Defining parameters
Level: | \( N \) | \(=\) | \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1740.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(720\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1740))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 372 | 20 | 352 |
Cusp forms | 349 | 20 | 329 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(29\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(20\) | \(0\) | \(20\) | \(19\) | \(0\) | \(19\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(26\) | \(0\) | \(26\) | \(24\) | \(0\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(24\) | \(0\) | \(24\) | \(22\) | \(0\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(24\) | \(0\) | \(24\) | \(22\) | \(0\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(23\) | \(0\) | \(23\) | \(21\) | \(0\) | \(21\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(23\) | \(0\) | \(23\) | \(21\) | \(0\) | \(21\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(21\) | \(0\) | \(21\) | \(19\) | \(0\) | \(19\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(27\) | \(0\) | \(27\) | \(25\) | \(0\) | \(25\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(25\) | \(2\) | \(23\) | \(24\) | \(2\) | \(22\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(22\) | \(3\) | \(19\) | \(21\) | \(3\) | \(18\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(24\) | \(3\) | \(21\) | \(23\) | \(3\) | \(20\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(21\) | \(2\) | \(19\) | \(20\) | \(2\) | \(18\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(25\) | \(1\) | \(24\) | \(24\) | \(1\) | \(23\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(22\) | \(4\) | \(18\) | \(21\) | \(4\) | \(17\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(24\) | \(4\) | \(20\) | \(23\) | \(4\) | \(19\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(21\) | \(1\) | \(20\) | \(20\) | \(1\) | \(19\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(180\) | \(8\) | \(172\) | \(169\) | \(8\) | \(161\) | \(11\) | \(0\) | \(11\) | ||||||
Minus space | \(-\) | \(192\) | \(12\) | \(180\) | \(180\) | \(12\) | \(168\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1740))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1740))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1740)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(174))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(290))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(348))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(435))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(580))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(870))\)\(^{\oplus 2}\)