Properties

Label 1740.2.l
Level $1740$
Weight $2$
Character orbit 1740.l
Rep. character $\chi_{1740}(1681,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $4$
Sturm bound $720$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1740.l (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(720\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1740, [\chi])\).

Total New Old
Modular forms 372 20 352
Cusp forms 348 20 328
Eisenstein series 24 0 24

Trace form

\( 20 q - 20 q^{9} + 8 q^{13} + 8 q^{23} + 20 q^{25} - 16 q^{29} + 8 q^{35} + 28 q^{49} + 24 q^{51} + 32 q^{53} + 8 q^{57} - 8 q^{59} + 24 q^{67} + 48 q^{71} + 20 q^{81} - 16 q^{83} + 8 q^{87} - 88 q^{91}+ \cdots + 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1740, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1740.2.l.a 1740.l 29.b $2$ $13.894$ \(\Q(\sqrt{-1}) \) None 1740.2.l.a \(0\) \(0\) \(2\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+q^{5}+q^{7}-q^{9}-3 i q^{11}+\cdots\)
1740.2.l.b 1740.l 29.b $2$ $13.894$ \(\Q(\sqrt{-1}) \) None 1740.2.l.b \(0\) \(0\) \(2\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+q^{5}+4 q^{7}-q^{9}-3 i q^{11}+\cdots\)
1740.2.l.c 1740.l 29.b $6$ $13.894$ 6.0.399424.1 None 1740.2.l.c \(0\) \(0\) \(6\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+q^{5}+(-1-\beta _{1})q^{7}-q^{9}+\cdots\)
1740.2.l.d 1740.l 29.b $10$ $13.894$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1740.2.l.d \(0\) \(0\) \(-10\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{3}-q^{5}+\beta _{1}q^{7}-q^{9}+(-\beta _{4}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1740, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1740, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(58, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(116, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(174, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(348, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(870, [\chi])\)\(^{\oplus 2}\)