Properties

Label 1740.2.g
Level $1740$
Weight $2$
Character orbit 1740.g
Rep. character $\chi_{1740}(349,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $4$
Sturm bound $720$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1740.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(720\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1740, [\chi])\).

Total New Old
Modular forms 372 28 344
Cusp forms 348 28 320
Eisenstein series 24 0 24

Trace form

\( 28 q - 4 q^{5} - 28 q^{9} + 16 q^{11} + 8 q^{19} - 16 q^{21} + 4 q^{25} - 8 q^{31} - 12 q^{35} + 8 q^{39} + 8 q^{41} + 4 q^{45} - 28 q^{49} - 8 q^{51} + 24 q^{55} - 24 q^{59} - 40 q^{61} + 20 q^{65} + 24 q^{69}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1740, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1740.2.g.a 1740.g 5.b $2$ $13.894$ \(\Q(\sqrt{-1}) \) None 1740.2.g.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(i-2)q^{5}+2 i q^{7}-q^{9}+\cdots\)
1740.2.g.b 1740.g 5.b $2$ $13.894$ \(\Q(\sqrt{-1}) \) None 1740.2.g.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(-i-2)q^{5}+2 i q^{7}-q^{9}+\cdots\)
1740.2.g.c 1740.g 5.b $12$ $13.894$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1740.2.g.c \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{2}q^{5}-\beta _{9}q^{7}-q^{9}+(1+\cdots)q^{11}+\cdots\)
1740.2.g.d 1740.g 5.b $12$ $13.894$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1740.2.g.d \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}+\beta _{9}q^{5}+(-\beta _{2}-\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1740, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1740, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(870, [\chi])\)\(^{\oplus 2}\)