Newspace parameters
Level: | \( N \) | \(=\) | \( 1760 = 2^{5} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1760.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(14.0536707557\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
351.1 | 0 | − | 2.97875i | 0 | −1.00000 | 0 | −4.81963 | 0 | −5.87292 | 0 | |||||||||||||||||
351.2 | 0 | 2.97875i | 0 | −1.00000 | 0 | −4.81963 | 0 | −5.87292 | 0 | ||||||||||||||||||
351.3 | 0 | − | 0.664406i | 0 | −1.00000 | 0 | −3.22449 | 0 | 2.55856 | 0 | |||||||||||||||||
351.4 | 0 | 0.664406i | 0 | −1.00000 | 0 | −3.22449 | 0 | 2.55856 | 0 | ||||||||||||||||||
351.5 | 0 | − | 2.43031i | 0 | −1.00000 | 0 | 2.50020 | 0 | −2.90640 | 0 | |||||||||||||||||
351.6 | 0 | 2.43031i | 0 | −1.00000 | 0 | 2.50020 | 0 | −2.90640 | 0 | ||||||||||||||||||
351.7 | 0 | − | 2.84742i | 0 | −1.00000 | 0 | −0.280035 | 0 | −5.10782 | 0 | |||||||||||||||||
351.8 | 0 | 2.84742i | 0 | −1.00000 | 0 | −0.280035 | 0 | −5.10782 | 0 | ||||||||||||||||||
351.9 | 0 | − | 1.59277i | 0 | −1.00000 | 0 | −1.92830 | 0 | 0.463073 | 0 | |||||||||||||||||
351.10 | 0 | 1.59277i | 0 | −1.00000 | 0 | −1.92830 | 0 | 0.463073 | 0 | ||||||||||||||||||
351.11 | 0 | − | 0.366738i | 0 | −1.00000 | 0 | −1.52516 | 0 | 2.86550 | 0 | |||||||||||||||||
351.12 | 0 | 0.366738i | 0 | −1.00000 | 0 | −1.52516 | 0 | 2.86550 | 0 | ||||||||||||||||||
351.13 | 0 | − | 0.366738i | 0 | −1.00000 | 0 | 1.52516 | 0 | 2.86550 | 0 | |||||||||||||||||
351.14 | 0 | 0.366738i | 0 | −1.00000 | 0 | 1.52516 | 0 | 2.86550 | 0 | ||||||||||||||||||
351.15 | 0 | − | 1.59277i | 0 | −1.00000 | 0 | 1.92830 | 0 | 0.463073 | 0 | |||||||||||||||||
351.16 | 0 | 1.59277i | 0 | −1.00000 | 0 | 1.92830 | 0 | 0.463073 | 0 | ||||||||||||||||||
351.17 | 0 | − | 2.84742i | 0 | −1.00000 | 0 | 0.280035 | 0 | −5.10782 | 0 | |||||||||||||||||
351.18 | 0 | 2.84742i | 0 | −1.00000 | 0 | 0.280035 | 0 | −5.10782 | 0 | ||||||||||||||||||
351.19 | 0 | − | 2.43031i | 0 | −1.00000 | 0 | −2.50020 | 0 | −2.90640 | 0 | |||||||||||||||||
351.20 | 0 | 2.43031i | 0 | −1.00000 | 0 | −2.50020 | 0 | −2.90640 | 0 | ||||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
44.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1760.2.f.d | ✓ | 24 |
4.b | odd | 2 | 1 | inner | 1760.2.f.d | ✓ | 24 |
8.b | even | 2 | 1 | 3520.2.f.m | 24 | ||
8.d | odd | 2 | 1 | 3520.2.f.m | 24 | ||
11.b | odd | 2 | 1 | inner | 1760.2.f.d | ✓ | 24 |
44.c | even | 2 | 1 | inner | 1760.2.f.d | ✓ | 24 |
88.b | odd | 2 | 1 | 3520.2.f.m | 24 | ||
88.g | even | 2 | 1 | 3520.2.f.m | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1760.2.f.d | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
1760.2.f.d | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
1760.2.f.d | ✓ | 24 | 11.b | odd | 2 | 1 | inner |
1760.2.f.d | ✓ | 24 | 44.c | even | 2 | 1 | inner |
3520.2.f.m | 24 | 8.b | even | 2 | 1 | ||
3520.2.f.m | 24 | 8.d | odd | 2 | 1 | ||
3520.2.f.m | 24 | 88.b | odd | 2 | 1 | ||
3520.2.f.m | 24 | 88.g | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1760, [\chi])\):
\( T_{3}^{12} + 26T_{3}^{10} + 245T_{3}^{8} + 996T_{3}^{6} + 1588T_{3}^{4} + 672T_{3}^{2} + 64 \)
|
\( T_{7}^{12} - 46T_{7}^{10} + 705T_{7}^{8} - 4640T_{7}^{6} + 13392T_{7}^{4} - 14080T_{7}^{2} + 1024 \)
|