Defining parameters
Level: | \( N \) | \(=\) | \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1740.l (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(720\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1740, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 372 | 20 | 352 |
Cusp forms | 348 | 20 | 328 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1740, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1740.2.l.a | $2$ | $13.894$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(2\) | \(q+i q^{3}+q^{5}+q^{7}-q^{9}-3 i q^{11}+\cdots\) |
1740.2.l.b | $2$ | $13.894$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(8\) | \(q+i q^{3}+q^{5}+4 q^{7}-q^{9}-3 i q^{11}+\cdots\) |
1740.2.l.c | $6$ | $13.894$ | 6.0.399424.1 | None | \(0\) | \(0\) | \(6\) | \(-6\) | \(q+\beta _{2}q^{3}+q^{5}+(-1-\beta _{1})q^{7}-q^{9}+\cdots\) |
1740.2.l.d | $10$ | $13.894$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(-10\) | \(-4\) | \(q+\beta _{4}q^{3}-q^{5}+\beta _{1}q^{7}-q^{9}+(-\beta _{4}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1740, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1740, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(58, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(116, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(174, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(348, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(870, [\chi])\)\(^{\oplus 2}\)