Defining parameters
| Level: | \( N \) | \(=\) | \( 176 = 2^{4} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 176.e (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 44 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(176, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 78 | 18 | 60 |
| Cusp forms | 66 | 18 | 48 |
| Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(176, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 176.4.e.a | $2$ | $10.384$ | \(\Q(\sqrt{-11}) \) | \(\Q(\sqrt{-11}) \) | \(0\) | \(0\) | \(-36\) | \(0\) | \(q-2\beta q^{3}-18q^{5}-17q^{9}+11\beta q^{11}+\cdots\) |
| 176.4.e.b | $2$ | $10.384$ | \(\Q(\sqrt{-19}) \) | None | \(0\) | \(0\) | \(14\) | \(-40\) | \(q-\beta q^{3}+7q^{5}-20q^{7}+8q^{9}+(20+\cdots)q^{11}+\cdots\) |
| 176.4.e.c | $2$ | $10.384$ | \(\Q(\sqrt{-19}) \) | None | \(0\) | \(0\) | \(14\) | \(40\) | \(q-\beta q^{3}+7q^{5}+20q^{7}+8q^{9}+(-20+\cdots)q^{11}+\cdots\) |
| 176.4.e.d | $4$ | $10.384$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | \(\Q(\sqrt{-11}) \) | \(0\) | \(0\) | \(36\) | \(0\) | \(q+(-2\beta _{1}-\beta _{2})q^{3}+(9+\beta _{3})q^{5}+(-2^{5}+\cdots)q^{9}+\cdots\) |
| 176.4.e.e | $8$ | $10.384$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(-28\) | \(0\) | \(q+(-\beta _{2}+\beta _{3})q^{3}+(-4+\beta _{1})q^{5}-\beta _{4}q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(176, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(176, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 3}\)