\)
−0.353591 + 0.935400i \(0.615040\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 135.765i 0.733862i
\(186\) 0 0
\(187\) 24.0000 0.128342
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 114.551i − 0.599745i −0.953979 0.299873i \(-0.903056\pi\)
0.953979 0.299873i \(-0.0969441\pi\)
\(192\) 0 0
\(193\) −208.000 −1.07772 −0.538860 0.842395i \(-0.681145\pi\)
−0.538860 + 0.842395i \(0.681145\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 123.037i − 0.624551i −0.949992 0.312276i \(-0.898909\pi\)
0.949992 0.312276i \(-0.101091\pi\)
\(198\) 0 0
\(199\) −176.000 −0.884422 −0.442211 0.896911i \(-0.645806\pi\)
−0.442211 + 0.896911i \(0.645806\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 288.000 1.40488
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.3137i 0.0541326i
\(210\) 0 0
\(211\) 248.000 1.17536 0.587678 0.809095i \(-0.300042\pi\)
0.587678 + 0.809095i \(0.300042\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 226.274i 1.05244i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 271.529i 1.22864i
\(222\) 0 0
\(223\) −272.000 −1.21973 −0.609865 0.792505i \(-0.708777\pi\)
−0.609865 + 0.792505i \(0.708777\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 395.980i − 1.74440i −0.489146 0.872202i \(-0.662691\pi\)
0.489146 0.872202i \(-0.337309\pi\)
\(228\) 0 0
\(229\) 80.0000 0.349345 0.174672 0.984627i \(-0.444113\pi\)
0.174672 + 0.984627i \(0.444113\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 202.233i − 0.867951i −0.900925 0.433975i \(-0.857110\pi\)
0.900925 0.433975i \(-0.142890\pi\)
\(234\) 0 0
\(235\) 64.0000 0.272340
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 326.683i − 1.36688i −0.730009 0.683438i \(-0.760484\pi\)
0.730009 0.683438i \(-0.239516\pi\)
\(240\) 0 0
\(241\) −248.000 −1.02905 −0.514523 0.857477i \(-0.672031\pi\)
−0.514523 + 0.857477i \(0.672031\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −128.000 −0.518219
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 294.156i 1.17194i 0.810333 + 0.585969i \(0.199286\pi\)
−0.810333 + 0.585969i \(0.800714\pi\)
\(252\) 0 0
\(253\) 18.0000 0.0711462
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 175.362i − 0.682344i −0.940001 0.341172i \(-0.889176\pi\)
0.940001 0.341172i \(-0.110824\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 159.806i − 0.607628i −0.952731 0.303814i \(-0.901740\pi\)
0.952731 0.303814i \(-0.0982601\pi\)
\(264\) 0 0
\(265\) −248.000 −0.935849
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 299.813i − 1.11455i −0.830329 0.557274i \(-0.811847\pi\)
0.830329 0.557274i \(-0.188153\pi\)
\(270\) 0 0
\(271\) −88.0000 −0.324723 −0.162362 0.986731i \(-0.551911\pi\)
−0.162362 + 0.986731i \(0.551911\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 9.89949i − 0.0359982i
\(276\) 0 0
\(277\) −38.0000 −0.137184 −0.0685921 0.997645i \(-0.521851\pi\)
−0.0685921 + 0.997645i \(0.521851\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 182.434i 0.649230i 0.945846 + 0.324615i \(0.105235\pi\)
−0.945846 + 0.324615i \(0.894765\pi\)
\(282\) 0 0
\(283\) −152.000 −0.537102 −0.268551 0.963265i \(-0.586545\pi\)
−0.268551 + 0.963265i \(0.586545\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.00346021
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 458.205i − 1.56384i −0.623379 0.781920i \(-0.714240\pi\)
0.623379 0.781920i \(-0.285760\pi\)
\(294\) 0 0
\(295\) 64.0000 0.216949
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 203.647i 0.681093i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 226.274i 0.741883i
\(306\) 0 0
\(307\) 232.000 0.755700 0.377850 0.925867i \(-0.376663\pi\)
0.377850 + 0.925867i \(0.376663\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 486.489i 1.56427i 0.623106 + 0.782137i \(0.285871\pi\)
−0.623106 + 0.782137i \(0.714129\pi\)
\(312\) 0 0
\(313\) −144.000 −0.460064 −0.230032 0.973183i \(-0.573883\pi\)
−0.230032 + 0.973183i \(0.573883\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 80.6102i − 0.254291i −0.991884 0.127145i \(-0.959419\pi\)
0.991884 0.127145i \(-0.0405815\pi\)
\(318\) 0 0
\(319\) 34.0000 0.106583
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 135.765i − 0.420324i
\(324\) 0 0
\(325\) 112.000 0.344615
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 200.000 0.604230 0.302115 0.953272i \(-0.402307\pi\)
0.302115 + 0.953272i \(0.402307\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 147.078i − 0.439039i
\(336\) 0 0
\(337\) −208.000 −0.617211 −0.308605 0.951190i \(-0.599862\pi\)
−0.308605 + 0.951190i \(0.599862\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 79.1960i − 0.232246i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 462.448i − 1.33270i −0.745638 0.666351i \(-0.767855\pi\)
0.745638 0.666351i \(-0.232145\pi\)
\(348\) 0 0
\(349\) 456.000 1.30659 0.653295 0.757103i \(-0.273386\pi\)
0.653295 + 0.757103i \(0.273386\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 16.9706i − 0.0480752i −0.999711 0.0240376i \(-0.992348\pi\)
0.999711 0.0240376i \(-0.00765215\pi\)
\(354\) 0 0
\(355\) 760.000 2.14085
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 439.820i 1.22513i 0.790422 + 0.612563i \(0.209862\pi\)
−0.790422 + 0.612563i \(0.790138\pi\)
\(360\) 0 0
\(361\) −297.000 −0.822715
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 497.803i 1.36384i
\(366\) 0 0
\(367\) 496.000 1.35150 0.675749 0.737132i \(-0.263820\pi\)
0.675749 + 0.737132i \(0.263820\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −314.000 −0.841823 −0.420912 0.907102i \(-0.638290\pi\)
−0.420912 + 0.907102i \(0.638290\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 384.666i 1.02033i
\(378\) 0 0
\(379\) 24.0000 0.0633245 0.0316623 0.999499i \(-0.489920\pi\)
0.0316623 + 0.999499i \(0.489920\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 543.058i − 1.41791i −0.705256 0.708953i \(-0.749168\pi\)
0.705256 0.708953i \(-0.250832\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 250.316i 0.643485i 0.946827 + 0.321743i \(0.104269\pi\)
−0.946827 + 0.321743i \(0.895731\pi\)
\(390\) 0 0
\(391\) −216.000 −0.552430
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 463.862i 1.17433i
\(396\) 0 0
\(397\) −664.000 −1.67254 −0.836272 0.548315i \(-0.815270\pi\)
−0.836272 + 0.548315i \(0.815270\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 123.037i 0.306824i 0.988162 + 0.153412i \(0.0490262\pi\)
−0.988162 + 0.153412i \(0.950974\pi\)
\(402\) 0 0
\(403\) 896.000 2.22333
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 33.9411i 0.0833934i
\(408\) 0 0
\(409\) 312.000 0.762836 0.381418 0.924403i \(-0.375436\pi\)
0.381418 + 0.924403i \(0.375436\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −576.000 −1.38795
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 226.274i 0.540034i 0.962856 + 0.270017i \(0.0870293\pi\)
−0.962856 + 0.270017i \(0.912971\pi\)
\(420\) 0 0
\(421\) −762.000 −1.80998 −0.904988 0.425437i \(-0.860120\pi\)
−0.904988 + 0.425437i \(0.860120\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 118.794i 0.279515i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 374.767i − 0.869528i −0.900544 0.434764i \(-0.856832\pi\)
0.900544 0.434764i \(-0.143168\pi\)
\(432\) 0 0
\(433\) 464.000 1.07159 0.535797 0.844347i \(-0.320011\pi\)
0.535797 + 0.844347i \(0.320011\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 101.823i − 0.233005i
\(438\) 0 0
\(439\) −480.000 −1.09339 −0.546697 0.837330i \(-0.684115\pi\)
−0.546697 + 0.837330i \(0.684115\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 453.963i 1.02475i 0.858763 + 0.512373i \(0.171233\pi\)
−0.858763 + 0.512373i \(0.828767\pi\)
\(444\) 0 0
\(445\) −352.000 −0.791011
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 835.800i 1.86147i 0.365694 + 0.930735i \(0.380832\pi\)
−0.365694 + 0.930735i \(0.619168\pi\)
\(450\) 0 0
\(451\) 72.0000 0.159645
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 416.000 0.910284 0.455142 0.890419i \(-0.349588\pi\)
0.455142 + 0.890419i \(0.349588\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 661.852i 1.43569i 0.696204 + 0.717844i \(0.254871\pi\)
−0.696204 + 0.717844i \(0.745129\pi\)
\(462\) 0 0
\(463\) 146.000 0.315335 0.157667 0.987492i \(-0.449603\pi\)
0.157667 + 0.987492i \(0.449603\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 588.313i 1.25977i 0.776688 + 0.629885i \(0.216898\pi\)
−0.776688 + 0.629885i \(0.783102\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 56.5685i 0.119595i
\(474\) 0 0
\(475\) −56.0000 −0.117895
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 67.8823i 0.141717i 0.997486 + 0.0708583i \(0.0225738\pi\)
−0.997486 + 0.0708583i \(0.977426\pi\)
\(480\) 0 0
\(481\) −384.000 −0.798337
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 226.274i 0.466545i
\(486\) 0 0
\(487\) 112.000 0.229979 0.114990 0.993367i \(-0.463316\pi\)
0.114990 + 0.993367i \(0.463316\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 428.507i 0.872722i 0.899772 + 0.436361i \(0.143733\pi\)
−0.899772 + 0.436361i \(0.856267\pi\)
\(492\) 0 0
\(493\) −408.000 −0.827586
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −744.000 −1.49098 −0.745491 0.666516i \(-0.767785\pi\)
−0.745491 + 0.666516i \(0.767785\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 192.333i − 0.382372i −0.981554 0.191186i \(-0.938767\pi\)
0.981554 0.191186i \(-0.0612333\pi\)
\(504\) 0 0
\(505\) −608.000 −1.20396
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 277.186i − 0.544569i −0.962217 0.272285i \(-0.912221\pi\)
0.962217 0.272285i \(-0.0877793\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 1040.86i − 2.02109i
\(516\) 0 0
\(517\) 16.0000 0.0309478
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 379.009i − 0.727465i −0.931503 0.363732i \(-0.881502\pi\)
0.931503 0.363732i \(-0.118498\pi\)
\(522\) 0 0
\(523\) 512.000 0.978967 0.489484 0.872012i \(-0.337185\pi\)
0.489484 + 0.872012i \(0.337185\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 950.352i 1.80332i
\(528\) 0 0
\(529\) 367.000 0.693762
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 814.587i 1.52831i
\(534\) 0 0
\(535\) 824.000 1.54019
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −470.000 −0.868762 −0.434381 0.900729i \(-0.643033\pi\)
−0.434381 + 0.900729i \(0.643033\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 588.313i − 1.07947i
\(546\) 0 0
\(547\) −614.000 −1.12249 −0.561243 0.827651i \(-0.689677\pi\)
−0.561243 + 0.827651i \(0.689677\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 192.333i − 0.349062i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 318.198i 0.571271i 0.958338 + 0.285636i \(0.0922047\pi\)
−0.958338 + 0.285636i \(0.907795\pi\)
\(558\) 0 0
\(559\) −640.000 −1.14490
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 260.215i − 0.462194i −0.972931 0.231097i \(-0.925769\pi\)
0.972931 0.231097i \(-0.0742315\pi\)
\(564\) 0 0
\(565\) 968.000 1.71327
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 284.257i 0.499573i 0.968301 + 0.249786i \(0.0803604\pi\)
−0.968301 + 0.249786i \(0.919640\pi\)
\(570\) 0 0
\(571\) 150.000 0.262697 0.131349 0.991336i \(-0.458069\pi\)
0.131349 + 0.991336i \(0.458069\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 89.0955i 0.154949i
\(576\) 0 0
\(577\) −848.000 −1.46967 −0.734835 0.678246i \(-0.762741\pi\)
−0.734835 + 0.678246i \(0.762741\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −62.0000 −0.106346
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 622.254i − 1.06006i −0.847980 0.530029i \(-0.822181\pi\)
0.847980 0.530029i \(-0.177819\pi\)
\(588\) 0 0
\(589\) −448.000 −0.760611
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 288.500i − 0.486509i −0.969963 0.243254i \(-0.921785\pi\)
0.969963 0.243254i \(-0.0782149\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 453.963i − 0.757867i −0.925424 0.378934i \(-0.876291\pi\)
0.925424 0.378934i \(-0.123709\pi\)
\(600\) 0 0
\(601\) −208.000 −0.346090 −0.173045 0.984914i \(-0.555361\pi\)
−0.173045 + 0.984914i \(0.555361\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 673.166i 1.11267i
\(606\) 0 0
\(607\) 48.0000 0.0790774 0.0395387 0.999218i \(-0.487411\pi\)
0.0395387 + 0.999218i \(0.487411\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 181.019i 0.296267i
\(612\) 0 0
\(613\) −154.000 −0.251223 −0.125612 0.992079i \(-0.540089\pi\)
−0.125612 + 0.992079i \(0.540089\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1076.22i 1.74427i 0.489263 + 0.872137i \(0.337266\pi\)
−0.489263 + 0.872137i \(0.662734\pi\)
\(618\) 0 0
\(619\) −944.000 −1.52504 −0.762520 0.646964i \(-0.776038\pi\)
−0.762520 + 0.646964i \(0.776038\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −751.000 −1.20160
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 407.294i − 0.647525i
\(630\) 0 0
\(631\) 126.000 0.199683 0.0998415 0.995003i \(-0.468166\pi\)
0.0998415 + 0.995003i \(0.468166\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1165.31i 1.83514i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 465.276i 0.725860i 0.931816 + 0.362930i \(0.118224\pi\)
−0.931816 + 0.362930i \(0.881776\pi\)
\(642\) 0 0
\(643\) 552.000 0.858476 0.429238 0.903191i \(-0.358782\pi\)
0.429238 + 0.903191i \(0.358782\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 509.117i − 0.786889i −0.919348 0.393444i \(-0.871283\pi\)
0.919348 0.393444i \(-0.128717\pi\)
\(648\) 0 0
\(649\) 16.0000 0.0246533
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 315.370i 0.482955i 0.970406 + 0.241478i \(0.0776320\pi\)
−0.970406 + 0.241478i \(0.922368\pi\)
\(654\) 0 0
\(655\) 1152.00 1.75878
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 270.115i 0.409886i 0.978774 + 0.204943i \(0.0657009\pi\)
−0.978774 + 0.204943i \(0.934299\pi\)
\(660\) 0 0
\(661\) −808.000 −1.22239 −0.611195 0.791480i \(-0.709311\pi\)
−0.611195 + 0.791480i \(0.709311\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −306.000 −0.458771
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 56.5685i 0.0843048i
\(672\) 0 0
\(673\) −832.000 −1.23626 −0.618128 0.786078i \(-0.712109\pi\)
−0.618128 + 0.786078i \(0.712109\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 424.264i − 0.626683i −0.949641 0.313341i \(-0.898552\pi\)
0.949641 0.313341i \(-0.101448\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 1291.18i − 1.89045i −0.326420 0.945225i \(-0.605842\pi\)
0.326420 0.945225i \(-0.394158\pi\)
\(684\) 0 0
\(685\) −1016.00 −1.48321
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 701.450i − 1.01807i
\(690\) 0 0
\(691\) −272.000 −0.393632 −0.196816 0.980440i \(-0.563060\pi\)
−0.196816 + 0.980440i \(0.563060\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1086.12i 1.56276i
\(696\) 0 0
\(697\) −864.000 −1.23960
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 982.878i 1.40211i 0.713108 + 0.701055i \(0.247287\pi\)
−0.713108 + 0.701055i \(0.752713\pi\)
\(702\) 0 0
\(703\) 192.000 0.273115
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1192.00 1.68124 0.840621 0.541624i \(-0.182190\pi\)
0.840621 + 0.541624i \(0.182190\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 712.764i 0.999668i
\(714\) 0 0
\(715\) 128.000 0.179021
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 746.705i − 1.03853i −0.854613 0.519266i \(-0.826205\pi\)
0.854613 0.519266i \(-0.173795\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 168.291i 0.232126i
\(726\) 0 0
\(727\) −184.000 −0.253095 −0.126547 0.991961i \(-0.540390\pi\)
−0.126547 + 0.991961i \(0.540390\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 678.823i − 0.928622i
\(732\) 0 0
\(733\) −800.000 −1.09141 −0.545703 0.837979i \(-0.683737\pi\)
−0.545703 + 0.837979i \(0.683737\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 36.7696i − 0.0498908i
\(738\) 0 0
\(739\) 346.000 0.468200 0.234100 0.972212i \(-0.424786\pi\)
0.234100 + 0.972212i \(0.424786\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 895.197i − 1.20484i −0.798179 0.602421i \(-0.794203\pi\)
0.798179 0.602421i \(-0.205797\pi\)
\(744\) 0 0
\(745\) 1336.00 1.79329
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1248.00 −1.66178 −0.830892 0.556434i \(-0.812169\pi\)
−0.830892 + 0.556434i \(0.812169\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 90.5097i 0.119880i
\(756\) 0 0
\(757\) −392.000 −0.517834 −0.258917 0.965900i \(-0.583366\pi\)
−0.258917 + 0.965900i \(0.583366\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 956.008i 1.25625i 0.778111 + 0.628126i \(0.216178\pi\)
−0.778111 + 0.628126i \(0.783822\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 181.019i 0.236010i
\(768\) 0 0
\(769\) −256.000 −0.332900 −0.166450 0.986050i \(-0.553230\pi\)
−0.166450 + 0.986050i \(0.553230\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 322.441i 0.417129i 0.978009 + 0.208564i \(0.0668791\pi\)
−0.978009 + 0.208564i \(0.933121\pi\)
\(774\) 0 0
\(775\) 392.000 0.505806
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 407.294i − 0.522841i
\(780\) 0 0
\(781\) 190.000 0.243278
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 316.784i 0.403546i
\(786\) 0 0
\(787\) −800.000 −1.01652 −0.508259 0.861204i \(-0.669711\pi\)
−0.508259 + 0.861204i \(0.669711\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −640.000 −0.807062
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 797.616i 1.00077i 0.865802 + 0.500387i \(0.166809\pi\)
−0.865802 + 0.500387i \(0.833191\pi\)
\(798\) 0 0
\(799\) −192.000 −0.240300
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 124.451i 0.154982i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 487.904i 0.603095i 0.953451 + 0.301547i \(0.0975031\pi\)
−0.953451 + 0.301547i \(0.902497\pi\)
\(810\) 0 0
\(811\) 1232.00 1.51911 0.759556 0.650442i \(-0.225416\pi\)
0.759556 + 0.650442i \(0.225416\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 576.999i 0.707974i
\(816\) 0 0
\(817\) 320.000 0.391677
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 473.762i − 0.577054i −0.957472 0.288527i \(-0.906834\pi\)
0.957472 0.288527i \(-0.0931655\pi\)
\(822\) 0 0
\(823\) −254.000 −0.308627 −0.154313 0.988022i \(-0.549317\pi\)
−0.154313 + 0.988022i \(0.549317\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 12.7279i − 0.0153905i −0.999970 0.00769524i \(-0.997551\pi\)
0.999970 0.00769524i \(-0.00244949\pi\)
\(828\) 0 0
\(829\) 1504.00 1.81423 0.907117 0.420879i \(-0.138278\pi\)
0.907117 + 0.420879i \(0.138278\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1472.00 1.76287
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 203.647i − 0.242726i −0.992608 0.121363i \(-0.961274\pi\)
0.992608 0.121363i \(-0.0387264\pi\)
\(840\) 0 0
\(841\) 263.000 0.312723
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 492.146i 0.582422i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 305.470i − 0.358954i
\(852\) 0 0
\(853\) 536.000 0.628370 0.314185 0.949362i \(-0.398269\pi\)
0.314185 + 0.949362i \(0.398269\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1544.32i 1.80201i 0.433810 + 0.901004i \(0.357169\pi\)
−0.433810 + 0.901004i \(0.642831\pi\)
\(858\) 0 0
\(859\) −792.000 −0.922002 −0.461001 0.887400i \(-0.652510\pi\)
−0.461001 + 0.887400i \(0.652510\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 903.682i 1.04714i 0.851982 + 0.523570i \(0.175400\pi\)
−0.851982 + 0.523570i \(0.824600\pi\)
\(864\) 0 0
\(865\) −544.000 −0.628902
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 115.966i 0.133447i
\(870\) 0 0
\(871\) 416.000 0.477612
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −342.000 −0.389966 −0.194983 0.980807i \(-0.562465\pi\)
−0.194983 + 0.980807i \(0.562465\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 1487.75i − 1.68871i −0.535785 0.844355i \(-0.679984\pi\)
0.535785 0.844355i \(-0.320016\pi\)
\(882\) 0 0
\(883\) 1096.00 1.24122 0.620612 0.784118i \(-0.286884\pi\)
0.620612 + 0.784118i \(0.286884\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1120.06i − 1.26275i −0.775479 0.631374i \(-0.782491\pi\)
0.775479 0.631374i \(-0.217509\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 90.5097i − 0.101355i
\(894\) 0 0
\(895\) 120.000 0.134078
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1346.33i 1.49759i
\(900\) 0 0
\(901\) 744.000 0.825749
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 724.077i − 0.800085i
\(906\) 0 0
\(907\) 1528.00 1.68467 0.842337 0.538951i \(-0.181179\pi\)
0.842337 + 0.538951i \(0.181179\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 552.958i − 0.606979i −0.952835 0.303489i \(-0.901848\pi\)
0.952835 0.303489i \(-0.0981517\pi\)
\(912\) 0 0
\(913\) −144.000 −0.157722
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −672.000 −0.731230 −0.365615 0.930766i \(-0.619141\pi\)
−0.365615 + 0.930766i \(0.619141\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2149.60i 2.32893i
\(924\) 0 0
\(925\) −168.000 −0.181622
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 1035.20i − 1.11432i −0.830405 0.557161i \(-0.811891\pi\)
0.830405 0.557161i \(-0.188109\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 135.765i 0.145203i
\(936\) 0 0
\(937\) 960.000 1.02455 0.512273 0.858823i \(-0.328804\pi\)
0.512273 + 0.858823i \(0.328804\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 967.322i − 1.02797i −0.857798 0.513986i \(-0.828168\pi\)
0.857798 0.513986i \(-0.171832\pi\)
\(942\) 0 0
\(943\) −648.000 −0.687169
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1356.23i − 1.43213i −0.698032 0.716067i \(-0.745941\pi\)
0.698032 0.716067i \(-0.254059\pi\)
\(948\) 0 0
\(949\) −1408.00 −1.48367
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 1107.33i − 1.16194i −0.813925 0.580970i \(-0.802673\pi\)
0.813925 0.580970i \(-0.197327\pi\)
\(954\) 0 0
\(955\) 648.000 0.678534
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2175.00 2.26327
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 1176.63i − 1.21930i
\(966\) 0 0
\(967\) 994.000 1.02792 0.513961 0.857814i \(-0.328178\pi\)
0.513961 + 0.857814i \(0.328178\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 1776.25i − 1.82930i −0.404244 0.914651i \(-0.632465\pi\)
0.404244 0.914651i \(-0.367535\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1087.53i 1.11313i 0.830803 + 0.556566i \(0.187881\pi\)
−0.830803 + 0.556566i \(0.812119\pi\)
\(978\) 0 0
\(979\) −88.0000 −0.0898876
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1097.43i − 1.11641i −0.829704 0.558204i \(-0.811491\pi\)
0.829704 0.558204i \(-0.188509\pi\)
\(984\) 0 0
\(985\) 696.000 0.706599
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 509.117i − 0.514779i
\(990\) 0 0
\(991\) −1648.00 −1.66297 −0.831483 0.555550i \(-0.812508\pi\)
−0.831483 + 0.555550i \(0.812508\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 995.606i − 1.00061i
\(996\) 0 0
\(997\) 248.000 0.248746 0.124373 0.992236i \(-0.460308\pi\)
0.124373 + 0.992236i \(0.460308\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.3.c.b.197.2 yes 2
3.2 odd 2 inner 1764.3.c.b.197.1 2
7.2 even 3 1764.3.bk.b.557.2 4
7.3 odd 6 1764.3.bk.c.1745.2 4
7.4 even 3 1764.3.bk.b.1745.1 4
7.5 odd 6 1764.3.bk.c.557.1 4
7.6 odd 2 1764.3.c.c.197.1 yes 2
21.2 odd 6 1764.3.bk.b.557.1 4
21.5 even 6 1764.3.bk.c.557.2 4
21.11 odd 6 1764.3.bk.b.1745.2 4
21.17 even 6 1764.3.bk.c.1745.1 4
21.20 even 2 1764.3.c.c.197.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.3.c.b.197.1 2 3.2 odd 2 inner
1764.3.c.b.197.2 yes 2 1.1 even 1 trivial
1764.3.c.c.197.1 yes 2 7.6 odd 2
1764.3.c.c.197.2 yes 2 21.20 even 2
1764.3.bk.b.557.1 4 21.2 odd 6
1764.3.bk.b.557.2 4 7.2 even 3
1764.3.bk.b.1745.1 4 7.4 even 3
1764.3.bk.b.1745.2 4 21.11 odd 6
1764.3.bk.c.557.1 4 7.5 odd 6
1764.3.bk.c.557.2 4 21.5 even 6
1764.3.bk.c.1745.1 4 21.17 even 6
1764.3.bk.c.1745.2 4 7.3 odd 6