Properties

Label 1759.1.b.c
Level $1759$
Weight $1$
Character orbit 1759.b
Self dual yes
Analytic conductor $0.878$
Analytic rank $0$
Dimension $9$
Projective image $D_{27}$
CM discriminant -1759
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1759,1,Mod(1758,1759)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1759.1758"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1759, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1759 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1759.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.877855357221\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\Q(\zeta_{54})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 9x^{7} + 27x^{5} - 30x^{3} + 9x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{27}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{27} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{2} + ( - \beta_{6} + \beta_{3} + 1) q^{4} - \beta_1 q^{5} + (\beta_{6} - 1) q^{8} + q^{9} + ( - \beta_{7} - \beta_{5}) q^{10} + \beta_{8} q^{11} + \beta_{4} q^{13} + ( - \beta_{6} + 1) q^{16}+ \cdots + \beta_{8} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{4} - 9 q^{8} + 9 q^{9} + 9 q^{16} + 9 q^{25} - 9 q^{32} + 9 q^{36} + 9 q^{49} - 9 q^{55} - 9 q^{62} - 9 q^{72} + 9 q^{81} - 9 q^{85} - 9 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{54} + \zeta_{54}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 5\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} - 6\nu^{4} + 9\nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( \nu^{7} - 7\nu^{5} + 14\nu^{3} - 7\nu \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( \nu^{8} - 8\nu^{6} + 20\nu^{4} - 16\nu^{2} + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 4\beta_{2} + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 5\beta_{3} + 10\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{6} + 6\beta_{4} + 15\beta_{2} + 20 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{7} + 7\beta_{5} + 21\beta_{3} + 35\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( \beta_{8} + 8\beta_{6} + 28\beta_{4} + 56\beta_{2} + 70 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1759\mathbb{Z}\right)^\times\).

\(n\) \(6\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1758.1
1.67098
0.116290
−1.78727
1.37248
0.573606
−1.94609
1.98648
−0.792160
−1.19432
−1.87939 0 2.53209 −1.67098 0 0 −2.87939 1.00000 3.14041
1758.2 −1.87939 0 2.53209 −0.116290 0 0 −2.87939 1.00000 0.218553
1758.3 −1.87939 0 2.53209 1.78727 0 0 −2.87939 1.00000 −3.35896
1758.4 0.347296 0 −0.879385 −1.37248 0 0 −0.652704 1.00000 −0.476658
1758.5 0.347296 0 −0.879385 −0.573606 0 0 −0.652704 1.00000 −0.199211
1758.6 0.347296 0 −0.879385 1.94609 0 0 −0.652704 1.00000 0.675870
1758.7 1.53209 0 1.34730 −1.98648 0 0 0.532089 1.00000 −3.04346
1758.8 1.53209 0 1.34730 0.792160 0 0 0.532089 1.00000 1.21366
1758.9 1.53209 0 1.34730 1.19432 0 0 0.532089 1.00000 1.82980
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1758.9
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
1759.b odd 2 1 CM by \(\Q(\sqrt{-1759}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1759.1.b.c 9
1759.b odd 2 1 CM 1759.1.b.c 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1759.1.b.c 9 1.a even 1 1 trivial
1759.1.b.c 9 1759.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 3T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1759, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{3} - 3 T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{9} \) Copy content Toggle raw display
$5$ \( T^{9} - 9 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{9} \) Copy content Toggle raw display
$11$ \( T^{9} - 9 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{9} - 9 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{9} - 9 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{9} \) Copy content Toggle raw display
$23$ \( T^{9} - 9 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{9} \) Copy content Toggle raw display
$31$ \( (T^{3} - 3 T + 1)^{3} \) Copy content Toggle raw display
$37$ \( T^{9} \) Copy content Toggle raw display
$41$ \( T^{9} - 9 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{9} - 9 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{9} - 9 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{9} - 9 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{9} \) Copy content Toggle raw display
$61$ \( T^{9} \) Copy content Toggle raw display
$67$ \( T^{9} \) Copy content Toggle raw display
$71$ \( T^{9} - 9 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{9} \) Copy content Toggle raw display
$79$ \( T^{9} \) Copy content Toggle raw display
$83$ \( T^{9} \) Copy content Toggle raw display
$89$ \( (T + 1)^{9} \) Copy content Toggle raw display
$97$ \( T^{9} \) Copy content Toggle raw display
show more
show less