Properties

Label 1740.2.by
Level $1740$
Weight $2$
Character orbit 1740.by
Rep. character $\chi_{1740}(49,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $192$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1740.by (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 145 \)
Character field: \(\Q(\zeta_{14})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1740, [\chi])\).

Total New Old
Modular forms 2232 192 2040
Cusp forms 2088 192 1896
Eisenstein series 144 0 144

Trace form

\( 192 q + 32 q^{9} - 6 q^{15} - 8 q^{19} - 6 q^{25} - 40 q^{29} + 20 q^{31} + 8 q^{35} - 8 q^{39} + 32 q^{41} + 64 q^{49} - 8 q^{51} + 6 q^{55} + 40 q^{59} - 24 q^{61} + 36 q^{65} - 8 q^{69} - 8 q^{71} - 32 q^{79}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1740, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1740, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1740, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(870, [\chi])\)\(^{\oplus 2}\)