Properties

Label 17400.2.a.cd
Level $17400$
Weight $2$
Character orbit 17400.a
Self dual yes
Analytic conductor $138.940$
Dimension $3$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [17400,2,Mod(1,17400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(17400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("17400.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 17400 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 17400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,0,0,-1,0,3,0,1,0,-1,0,0,0,3,0,8,0,-1,0,6,0,0,0,3,0,3, 0,10,0,1,0,0,0,4,0,-1,0,-14,0,4,0,0,0,1,0,-8,0,3,0,6,0,0,0,8,0,10,0,12, 0,-1,0,0,0,-19,0,6,0,4,0,-8,0,0,0,-13,0,16,0,3,0,-4,0,0,0,3,0,7,0,23,0, 10,0,0,0,30,0,1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(138.939699517\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 3 q + 3 q^{3} - q^{7} + 3 q^{9} + q^{11} - q^{13} + 3 q^{17} + 8 q^{19} - q^{21} + 6 q^{23} + 3 q^{27} + 3 q^{29} + 10 q^{31} + q^{33} + 4 q^{37} - q^{39} - 14 q^{41} + 4 q^{43} + q^{47} - 8 q^{49}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.