Properties

Label 176.4.e
Level $176$
Weight $4$
Character orbit 176.e
Rep. character $\chi_{176}(175,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $5$
Sturm bound $96$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 44 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(96\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(176, [\chi])\).

Total New Old
Modular forms 78 18 60
Cusp forms 66 18 48
Eisenstein series 12 0 12

Trace form

\( 18 q - 102 q^{9} - 54 q^{25} - 192 q^{33} + 492 q^{45} - 30 q^{49} - 1380 q^{53} + 2748 q^{69} + 384 q^{77} + 1218 q^{81} - 768 q^{89} - 3636 q^{93} + 3072 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(176, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
176.4.e.a 176.e 44.c $2$ $10.384$ \(\Q(\sqrt{-11}) \) \(\Q(\sqrt{-11}) \) 176.4.e.a \(0\) \(0\) \(-36\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2\beta q^{3}-18q^{5}-17q^{9}+11\beta q^{11}+\cdots\)
176.4.e.b 176.e 44.c $2$ $10.384$ \(\Q(\sqrt{-19}) \) None 176.4.e.b \(0\) \(0\) \(14\) \(-40\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{3}+7q^{5}-20q^{7}+8q^{9}+(20+\cdots)q^{11}+\cdots\)
176.4.e.c 176.e 44.c $2$ $10.384$ \(\Q(\sqrt{-19}) \) None 176.4.e.b \(0\) \(0\) \(14\) \(40\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{3}+7q^{5}+20q^{7}+8q^{9}+(-20+\cdots)q^{11}+\cdots\)
176.4.e.d 176.e 44.c $4$ $10.384$ \(\Q(\sqrt{-3}, \sqrt{-11})\) \(\Q(\sqrt{-11}) \) 176.4.e.d \(0\) \(0\) \(36\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-2\beta _{1}-\beta _{2})q^{3}+(9+\beta _{3})q^{5}+(-2^{5}+\cdots)q^{9}+\cdots\)
176.4.e.e 176.e 44.c $8$ $10.384$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 176.4.e.e \(0\) \(0\) \(-28\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{2}+\beta _{3})q^{3}+(-4+\beta _{1})q^{5}-\beta _{4}q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(176, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(176, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 3}\)