Properties

Label 175.10.a.k
Level $175$
Weight $10$
Character orbit 175.a
Self dual yes
Analytic conductor $90.131$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,10,Mod(1,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(90.1312713287\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2 x^{9} - 3718 x^{8} + 13493 x^{7} + 4507090 x^{6} - 16532868 x^{5} - 1970350208 x^{4} + \cdots + 455292166912 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{7}\cdot 3^{4}\cdot 5^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 2) q^{2} + ( - \beta_{3} - 8) q^{3} + (\beta_{2} + \beta_1 + 237) q^{4} + ( - \beta_{5} - 10 \beta_{3} + \cdots - 310) q^{6} + 2401 q^{7} + (\beta_{4} - 5 \beta_{3} - 3 \beta_{2} + \cdots + 350) q^{8}+ \cdots + ( - 6104 \beta_{9} - 12157 \beta_{8} + \cdots + 238672144) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 22 q^{2} - 77 q^{3} + 2368 q^{4} - 3101 q^{6} + 24010 q^{7} + 4053 q^{8} + 78909 q^{9} + 82084 q^{11} - 104559 q^{12} + 148820 q^{13} + 52822 q^{14} + 723600 q^{16} - 523957 q^{17} + 2497331 q^{18}+ \cdots + 2388483031 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 2 x^{9} - 3718 x^{8} + 13493 x^{7} + 4507090 x^{6} - 16532868 x^{5} - 1970350208 x^{4} + \cdots + 455292166912 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 3\nu - 745 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 6753464097 \nu^{9} + 210598487008 \nu^{8} - 18245939894918 \nu^{7} - 519178904763767 \nu^{6} + \cdots - 31\!\cdots\!04 ) / 24\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 6753464097 \nu^{9} + 210598487008 \nu^{8} - 18245939894918 \nu^{7} - 519178904763767 \nu^{6} + \cdots - 25\!\cdots\!04 ) / 48\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 85038851213 \nu^{9} + 2589325860832 \nu^{8} - 232167938332622 \nu^{7} + \cdots - 14\!\cdots\!16 ) / 12\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 17105665541 \nu^{9} + 481787218524 \nu^{8} - 47996255081154 \nu^{7} + \cdots - 44\!\cdots\!12 ) / 15\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 97882427571 \nu^{9} - 3143346691444 \nu^{8} + 262795730146874 \nu^{7} + \cdots - 83\!\cdots\!28 ) / 30\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 1830376805529 \nu^{9} + 55860665639456 \nu^{8} + \cdots - 22\!\cdots\!28 ) / 24\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 457193416271 \nu^{9} - 13995111520644 \nu^{8} + \cdots + 79\!\cdots\!72 ) / 30\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 3\beta _1 + 745 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - 5\beta_{3} - 9\beta_{2} + 1292\beta _1 - 2080 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3 \beta_{8} - 2 \beta_{7} + 4 \beta_{6} - 44 \beta_{5} - 19 \beta_{4} - 4 \beta_{3} + 1664 \beta_{2} + \cdots + 959892 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 35 \beta_{9} + 106 \beta_{8} - 9 \beta_{7} - 173 \beta_{6} + 750 \beta_{5} + 2244 \beta_{4} + \cdots - 7915385 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 1960 \beta_{9} + 4962 \beta_{8} - 3812 \beta_{7} + 11432 \beta_{6} - 134516 \beta_{5} + \cdots + 1406935496 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 138110 \beta_{9} + 339593 \beta_{8} - 18568 \beta_{7} - 562838 \beta_{6} + 2835240 \beta_{5} + \cdots - 20957760014 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 6853371 \beta_{9} + 4980630 \beta_{8} - 6547791 \beta_{7} + 27095141 \beta_{6} - 306232246 \beta_{5} + \cdots + 2221205621513 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 366067184 \beta_{9} + 776031952 \beta_{8} - 17484512 \beta_{7} - 1347238696 \beta_{6} + \cdots - 47514903926952 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−43.8803
−34.8310
−20.3371
−16.2268
0.569435
3.73748
10.8030
32.5156
32.5212
37.1284
−41.8803 −90.6666 1241.96 0 3797.14 2401.00 −30570.9 −11462.6 0
1.2 −32.8310 153.262 565.874 0 −5031.73 2401.00 −1768.74 3806.15 0
1.3 −18.3371 40.1240 −175.752 0 −735.755 2401.00 12611.4 −18073.1 0
1.4 −14.2268 −156.992 −309.597 0 2233.51 2401.00 11688.7 4963.60 0
1.5 2.56944 −179.608 −505.398 0 −461.492 2401.00 −2614.14 12576.1 0
1.6 5.73748 271.282 −479.081 0 1556.47 2401.00 −5686.31 53910.9 0
1.7 12.8030 59.9558 −348.084 0 767.614 2401.00 −11011.6 −16088.3 0
1.8 34.5156 −270.505 679.328 0 −9336.64 2401.00 5775.42 53489.8 0
1.9 34.5212 −75.4776 679.716 0 −2605.58 2401.00 5789.77 −13986.1 0
1.10 39.1284 171.626 1019.03 0 6715.46 2401.00 19839.5 9772.48 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.10.a.k yes 10
5.b even 2 1 175.10.a.j 10
5.c odd 4 2 175.10.b.i 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.10.a.j 10 5.b even 2 1
175.10.a.k yes 10 1.a even 1 1 trivial
175.10.b.i 20 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} - 22 T_{2}^{9} - 3502 T_{2}^{8} + 71733 T_{2}^{7} + 3906476 T_{2}^{6} - 67830968 T_{2}^{5} + \cdots + 3156433418240 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(175))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + \cdots + 3156433418240 \) Copy content Toggle raw display
$3$ \( T^{10} + \cdots - 89\!\cdots\!56 \) Copy content Toggle raw display
$5$ \( T^{10} \) Copy content Toggle raw display
$7$ \( (T - 2401)^{10} \) Copy content Toggle raw display
$11$ \( T^{10} + \cdots + 39\!\cdots\!39 \) Copy content Toggle raw display
$13$ \( T^{10} + \cdots - 19\!\cdots\!60 \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{10} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 72\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{10} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{10} + \cdots - 66\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots - 18\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{10} + \cdots + 41\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{10} + \cdots + 14\!\cdots\!20 \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots - 12\!\cdots\!12 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots + 84\!\cdots\!68 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{10} + \cdots + 55\!\cdots\!96 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots - 24\!\cdots\!57 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots - 31\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots - 59\!\cdots\!68 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots + 85\!\cdots\!68 \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots - 18\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots - 45\!\cdots\!28 \) Copy content Toggle raw display
show more
show less