Properties

Label 1764.3.bk.a.1745.2
Level $1764$
Weight $3$
Character 1764.1745
Analytic conductor $48.066$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,3,Mod(557,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.557"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.bk (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-92] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1745.2
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1745
Dual form 1764.3.bk.a.557.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.67423 + 2.12132i) q^{5} +(18.3712 - 10.6066i) q^{11} -23.0000 q^{13} +(-14.6969 + 8.48528i) q^{17} +(-0.500000 + 0.866025i) q^{19} +(-14.6969 - 8.48528i) q^{23} +(-3.50000 - 6.06218i) q^{25} -33.9411i q^{29} +(-24.5000 - 42.4352i) q^{31} +(-8.50000 + 14.7224i) q^{37} -21.2132i q^{41} +47.0000 q^{43} +(-33.0681 - 19.0919i) q^{47} +(-73.4847 + 42.4264i) q^{53} +90.0000 q^{55} +(-44.0908 + 25.4558i) q^{59} +(-20.0000 + 34.6410i) q^{61} +(-84.5074 - 48.7904i) q^{65} +(-11.5000 - 19.9186i) q^{67} +63.6396i q^{71} +(8.50000 + 14.7224i) q^{73} +(39.5000 - 68.4160i) q^{79} -106.066i q^{83} -72.0000 q^{85} +(117.576 + 67.8823i) q^{89} +(-3.67423 + 2.12132i) q^{95} +40.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 92 q^{13} - 2 q^{19} - 14 q^{25} - 98 q^{31} - 34 q^{37} + 188 q^{43} + 360 q^{55} - 80 q^{61} - 46 q^{67} + 34 q^{73} + 158 q^{79} - 288 q^{85} + 160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.67423 + 2.12132i 0.734847 + 0.424264i 0.820193 0.572087i \(-0.193866\pi\)
−0.0853458 + 0.996351i \(0.527199\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 18.3712 10.6066i 1.67011 0.964237i 0.702532 0.711652i \(-0.252053\pi\)
0.967575 0.252584i \(-0.0812804\pi\)
\(12\) 0 0
\(13\) −23.0000 −1.76923 −0.884615 0.466321i \(-0.845579\pi\)
−0.884615 + 0.466321i \(0.845579\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −14.6969 + 8.48528i −0.864526 + 0.499134i −0.865525 0.500865i \(-0.833015\pi\)
0.000999453 1.00000i \(0.499682\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.0263158 + 0.0455803i −0.878883 0.477037i \(-0.841711\pi\)
0.852568 + 0.522617i \(0.175044\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −14.6969 8.48528i −0.638997 0.368925i 0.145231 0.989398i \(-0.453608\pi\)
−0.784228 + 0.620473i \(0.786941\pi\)
\(24\) 0 0
\(25\) −3.50000 6.06218i −0.140000 0.242487i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 33.9411i 1.17038i −0.810895 0.585192i \(-0.801019\pi\)
0.810895 0.585192i \(-0.198981\pi\)
\(30\) 0 0
\(31\) −24.5000 42.4352i −0.790323 1.36888i −0.925767 0.378094i \(-0.876580\pi\)
0.135445 0.990785i \(-0.456754\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.50000 + 14.7224i −0.229730 + 0.397904i −0.957728 0.287675i \(-0.907118\pi\)
0.727998 + 0.685579i \(0.240451\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 21.2132i 0.517395i −0.965958 0.258698i \(-0.916707\pi\)
0.965958 0.258698i \(-0.0832933\pi\)
\(42\) 0 0
\(43\) 47.0000 1.09302 0.546512 0.837452i \(-0.315955\pi\)
0.546512 + 0.837452i \(0.315955\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −33.0681 19.0919i −0.703577 0.406210i 0.105101 0.994462i \(-0.466483\pi\)
−0.808678 + 0.588251i \(0.799817\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −73.4847 + 42.4264i −1.38650 + 0.800498i −0.992919 0.118790i \(-0.962098\pi\)
−0.393584 + 0.919289i \(0.628765\pi\)
\(54\) 0 0
\(55\) 90.0000 1.63636
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −44.0908 + 25.4558i −0.747302 + 0.431455i −0.824718 0.565544i \(-0.808666\pi\)
0.0774163 + 0.996999i \(0.475333\pi\)
\(60\) 0 0
\(61\) −20.0000 + 34.6410i −0.327869 + 0.567886i −0.982089 0.188419i \(-0.939664\pi\)
0.654220 + 0.756304i \(0.272997\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −84.5074 48.7904i −1.30011 0.750621i
\(66\) 0 0
\(67\) −11.5000 19.9186i −0.171642 0.297292i 0.767352 0.641226i \(-0.221574\pi\)
−0.938994 + 0.343934i \(0.888240\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 63.6396i 0.896333i 0.893950 + 0.448166i \(0.147923\pi\)
−0.893950 + 0.448166i \(0.852077\pi\)
\(72\) 0 0
\(73\) 8.50000 + 14.7224i 0.116438 + 0.201677i 0.918354 0.395760i \(-0.129519\pi\)
−0.801915 + 0.597438i \(0.796186\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 39.5000 68.4160i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 106.066i 1.27790i −0.769247 0.638952i \(-0.779368\pi\)
0.769247 0.638952i \(-0.220632\pi\)
\(84\) 0 0
\(85\) −72.0000 −0.847059
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 117.576 + 67.8823i 1.32107 + 0.762722i 0.983900 0.178721i \(-0.0571958\pi\)
0.337173 + 0.941443i \(0.390529\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.67423 + 2.12132i −0.0386762 + 0.0223297i
\(96\) 0 0
\(97\) 40.0000 0.412371 0.206186 0.978513i \(-0.433895\pi\)
0.206186 + 0.978513i \(0.433895\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −18.3712 + 10.6066i −0.181893 + 0.105016i −0.588182 0.808729i \(-0.700156\pi\)
0.406289 + 0.913745i \(0.366823\pi\)
\(102\) 0 0
\(103\) 11.5000 19.9186i 0.111650 0.193384i −0.804785 0.593566i \(-0.797720\pi\)
0.916436 + 0.400182i \(0.131053\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.6969 + 8.48528i 0.137355 + 0.0793017i 0.567103 0.823647i \(-0.308064\pi\)
−0.429748 + 0.902949i \(0.641398\pi\)
\(108\) 0 0
\(109\) −35.5000 61.4878i −0.325688 0.564108i 0.655963 0.754793i \(-0.272263\pi\)
−0.981651 + 0.190684i \(0.938929\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 131.522i 1.16391i −0.813221 0.581955i \(-0.802288\pi\)
0.813221 0.581955i \(-0.197712\pi\)
\(114\) 0 0
\(115\) −36.0000 62.3538i −0.313043 0.542207i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 164.500 284.922i 1.35950 2.35473i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 135.765i 1.08612i
\(126\) 0 0
\(127\) 17.0000 0.133858 0.0669291 0.997758i \(-0.478680\pi\)
0.0669291 + 0.997758i \(0.478680\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 47.7650 + 27.5772i 0.364619 + 0.210513i 0.671105 0.741362i \(-0.265820\pi\)
−0.306486 + 0.951875i \(0.599153\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −58.7878 + 33.9411i −0.429108 + 0.247745i −0.698966 0.715154i \(-0.746356\pi\)
0.269859 + 0.962900i \(0.413023\pi\)
\(138\) 0 0
\(139\) 31.0000 0.223022 0.111511 0.993763i \(-0.464431\pi\)
0.111511 + 0.993763i \(0.464431\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −422.537 + 243.952i −2.95480 + 1.70596i
\(144\) 0 0
\(145\) 72.0000 124.708i 0.496552 0.860053i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −146.969 84.8528i −0.986372 0.569482i −0.0821839 0.996617i \(-0.526189\pi\)
−0.904188 + 0.427135i \(0.859523\pi\)
\(150\) 0 0
\(151\) 20.0000 + 34.6410i 0.132450 + 0.229411i 0.924621 0.380889i \(-0.124382\pi\)
−0.792170 + 0.610300i \(0.791049\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 207.889i 1.34122i
\(156\) 0 0
\(157\) −140.000 242.487i −0.891720 1.54450i −0.837813 0.545958i \(-0.816166\pi\)
−0.0539072 0.998546i \(-0.517168\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −100.000 + 173.205i −0.613497 + 1.06261i 0.377149 + 0.926152i \(0.376904\pi\)
−0.990646 + 0.136455i \(0.956429\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 106.066i 0.635126i 0.948237 + 0.317563i \(0.102864\pi\)
−0.948237 + 0.317563i \(0.897136\pi\)
\(168\) 0 0
\(169\) 360.000 2.13018
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −220.454 127.279i −1.27430 0.735718i −0.298507 0.954408i \(-0.596488\pi\)
−0.975794 + 0.218690i \(0.929822\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −172.689 + 99.7021i −0.964743 + 0.556995i −0.897630 0.440751i \(-0.854712\pi\)
−0.0671136 + 0.997745i \(0.521379\pi\)
\(180\) 0 0
\(181\) 271.000 1.49724 0.748619 0.663001i \(-0.230717\pi\)
0.748619 + 0.663001i \(0.230717\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −62.4620 + 36.0624i −0.337632 + 0.194932i
\(186\) 0 0
\(187\) −180.000 + 311.769i −0.962567 + 1.66721i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −209.431 120.915i −1.09650 0.633064i −0.161200 0.986922i \(-0.551536\pi\)
−0.935299 + 0.353858i \(0.884870\pi\)
\(192\) 0 0
\(193\) 51.5000 + 89.2006i 0.266839 + 0.462179i 0.968044 0.250781i \(-0.0806873\pi\)
−0.701205 + 0.712960i \(0.747354\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 152.735i 0.775305i −0.921806 0.387652i \(-0.873286\pi\)
0.921806 0.387652i \(-0.126714\pi\)
\(198\) 0 0
\(199\) −80.0000 138.564i −0.402010 0.696302i 0.591958 0.805969i \(-0.298355\pi\)
−0.993968 + 0.109667i \(0.965022\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 45.0000 77.9423i 0.219512 0.380206i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 21.2132i 0.101499i
\(210\) 0 0
\(211\) 80.0000 0.379147 0.189573 0.981867i \(-0.439289\pi\)
0.189573 + 0.981867i \(0.439289\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 172.689 + 99.7021i 0.803205 + 0.463730i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 338.030 195.161i 1.52955 0.883084i
\(222\) 0 0
\(223\) −104.000 −0.466368 −0.233184 0.972433i \(-0.574914\pi\)
−0.233184 + 0.972433i \(0.574914\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −128.598 + 74.2462i −0.566512 + 0.327076i −0.755755 0.654854i \(-0.772730\pi\)
0.189243 + 0.981930i \(0.439397\pi\)
\(228\) 0 0
\(229\) −15.5000 + 26.8468i −0.0676856 + 0.117235i −0.897882 0.440236i \(-0.854895\pi\)
0.830197 + 0.557471i \(0.188228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −150.644 86.9741i −0.646539 0.373280i 0.140590 0.990068i \(-0.455100\pi\)
−0.787129 + 0.616788i \(0.788433\pi\)
\(234\) 0 0
\(235\) −81.0000 140.296i −0.344681 0.597005i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 326.683i 1.36688i 0.730009 + 0.683438i \(0.239516\pi\)
−0.730009 + 0.683438i \(0.760484\pi\)
\(240\) 0 0
\(241\) −65.0000 112.583i −0.269710 0.467151i 0.699077 0.715046i \(-0.253594\pi\)
−0.968787 + 0.247896i \(0.920261\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 11.5000 19.9186i 0.0465587 0.0806420i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 458.205i 1.82552i −0.408498 0.912759i \(-0.633947\pi\)
0.408498 0.912759i \(-0.366053\pi\)
\(252\) 0 0
\(253\) −360.000 −1.42292
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 91.8559 + 53.0330i 0.357416 + 0.206354i 0.667947 0.744209i \(-0.267173\pi\)
−0.310531 + 0.950563i \(0.600507\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −146.969 + 84.8528i −0.558819 + 0.322634i −0.752671 0.658396i \(-0.771235\pi\)
0.193852 + 0.981031i \(0.437902\pi\)
\(264\) 0 0
\(265\) −360.000 −1.35849
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 194.734 112.430i 0.723920 0.417955i −0.0922739 0.995734i \(-0.529414\pi\)
0.816194 + 0.577778i \(0.196080\pi\)
\(270\) 0 0
\(271\) 100.000 173.205i 0.369004 0.639133i −0.620406 0.784281i \(-0.713032\pi\)
0.989410 + 0.145147i \(0.0463656\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −128.598 74.2462i −0.467630 0.269986i
\(276\) 0 0
\(277\) −68.5000 118.645i −0.247292 0.428323i 0.715481 0.698632i \(-0.246207\pi\)
−0.962774 + 0.270309i \(0.912874\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 84.8528i 0.301967i −0.988536 0.150984i \(-0.951756\pi\)
0.988536 0.150984i \(-0.0482441\pi\)
\(282\) 0 0
\(283\) 128.500 + 222.569i 0.454064 + 0.786461i 0.998634 0.0522540i \(-0.0166405\pi\)
−0.544570 + 0.838715i \(0.683307\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.500000 + 0.866025i −0.00173010 + 0.00299663i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 339.411i 1.15840i −0.815185 0.579200i \(-0.803365\pi\)
0.815185 0.579200i \(-0.196635\pi\)
\(294\) 0 0
\(295\) −216.000 −0.732203
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 338.030 + 195.161i 1.13053 + 0.652714i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −146.969 + 84.8528i −0.481867 + 0.278206i
\(306\) 0 0
\(307\) 127.000 0.413681 0.206840 0.978375i \(-0.433682\pi\)
0.206840 + 0.978375i \(0.433682\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 275.568 159.099i 0.886069 0.511572i 0.0134146 0.999910i \(-0.495730\pi\)
0.872655 + 0.488338i \(0.162397\pi\)
\(312\) 0 0
\(313\) 68.5000 118.645i 0.218850 0.379059i −0.735607 0.677409i \(-0.763103\pi\)
0.954457 + 0.298350i \(0.0964362\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 352.727 + 203.647i 1.11270 + 0.642419i 0.939528 0.342472i \(-0.111264\pi\)
0.173174 + 0.984891i \(0.444598\pi\)
\(318\) 0 0
\(319\) −360.000 623.538i −1.12853 1.95467i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.9706i 0.0525404i
\(324\) 0 0
\(325\) 80.5000 + 139.430i 0.247692 + 0.429016i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 120.500 208.712i 0.364048 0.630550i −0.624575 0.780965i \(-0.714728\pi\)
0.988623 + 0.150415i \(0.0480610\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 97.5807i 0.291286i
\(336\) 0 0
\(337\) 527.000 1.56380 0.781899 0.623405i \(-0.214251\pi\)
0.781899 + 0.623405i \(0.214251\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −900.187 519.723i −2.63985 1.52412i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −220.454 + 127.279i −0.635314 + 0.366799i −0.782807 0.622264i \(-0.786213\pi\)
0.147493 + 0.989063i \(0.452880\pi\)
\(348\) 0 0
\(349\) 400.000 1.14613 0.573066 0.819509i \(-0.305754\pi\)
0.573066 + 0.819509i \(0.305754\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −349.052 + 201.525i −0.988817 + 0.570894i −0.904920 0.425581i \(-0.860070\pi\)
−0.0838963 + 0.996474i \(0.526736\pi\)
\(354\) 0 0
\(355\) −135.000 + 233.827i −0.380282 + 0.658667i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.3939 16.9706i −0.0818771 0.0472718i 0.458502 0.888693i \(-0.348386\pi\)
−0.540380 + 0.841421i \(0.681719\pi\)
\(360\) 0 0
\(361\) 180.000 + 311.769i 0.498615 + 0.863626i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 72.1249i 0.197602i
\(366\) 0 0
\(367\) −111.500 193.124i −0.303815 0.526223i 0.673182 0.739477i \(-0.264927\pi\)
−0.976997 + 0.213254i \(0.931594\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −308.500 + 534.338i −0.827078 + 1.43254i 0.0732432 + 0.997314i \(0.476665\pi\)
−0.900321 + 0.435227i \(0.856668\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 780.646i 2.07068i
\(378\) 0 0
\(379\) −361.000 −0.952507 −0.476253 0.879308i \(-0.658005\pi\)
−0.476253 + 0.879308i \(0.658005\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 367.423 + 212.132i 0.959330 + 0.553870i 0.895967 0.444121i \(-0.146484\pi\)
0.0633634 + 0.997991i \(0.479817\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −91.8559 + 53.0330i −0.236133 + 0.136332i −0.613398 0.789774i \(-0.710198\pi\)
0.377265 + 0.926105i \(0.376865\pi\)
\(390\) 0 0
\(391\) 288.000 0.736573
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 290.265 167.584i 0.734847 0.424264i
\(396\) 0 0
\(397\) 188.500 326.492i 0.474811 0.822397i −0.524773 0.851242i \(-0.675850\pi\)
0.999584 + 0.0288454i \(0.00918305\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 73.4847 + 42.4264i 0.183254 + 0.105802i 0.588820 0.808264i \(-0.299593\pi\)
−0.405567 + 0.914065i \(0.632926\pi\)
\(402\) 0 0
\(403\) 563.500 + 976.011i 1.39826 + 2.42186i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 360.624i 0.886055i
\(408\) 0 0
\(409\) 344.500 + 596.692i 0.842298 + 1.45890i 0.887947 + 0.459946i \(0.152131\pi\)
−0.0456487 + 0.998958i \(0.514535\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 225.000 389.711i 0.542169 0.939064i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 691.550i 1.65048i 0.564783 + 0.825239i \(0.308960\pi\)
−0.564783 + 0.825239i \(0.691040\pi\)
\(420\) 0 0
\(421\) 281.000 0.667458 0.333729 0.942669i \(-0.391693\pi\)
0.333729 + 0.942669i \(0.391693\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 102.879 + 59.3970i 0.242067 + 0.139758i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 378.446 218.496i 0.878065 0.506951i 0.00804532 0.999968i \(-0.497439\pi\)
0.870020 + 0.493016i \(0.164106\pi\)
\(432\) 0 0
\(433\) −593.000 −1.36952 −0.684758 0.728771i \(-0.740092\pi\)
−0.684758 + 0.728771i \(0.740092\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.6969 8.48528i 0.0336314 0.0194171i
\(438\) 0 0
\(439\) −236.000 + 408.764i −0.537585 + 0.931125i 0.461448 + 0.887167i \(0.347330\pi\)
−0.999033 + 0.0439580i \(0.986003\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 661.362 + 381.838i 1.49292 + 0.861936i 0.999967 0.00812162i \(-0.00258522\pi\)
0.492950 + 0.870058i \(0.335919\pi\)
\(444\) 0 0
\(445\) 288.000 + 498.831i 0.647191 + 1.12097i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 649.124i 1.44571i −0.690999 0.722855i \(-0.742829\pi\)
0.690999 0.722855i \(-0.257171\pi\)
\(450\) 0 0
\(451\) −225.000 389.711i −0.498891 0.864105i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −176.500 + 305.707i −0.386214 + 0.668943i −0.991937 0.126733i \(-0.959551\pi\)
0.605722 + 0.795676i \(0.292884\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 543.058i 1.17800i 0.808133 + 0.589000i \(0.200478\pi\)
−0.808133 + 0.589000i \(0.799522\pi\)
\(462\) 0 0
\(463\) −337.000 −0.727862 −0.363931 0.931426i \(-0.618566\pi\)
−0.363931 + 0.931426i \(0.618566\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.67423 2.12132i −0.00786774 0.00454244i 0.496061 0.868288i \(-0.334779\pi\)
−0.503929 + 0.863745i \(0.668113\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 863.445 498.510i 1.82547 1.05393i
\(474\) 0 0
\(475\) 7.00000 0.0147368
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 367.423 212.132i 0.767064 0.442864i −0.0647625 0.997901i \(-0.520629\pi\)
0.831826 + 0.555036i \(0.187296\pi\)
\(480\) 0 0
\(481\) 195.500 338.616i 0.406445 0.703983i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 146.969 + 84.8528i 0.303030 + 0.174954i
\(486\) 0 0
\(487\) −143.500 248.549i −0.294661 0.510368i 0.680245 0.732985i \(-0.261873\pi\)
−0.974906 + 0.222617i \(0.928540\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 339.411i 0.691265i 0.938370 + 0.345633i \(0.112336\pi\)
−0.938370 + 0.345633i \(0.887664\pi\)
\(492\) 0 0
\(493\) 288.000 + 498.831i 0.584178 + 1.01183i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 60.5000 104.789i 0.121242 0.209998i −0.799015 0.601311i \(-0.794645\pi\)
0.920258 + 0.391312i \(0.127979\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 292.742i 0.581992i 0.956724 + 0.290996i \(0.0939867\pi\)
−0.956724 + 0.290996i \(0.906013\pi\)
\(504\) 0 0
\(505\) −90.0000 −0.178218
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 25.7196 + 14.8492i 0.0505297 + 0.0291734i 0.525052 0.851070i \(-0.324046\pi\)
−0.474522 + 0.880243i \(0.657379\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 84.5074 48.7904i 0.164092 0.0947386i
\(516\) 0 0
\(517\) −810.000 −1.56673
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 734.847 424.264i 1.41045 0.814326i 0.415024 0.909811i \(-0.363773\pi\)
0.995431 + 0.0954841i \(0.0304399\pi\)
\(522\) 0 0
\(523\) −63.5000 + 109.985i −0.121415 + 0.210297i −0.920326 0.391153i \(-0.872076\pi\)
0.798911 + 0.601449i \(0.205410\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 720.150 + 415.779i 1.36651 + 0.788954i
\(528\) 0 0
\(529\) −120.500 208.712i −0.227788 0.394541i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 487.904i 0.915392i
\(534\) 0 0
\(535\) 36.0000 + 62.3538i 0.0672897 + 0.116549i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0.500000 0.866025i 0.000924214 0.00160079i −0.865563 0.500800i \(-0.833039\pi\)
0.866487 + 0.499199i \(0.166372\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 301.227i 0.552711i
\(546\) 0 0
\(547\) −544.000 −0.994516 −0.497258 0.867603i \(-0.665660\pi\)
−0.497258 + 0.867603i \(0.665660\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 29.3939 + 16.9706i 0.0533464 + 0.0307996i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 224.128 129.401i 0.402385 0.232317i −0.285128 0.958490i \(-0.592036\pi\)
0.687512 + 0.726173i \(0.258703\pi\)
\(558\) 0 0
\(559\) −1081.00 −1.93381
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −473.976 + 273.650i −0.841876 + 0.486057i −0.857902 0.513814i \(-0.828232\pi\)
0.0160254 + 0.999872i \(0.494899\pi\)
\(564\) 0 0
\(565\) 279.000 483.242i 0.493805 0.855296i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −606.249 350.018i −1.06546 0.615146i −0.138525 0.990359i \(-0.544236\pi\)
−0.926938 + 0.375213i \(0.877569\pi\)
\(570\) 0 0
\(571\) −344.500 596.692i −0.603327 1.04499i −0.992313 0.123750i \(-0.960508\pi\)
0.388986 0.921244i \(-0.372825\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 118.794i 0.206598i
\(576\) 0 0
\(577\) 476.500 + 825.322i 0.825823 + 1.43037i 0.901289 + 0.433219i \(0.142622\pi\)
−0.0754653 + 0.997148i \(0.524044\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −900.000 + 1558.85i −1.54374 + 2.67383i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 780.646i 1.32989i −0.746892 0.664945i \(-0.768455\pi\)
0.746892 0.664945i \(-0.231545\pi\)
\(588\) 0 0
\(589\) 49.0000 0.0831919
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −753.218 434.871i −1.27018 0.733340i −0.295160 0.955448i \(-0.595373\pi\)
−0.975022 + 0.222108i \(0.928706\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −881.816 + 509.117i −1.47215 + 0.849945i −0.999510 0.0313121i \(-0.990031\pi\)
−0.472638 + 0.881257i \(0.656698\pi\)
\(600\) 0 0
\(601\) 961.000 1.59900 0.799501 0.600665i \(-0.205097\pi\)
0.799501 + 0.600665i \(0.205097\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1208.82 697.914i 1.99805 1.15358i
\(606\) 0 0
\(607\) 371.500 643.457i 0.612026 1.06006i −0.378872 0.925449i \(-0.623688\pi\)
0.990898 0.134612i \(-0.0429787\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 760.567 + 439.113i 1.24479 + 0.718680i
\(612\) 0 0
\(613\) −280.000 484.974i −0.456770 0.791149i 0.542018 0.840367i \(-0.317660\pi\)
−0.998788 + 0.0492180i \(0.984327\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 46.6690i 0.0756387i 0.999285 + 0.0378193i \(0.0120411\pi\)
−0.999285 + 0.0378193i \(0.987959\pi\)
\(618\) 0 0
\(619\) 104.500 + 180.999i 0.168821 + 0.292406i 0.938005 0.346620i \(-0.112671\pi\)
−0.769185 + 0.639026i \(0.779337\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 200.500 347.276i 0.320800 0.555642i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 288.500i 0.458664i
\(630\) 0 0
\(631\) 560.000 0.887480 0.443740 0.896156i \(-0.353651\pi\)
0.443740 + 0.896156i \(0.353651\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 62.4620 + 36.0624i 0.0983653 + 0.0567913i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −102.879 + 59.3970i −0.160497 + 0.0926630i −0.578097 0.815968i \(-0.696205\pi\)
0.417600 + 0.908631i \(0.362871\pi\)
\(642\) 0 0
\(643\) −113.000 −0.175739 −0.0878694 0.996132i \(-0.528006\pi\)
−0.0878694 + 0.996132i \(0.528006\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 459.279 265.165i 0.709860 0.409838i −0.101149 0.994871i \(-0.532252\pi\)
0.811009 + 0.585033i \(0.198919\pi\)
\(648\) 0 0
\(649\) −540.000 + 935.307i −0.832049 + 1.44115i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.3712 + 10.6066i 0.0281335 + 0.0162429i 0.514001 0.857790i \(-0.328163\pi\)
−0.485867 + 0.874033i \(0.661496\pi\)
\(654\) 0 0
\(655\) 117.000 + 202.650i 0.178626 + 0.309389i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 933.381i 1.41636i 0.706032 + 0.708180i \(0.250483\pi\)
−0.706032 + 0.708180i \(0.749517\pi\)
\(660\) 0 0
\(661\) 155.500 + 269.334i 0.235250 + 0.407464i 0.959345 0.282235i \(-0.0910759\pi\)
−0.724096 + 0.689700i \(0.757743\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −288.000 + 498.831i −0.431784 + 0.747872i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 848.528i 1.26457i
\(672\) 0 0
\(673\) −223.000 −0.331352 −0.165676 0.986180i \(-0.552981\pi\)
−0.165676 + 0.986180i \(0.552981\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −352.727 203.647i −0.521014 0.300808i 0.216335 0.976319i \(-0.430590\pi\)
−0.737349 + 0.675511i \(0.763923\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 279.242 161.220i 0.408846 0.236047i −0.281448 0.959577i \(-0.590815\pi\)
0.690294 + 0.723529i \(0.257481\pi\)
\(684\) 0 0
\(685\) −288.000 −0.420438
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1690.15 975.807i 2.45304 1.41627i
\(690\) 0 0
\(691\) −399.500 + 691.954i −0.578148 + 1.00138i 0.417544 + 0.908657i \(0.362891\pi\)
−0.995692 + 0.0927244i \(0.970442\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 113.901 + 65.7609i 0.163887 + 0.0946200i
\(696\) 0 0
\(697\) 180.000 + 311.769i 0.258250 + 0.447301i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 458.205i 0.653645i 0.945086 + 0.326823i \(0.105978\pi\)
−0.945086 + 0.326823i \(0.894022\pi\)
\(702\) 0 0
\(703\) −8.50000 14.7224i −0.0120910 0.0209423i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 20.0000 34.6410i 0.0282087 0.0488590i −0.851576 0.524231i \(-0.824353\pi\)
0.879785 + 0.475372i \(0.157686\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 831.558i 1.16628i
\(714\) 0 0
\(715\) −2070.00 −2.89510
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 723.824 + 417.900i 1.00671 + 0.581224i 0.910227 0.414111i \(-0.135907\pi\)
0.0964830 + 0.995335i \(0.469241\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −205.757 + 118.794i −0.283803 + 0.163854i
\(726\) 0 0
\(727\) 943.000 1.29711 0.648556 0.761167i \(-0.275373\pi\)
0.648556 + 0.761167i \(0.275373\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −690.756 + 398.808i −0.944947 + 0.545565i
\(732\) 0 0
\(733\) 263.500 456.395i 0.359482 0.622640i −0.628393 0.777896i \(-0.716287\pi\)
0.987874 + 0.155256i \(0.0496202\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −422.537 243.952i −0.573320 0.331007i
\(738\) 0 0
\(739\) 495.500 + 858.231i 0.670501 + 1.16134i 0.977762 + 0.209716i \(0.0672540\pi\)
−0.307262 + 0.951625i \(0.599413\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 530.330i 0.713769i 0.934149 + 0.356884i \(0.116161\pi\)
−0.934149 + 0.356884i \(0.883839\pi\)
\(744\) 0 0
\(745\) −360.000 623.538i −0.483221 0.836964i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −380.500 + 659.045i −0.506658 + 0.877557i 0.493313 + 0.869852i \(0.335786\pi\)
−0.999970 + 0.00770489i \(0.997547\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 169.706i 0.224776i
\(756\) 0 0
\(757\) 1190.00 1.57199 0.785997 0.618230i \(-0.212150\pi\)
0.785997 + 0.618230i \(0.212150\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −690.756 398.808i −0.907695 0.524058i −0.0280064 0.999608i \(-0.508916\pi\)
−0.879689 + 0.475550i \(0.842249\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1014.09 585.484i 1.32215 0.763343i
\(768\) 0 0
\(769\) −599.000 −0.778934 −0.389467 0.921040i \(-0.627341\pi\)
−0.389467 + 0.921040i \(0.627341\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −312.310 + 180.312i −0.404023 + 0.233263i −0.688218 0.725504i \(-0.741607\pi\)
0.284195 + 0.958766i \(0.408274\pi\)
\(774\) 0 0
\(775\) −171.500 + 297.047i −0.221290 + 0.383286i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.3712 + 10.6066i 0.0235830 + 0.0136157i
\(780\) 0 0
\(781\) 675.000 + 1169.13i 0.864277 + 1.49697i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1187.94i 1.51330i
\(786\) 0 0
\(787\) 85.0000 + 147.224i 0.108005 + 0.187070i 0.914962 0.403540i \(-0.132220\pi\)
−0.806957 + 0.590610i \(0.798887\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 460.000 796.743i 0.580076 1.00472i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 322.441i 0.404568i 0.979327 + 0.202284i \(0.0648364\pi\)
−0.979327 + 0.202284i \(0.935164\pi\)
\(798\) 0 0
\(799\) 648.000 0.811014
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 312.310 + 180.312i 0.388929 + 0.224548i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 268.219 154.856i 0.331544 0.191417i −0.324982 0.945720i \(-0.605358\pi\)
0.656526 + 0.754303i \(0.272025\pi\)
\(810\) 0 0
\(811\) −1190.00 −1.46732 −0.733662 0.679514i \(-0.762190\pi\)
−0.733662 + 0.679514i \(0.762190\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −734.847 + 424.264i −0.901653 + 0.520569i
\(816\) 0 0
\(817\) −23.5000 + 40.7032i −0.0287638 + 0.0498203i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 496.022 + 286.378i 0.604168 + 0.348816i 0.770679 0.637223i \(-0.219917\pi\)
−0.166512 + 0.986039i \(0.553250\pi\)
\(822\) 0 0
\(823\) −580.000 1004.59i −0.704739 1.22064i −0.966786 0.255588i \(-0.917731\pi\)
0.262047 0.965055i \(-0.415602\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 343.654i 0.415543i 0.978177 + 0.207771i \(0.0666210\pi\)
−0.978177 + 0.207771i \(0.933379\pi\)
\(828\) 0 0
\(829\) 539.500 + 934.441i 0.650784 + 1.12719i 0.982933 + 0.183964i \(0.0588930\pi\)
−0.332149 + 0.943227i \(0.607774\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −225.000 + 389.711i −0.269461 + 0.466720i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 33.9411i 0.0404543i 0.999795 + 0.0202271i \(0.00643893\pi\)
−0.999795 + 0.0202271i \(0.993561\pi\)
\(840\) 0 0
\(841\) −311.000 −0.369798
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1322.72 + 763.675i 1.56535 + 0.903758i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 249.848 144.250i 0.293593 0.169506i
\(852\) 0 0
\(853\) 1033.00 1.21102 0.605510 0.795838i \(-0.292969\pi\)
0.605510 + 0.795838i \(0.292969\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −205.757 + 118.794i −0.240090 + 0.138616i −0.615218 0.788357i \(-0.710932\pi\)
0.375128 + 0.926973i \(0.377599\pi\)
\(858\) 0 0
\(859\) 445.000 770.763i 0.518044 0.897279i −0.481736 0.876316i \(-0.659994\pi\)
0.999780 0.0209626i \(-0.00667308\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 400.492 + 231.224i 0.464069 + 0.267930i 0.713754 0.700397i \(-0.246994\pi\)
−0.249685 + 0.968327i \(0.580327\pi\)
\(864\) 0 0
\(865\) −540.000 935.307i −0.624277 1.08128i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1675.84i 1.92847i
\(870\) 0 0
\(871\) 264.500 + 458.127i 0.303674 + 0.525979i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 752.000 1302.50i 0.857469 1.48518i −0.0168671 0.999858i \(-0.505369\pi\)
0.874336 0.485322i \(-0.161297\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 254.558i 0.288943i 0.989509 + 0.144471i \(0.0461481\pi\)
−0.989509 + 0.144471i \(0.953852\pi\)
\(882\) 0 0
\(883\) 1313.00 1.48698 0.743488 0.668749i \(-0.233170\pi\)
0.743488 + 0.668749i \(0.233170\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1010.41 583.363i −1.13914 0.657681i −0.192920 0.981214i \(-0.561796\pi\)
−0.946217 + 0.323533i \(0.895129\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 33.0681 19.0919i 0.0370304 0.0213795i
\(894\) 0 0
\(895\) −846.000 −0.945251
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1440.30 + 831.558i −1.60211 + 0.924981i
\(900\) 0 0
\(901\) 720.000 1247.08i 0.799112 1.38410i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 995.718 + 574.878i 1.10024 + 0.635224i
\(906\) 0 0
\(907\) 408.500 + 707.543i 0.450386 + 0.780091i 0.998410 0.0563714i \(-0.0179531\pi\)
−0.548024 + 0.836463i \(0.684620\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 899.440i 0.987310i −0.869658 0.493655i \(-0.835660\pi\)
0.869658 0.493655i \(-0.164340\pi\)
\(912\) 0 0
\(913\) −1125.00 1948.56i −1.23220 2.13424i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 864.500 1497.36i 0.940696 1.62933i 0.176549 0.984292i \(-0.443506\pi\)
0.764147 0.645042i \(-0.223160\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1463.71i 1.58582i
\(924\) 0 0
\(925\) 119.000 0.128649
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −826.703 477.297i −0.889885 0.513775i −0.0159798 0.999872i \(-0.505087\pi\)
−0.873905 + 0.486097i \(0.838420\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1322.72 + 763.675i −1.41468 + 0.816765i
\(936\) 0 0
\(937\) −377.000 −0.402348 −0.201174 0.979556i \(-0.564476\pi\)
−0.201174 + 0.979556i \(0.564476\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −837.725 + 483.661i −0.890250 + 0.513986i −0.874024 0.485882i \(-0.838498\pi\)
−0.0162259 + 0.999868i \(0.505165\pi\)
\(942\) 0 0
\(943\) −180.000 + 311.769i −0.190880 + 0.330614i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1157.38 668.216i −1.22216 0.705613i −0.256781 0.966470i \(-0.582662\pi\)
−0.965378 + 0.260856i \(0.915995\pi\)
\(948\) 0 0
\(949\) −195.500 338.616i −0.206006 0.356813i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 763.675i 0.801338i 0.916223 + 0.400669i \(0.131222\pi\)
−0.916223 + 0.400669i \(0.868778\pi\)
\(954\) 0 0
\(955\) −513.000 888.542i −0.537173 0.930411i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −720.000 + 1247.08i −0.749220 + 1.29769i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 436.992i 0.452841i
\(966\) 0 0
\(967\) −1057.00 −1.09307 −0.546536 0.837436i \(-0.684054\pi\)
−0.546536 + 0.837436i \(0.684054\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 955.301 + 551.543i 0.983832 + 0.568016i 0.903425 0.428746i \(-0.141045\pi\)
0.0804072 + 0.996762i \(0.474378\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −275.568 + 159.099i −0.282055 + 0.162844i −0.634353 0.773043i \(-0.718734\pi\)
0.352298 + 0.935888i \(0.385400\pi\)
\(978\) 0 0
\(979\) 2880.00 2.94178
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 455.605 263.044i 0.463484 0.267593i −0.250024 0.968240i \(-0.580438\pi\)
0.713508 + 0.700647i \(0.247105\pi\)
\(984\) 0 0
\(985\) 324.000 561.184i 0.328934 0.569730i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −690.756 398.808i −0.698439 0.403244i
\(990\) 0 0
\(991\) −215.500 373.257i −0.217457 0.376647i 0.736573 0.676358i \(-0.236443\pi\)
−0.954030 + 0.299712i \(0.903110\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 678.823i 0.682234i
\(996\) 0 0
\(997\) 68.5000 + 118.645i 0.0687061 + 0.119002i 0.898332 0.439317i \(-0.144780\pi\)
−0.829626 + 0.558320i \(0.811446\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.3.bk.a.1745.2 4
3.2 odd 2 inner 1764.3.bk.a.1745.1 4
7.2 even 3 1764.3.c.a.197.1 2
7.3 odd 6 252.3.bk.a.53.2 yes 4
7.4 even 3 inner 1764.3.bk.a.557.1 4
7.5 odd 6 1764.3.c.d.197.2 2
7.6 odd 2 252.3.bk.a.233.1 yes 4
21.2 odd 6 1764.3.c.a.197.2 2
21.5 even 6 1764.3.c.d.197.1 2
21.11 odd 6 inner 1764.3.bk.a.557.2 4
21.17 even 6 252.3.bk.a.53.1 4
21.20 even 2 252.3.bk.a.233.2 yes 4
28.3 even 6 1008.3.dc.c.305.2 4
28.27 even 2 1008.3.dc.c.737.1 4
84.59 odd 6 1008.3.dc.c.305.1 4
84.83 odd 2 1008.3.dc.c.737.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.bk.a.53.1 4 21.17 even 6
252.3.bk.a.53.2 yes 4 7.3 odd 6
252.3.bk.a.233.1 yes 4 7.6 odd 2
252.3.bk.a.233.2 yes 4 21.20 even 2
1008.3.dc.c.305.1 4 84.59 odd 6
1008.3.dc.c.305.2 4 28.3 even 6
1008.3.dc.c.737.1 4 28.27 even 2
1008.3.dc.c.737.2 4 84.83 odd 2
1764.3.c.a.197.1 2 7.2 even 3
1764.3.c.a.197.2 2 21.2 odd 6
1764.3.c.d.197.1 2 21.5 even 6
1764.3.c.d.197.2 2 7.5 odd 6
1764.3.bk.a.557.1 4 7.4 even 3 inner
1764.3.bk.a.557.2 4 21.11 odd 6 inner
1764.3.bk.a.1745.1 4 3.2 odd 2 inner
1764.3.bk.a.1745.2 4 1.1 even 1 trivial