Properties

Label 1740.1.cf.b.1319.1
Level $1740$
Weight $1$
Character 1740.1319
Analytic conductor $0.868$
Analytic rank $0$
Dimension $24$
Projective image $D_{28}$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1740,1,Mod(119,1740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1740.119"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1740, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([14, 14, 14, 5])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1740.cf (of order \(28\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.868373121981\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(2\) over \(\Q(\zeta_{28})\)
Coefficient field: \(\Q(\zeta_{56})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{28}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{28} - \cdots)\)

Embedding invariants

Embedding label 1319.1
Root \(0.846724 - 0.532032i\) of defining polynomial
Character \(\chi\) \(=\) 1740.1319
Dual form 1740.1.cf.b.839.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.993712 + 0.111964i) q^{2} +(0.943883 + 0.330279i) q^{3} +(0.974928 - 0.222521i) q^{4} +(-0.623490 + 0.781831i) q^{5} +(-0.974928 - 0.222521i) q^{6} +(-0.376828 + 1.65099i) q^{7} +(-0.943883 + 0.330279i) q^{8} +(0.781831 + 0.623490i) q^{9} +(0.532032 - 0.846724i) q^{10} +(0.993712 + 0.111964i) q^{12} +(0.189606 - 1.68280i) q^{14} +(-0.846724 + 0.532032i) q^{15} +(0.900969 - 0.433884i) q^{16} +(-0.846724 - 0.532032i) q^{18} +(-0.433884 + 0.900969i) q^{20} +(-0.900969 + 1.43388i) q^{21} +(0.175075 - 0.139617i) q^{23} -1.00000 q^{24} +(-0.222521 - 0.974928i) q^{25} +(0.532032 + 0.846724i) q^{27} +1.69345i q^{28} +(0.222521 - 0.974928i) q^{29} +(0.781831 - 0.623490i) q^{30} +(-0.846724 + 0.532032i) q^{32} +(-1.05585 - 1.32399i) q^{35} +(0.900969 + 0.433884i) q^{36} +(0.330279 - 0.943883i) q^{40} +(-0.467085 + 0.467085i) q^{41} +(0.734760 - 1.52574i) q^{42} +(-1.79061 - 0.201753i) q^{43} +(-0.974928 + 0.222521i) q^{45} +(-0.158342 + 0.158342i) q^{46} +(-0.643997 + 1.84044i) q^{47} +(0.993712 - 0.111964i) q^{48} +(-1.68280 - 0.810394i) q^{49} +(0.330279 + 0.943883i) q^{50} +(-0.623490 - 0.781831i) q^{54} +(-0.189606 - 1.68280i) q^{56} +(-0.111964 + 0.993712i) q^{58} +(-0.707107 + 0.707107i) q^{60} +(0.752407 + 1.19745i) q^{61} +(-1.32399 + 1.05585i) q^{63} +(0.781831 - 0.623490i) q^{64} +(0.613604 - 1.27416i) q^{67} +(0.211363 - 0.0739590i) q^{69} +(1.19745 + 1.19745i) q^{70} +(-0.943883 - 0.330279i) q^{72} +(0.111964 - 0.993712i) q^{75} +(-0.222521 + 0.974928i) q^{80} +(0.222521 + 0.974928i) q^{81} +(0.411851 - 0.516445i) q^{82} +(1.84044 - 0.420068i) q^{83} +(-0.559311 + 1.59842i) q^{84} +1.80194 q^{86} +(0.532032 - 0.846724i) q^{87} +(1.05737 - 0.119137i) q^{89} +(0.943883 - 0.330279i) q^{90} +(0.139617 - 0.175075i) q^{92} +(0.433884 - 1.90097i) q^{94} +(-0.974928 + 0.222521i) q^{96} +(1.76295 + 0.616884i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{5} - 4 q^{14} + 4 q^{16} - 4 q^{21} - 24 q^{24} - 4 q^{25} + 4 q^{29} + 4 q^{36} - 4 q^{41} - 4 q^{46} - 4 q^{49} + 4 q^{54} + 4 q^{56} - 4 q^{61} - 4 q^{69} + 4 q^{70} - 4 q^{80} + 4 q^{81}+ \cdots - 4 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1740\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(697\) \(871\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{13}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.993712 + 0.111964i −0.993712 + 0.111964i
\(3\) 0.943883 + 0.330279i 0.943883 + 0.330279i
\(4\) 0.974928 0.222521i 0.974928 0.222521i
\(5\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(6\) −0.974928 0.222521i −0.974928 0.222521i
\(7\) −0.376828 + 1.65099i −0.376828 + 1.65099i 0.330279 + 0.943883i \(0.392857\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −0.943883 + 0.330279i −0.943883 + 0.330279i
\(9\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(10\) 0.532032 0.846724i 0.532032 0.846724i
\(11\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(12\) 0.993712 + 0.111964i 0.993712 + 0.111964i
\(13\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(14\) 0.189606 1.68280i 0.189606 1.68280i
\(15\) −0.846724 + 0.532032i −0.846724 + 0.532032i
\(16\) 0.900969 0.433884i 0.900969 0.433884i
\(17\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(18\) −0.846724 0.532032i −0.846724 0.532032i
\(19\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(20\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(21\) −0.900969 + 1.43388i −0.900969 + 1.43388i
\(22\) 0 0
\(23\) 0.175075 0.139617i 0.175075 0.139617i −0.532032 0.846724i \(-0.678571\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) −1.00000 −1.00000
\(25\) −0.222521 0.974928i −0.222521 0.974928i
\(26\) 0 0
\(27\) 0.532032 + 0.846724i 0.532032 + 0.846724i
\(28\) 1.69345i 1.69345i
\(29\) 0.222521 0.974928i 0.222521 0.974928i
\(30\) 0.781831 0.623490i 0.781831 0.623490i
\(31\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(32\) −0.846724 + 0.532032i −0.846724 + 0.532032i
\(33\) 0 0
\(34\) 0 0
\(35\) −1.05585 1.32399i −1.05585 1.32399i
\(36\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(37\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.330279 0.943883i 0.330279 0.943883i
\(41\) −0.467085 + 0.467085i −0.467085 + 0.467085i −0.900969 0.433884i \(-0.857143\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(42\) 0.734760 1.52574i 0.734760 1.52574i
\(43\) −1.79061 0.201753i −1.79061 0.201753i −0.846724 0.532032i \(-0.821429\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(44\) 0 0
\(45\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(46\) −0.158342 + 0.158342i −0.158342 + 0.158342i
\(47\) −0.643997 + 1.84044i −0.643997 + 1.84044i −0.111964 + 0.993712i \(0.535714\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(48\) 0.993712 0.111964i 0.993712 0.111964i
\(49\) −1.68280 0.810394i −1.68280 0.810394i
\(50\) 0.330279 + 0.943883i 0.330279 + 0.943883i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(54\) −0.623490 0.781831i −0.623490 0.781831i
\(55\) 0 0
\(56\) −0.189606 1.68280i −0.189606 1.68280i
\(57\) 0 0
\(58\) −0.111964 + 0.993712i −0.111964 + 0.993712i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(61\) 0.752407 + 1.19745i 0.752407 + 1.19745i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(62\) 0 0
\(63\) −1.32399 + 1.05585i −1.32399 + 1.05585i
\(64\) 0.781831 0.623490i 0.781831 0.623490i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.613604 1.27416i 0.613604 1.27416i −0.330279 0.943883i \(-0.607143\pi\)
0.943883 0.330279i \(-0.107143\pi\)
\(68\) 0 0
\(69\) 0.211363 0.0739590i 0.211363 0.0739590i
\(70\) 1.19745 + 1.19745i 1.19745 + 1.19745i
\(71\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(72\) −0.943883 0.330279i −0.943883 0.330279i
\(73\) 0 0 0.111964 0.993712i \(-0.464286\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(74\) 0 0
\(75\) 0.111964 0.993712i 0.111964 0.993712i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.943883 0.330279i \(-0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(80\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(81\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(82\) 0.411851 0.516445i 0.411851 0.516445i
\(83\) 1.84044 0.420068i 1.84044 0.420068i 0.846724 0.532032i \(-0.178571\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(84\) −0.559311 + 1.59842i −0.559311 + 1.59842i
\(85\) 0 0
\(86\) 1.80194 1.80194
\(87\) 0.532032 0.846724i 0.532032 0.846724i
\(88\) 0 0
\(89\) 1.05737 0.119137i 1.05737 0.119137i 0.433884 0.900969i \(-0.357143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(90\) 0.943883 0.330279i 0.943883 0.330279i
\(91\) 0 0
\(92\) 0.139617 0.175075i 0.139617 0.175075i
\(93\) 0 0
\(94\) 0.433884 1.90097i 0.433884 1.90097i
\(95\) 0 0
\(96\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(97\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(98\) 1.76295 + 0.616884i 1.76295 + 0.616884i
\(99\) 0 0
\(100\) −0.433884 0.900969i −0.433884 0.900969i
\(101\) −0.222521 + 1.97493i −0.222521 + 1.97493i 1.00000i \(0.5\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(102\) 0 0
\(103\) 1.70082 0.819071i 1.70082 0.819071i 0.707107 0.707107i \(-0.250000\pi\)
0.993712 0.111964i \(-0.0357143\pi\)
\(104\) 0 0
\(105\) −0.559311 1.59842i −0.559311 1.59842i
\(106\) 0 0
\(107\) 0.862311 1.79061i 0.862311 1.79061i 0.330279 0.943883i \(-0.392857\pi\)
0.532032 0.846724i \(-0.321429\pi\)
\(108\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(109\) −1.75676 0.400969i −1.75676 0.400969i −0.781831 0.623490i \(-0.785714\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.376828 + 1.65099i 0.376828 + 1.65099i
\(113\) 0 0 −0.532032 0.846724i \(-0.678571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(114\) 0 0
\(115\) 0.223929i 0.223929i
\(116\) 1.00000i 1.00000i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0.623490 0.781831i 0.623490 0.781831i
\(121\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(122\) −0.881748 1.10568i −0.881748 1.10568i
\(123\) −0.595142 + 0.286605i −0.595142 + 0.286605i
\(124\) 0 0
\(125\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(126\) 1.19745 1.19745i 1.19745 1.19745i
\(127\) −0.146988 + 0.420068i −0.146988 + 0.420068i −0.993712 0.111964i \(-0.964286\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(128\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(129\) −1.62349 0.781831i −1.62349 0.781831i
\(130\) 0 0
\(131\) 0 0 −0.993712 0.111964i \(-0.964286\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.467085 + 1.33485i −0.467085 + 1.33485i
\(135\) −0.993712 0.111964i −0.993712 0.111964i
\(136\) 0 0
\(137\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(138\) −0.201753 + 0.0971591i −0.201753 + 0.0971591i
\(139\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(140\) −1.32399 1.05585i −1.32399 1.05585i
\(141\) −1.21572 + 1.52446i −1.21572 + 1.52446i
\(142\) 0 0
\(143\) 0 0
\(144\) 0.974928 + 0.222521i 0.974928 + 0.222521i
\(145\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(146\) 0 0
\(147\) −1.32071 1.32071i −1.32071 1.32071i
\(148\) 0 0
\(149\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i 1.00000 \(0\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(150\) 1.00000i 1.00000i
\(151\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.111964 0.993712i 0.111964 0.993712i
\(161\) 0.164534 + 0.341658i 0.164534 + 0.341658i
\(162\) −0.330279 0.943883i −0.330279 0.943883i
\(163\) 0.819071 + 0.286605i 0.819071 + 0.286605i 0.707107 0.707107i \(-0.250000\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(164\) −0.351438 + 0.559311i −0.351438 + 0.559311i
\(165\) 0 0
\(166\) −1.78183 + 0.623490i −1.78183 + 0.623490i
\(167\) 0.146988 0.643997i 0.146988 0.643997i −0.846724 0.532032i \(-0.821429\pi\)
0.993712 0.111964i \(-0.0357143\pi\)
\(168\) 0.376828 1.65099i 0.376828 1.65099i
\(169\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.79061 + 0.201753i −1.79061 + 0.201753i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(175\) 1.69345 1.69345
\(176\) 0 0
\(177\) 0 0
\(178\) −1.03739 + 0.236777i −1.03739 + 0.236777i
\(179\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(180\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(181\) 0.347948 1.52446i 0.347948 1.52446i −0.433884 0.900969i \(-0.642857\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(182\) 0 0
\(183\) 0.314692 + 1.37876i 0.314692 + 1.37876i
\(184\) −0.119137 + 0.189606i −0.119137 + 0.189606i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −0.218315 + 1.93760i −0.218315 + 1.93760i
\(189\) −1.59842 + 0.559311i −1.59842 + 0.559311i
\(190\) 0 0
\(191\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(192\) 0.943883 0.330279i 0.943883 0.330279i
\(193\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.82094 0.415617i −1.82094 0.415617i
\(197\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(198\) 0 0
\(199\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(200\) 0.532032 + 0.846724i 0.532032 + 0.846724i
\(201\) 1.00000 1.00000i 1.00000 1.00000i
\(202\) 1.98742i 1.98742i
\(203\) 1.52574 + 0.734760i 1.52574 + 0.734760i
\(204\) 0 0
\(205\) −0.0739590 0.656405i −0.0739590 0.656405i
\(206\) −1.59842 + 1.00435i −1.59842 + 1.00435i
\(207\) 0.223929 0.223929
\(208\) 0 0
\(209\) 0 0
\(210\) 0.734760 + 1.52574i 0.734760 + 1.52574i
\(211\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.656405 + 1.87590i −0.656405 + 1.87590i
\(215\) 1.27416 1.27416i 1.27416 1.27416i
\(216\) −0.781831 0.623490i −0.781831 0.623490i
\(217\) 0 0
\(218\) 1.79061 + 0.201753i 1.79061 + 0.201753i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.958689 0.461680i −0.958689 0.461680i −0.111964 0.993712i \(-0.535714\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(224\) −0.559311 1.59842i −0.559311 1.59842i
\(225\) 0.433884 0.900969i 0.433884 0.900969i
\(226\) 0 0
\(227\) 0.516445 + 0.411851i 0.516445 + 0.411851i 0.846724 0.532032i \(-0.178571\pi\)
−0.330279 + 0.943883i \(0.607143\pi\)
\(228\) 0 0
\(229\) 1.59842 1.00435i 1.59842 1.00435i 0.623490 0.781831i \(-0.285714\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(230\) −0.0250721 0.222521i −0.0250721 0.222521i
\(231\) 0 0
\(232\) 0.111964 + 0.993712i 0.111964 + 0.993712i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −1.03739 1.65099i −1.03739 1.65099i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(240\) −0.532032 + 0.846724i −0.532032 + 0.846724i
\(241\) −0.678448 + 1.40881i −0.678448 + 1.40881i 0.222521 + 0.974928i \(0.428571\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(242\) −0.846724 0.532032i −0.846724 0.532032i
\(243\) −0.111964 + 0.993712i −0.111964 + 0.993712i
\(244\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(245\) 1.68280 0.810394i 1.68280 0.810394i
\(246\) 0.559311 0.351438i 0.559311 0.351438i
\(247\) 0 0
\(248\) 0 0
\(249\) 1.87590 + 0.211363i 1.87590 + 0.211363i
\(250\) −0.943883 0.330279i −0.943883 0.330279i
\(251\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(252\) −1.05585 + 1.32399i −1.05585 + 1.32399i
\(253\) 0 0
\(254\) 0.0990311 0.433884i 0.0990311 0.433884i
\(255\) 0 0
\(256\) 0.623490 0.781831i 0.623490 0.781831i
\(257\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(258\) 1.70082 + 0.595142i 1.70082 + 0.595142i
\(259\) 0 0
\(260\) 0 0
\(261\) 0.781831 0.623490i 0.781831 0.623490i
\(262\) 0 0
\(263\) −0.442244 + 0.0498289i −0.442244 + 0.0498289i −0.330279 0.943883i \(-0.607143\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.03739 + 0.236777i 1.03739 + 0.236777i
\(268\) 0.314692 1.37876i 0.314692 1.37876i
\(269\) −0.211363 + 0.0739590i −0.211363 + 0.0739590i −0.433884 0.900969i \(-0.642857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(270\) 1.00000 1.00000
\(271\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0.189606 0.119137i 0.189606 0.119137i
\(277\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 1.43388 + 0.900969i 1.43388 + 0.900969i
\(281\) 0.541044 1.12349i 0.541044 1.12349i −0.433884 0.900969i \(-0.642857\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(282\) 1.03739 1.65099i 1.03739 1.65099i
\(283\) −1.93760 0.442244i −1.93760 0.442244i −0.993712 0.111964i \(-0.964286\pi\)
−0.943883 0.330279i \(-0.892857\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.595142 0.947164i −0.595142 0.947164i
\(288\) −0.993712 0.111964i −0.993712 0.111964i
\(289\) 1.00000i 1.00000i
\(290\) −0.707107 0.707107i −0.707107 0.707107i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.846724 0.532032i \(-0.178571\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(294\) 1.46028 + 1.16453i 1.46028 + 1.16453i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −0.146988 0.420068i −0.146988 0.420068i
\(299\) 0 0
\(300\) −0.111964 0.993712i −0.111964 0.993712i
\(301\) 1.00784 2.88025i 1.00784 2.88025i
\(302\) 0 0
\(303\) −0.862311 + 1.79061i −0.862311 + 1.79061i
\(304\) 0 0
\(305\) −1.40532 0.158342i −1.40532 0.158342i
\(306\) 0 0
\(307\) 0.881748 0.881748i 0.881748 0.881748i −0.111964 0.993712i \(-0.535714\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(308\) 0 0
\(309\) 1.87590 0.211363i 1.87590 0.211363i
\(310\) 0 0
\(311\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(312\) 0 0
\(313\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(314\) 0 0
\(315\) 1.69345i 1.69345i
\(316\) 0 0
\(317\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000i 1.00000i
\(321\) 1.40532 1.40532i 1.40532 1.40532i
\(322\) −0.201753 0.321088i −0.201753 0.321088i
\(323\) 0 0
\(324\) 0.433884 + 0.900969i 0.433884 + 0.900969i
\(325\) 0 0
\(326\) −0.846011 0.193096i −0.846011 0.193096i
\(327\) −1.52574 0.958689i −1.52574 0.958689i
\(328\) 0.286605 0.595142i 0.286605 0.595142i
\(329\) −2.79587 1.75676i −2.79587 1.75676i
\(330\) 0 0
\(331\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(332\) 1.70082 0.819071i 1.70082 0.819071i
\(333\) 0 0
\(334\) −0.0739590 + 0.656405i −0.0739590 + 0.656405i
\(335\) 0.613604 + 1.27416i 0.613604 + 1.27416i
\(336\) −0.189606 + 1.68280i −0.189606 + 1.68280i
\(337\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(338\) 0.532032 0.846724i 0.532032 0.846724i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.916230 1.14892i 0.916230 1.14892i
\(344\) 1.75676 0.400969i 1.75676 0.400969i
\(345\) −0.0739590 + 0.211363i −0.0739590 + 0.211363i
\(346\) 0 0
\(347\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0.330279 0.943883i 0.330279 0.943883i
\(349\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(350\) −1.68280 + 0.189606i −1.68280 + 0.189606i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.00435 0.351438i 1.00435 0.351438i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(360\) 0.846724 0.532032i 0.846724 0.532032i
\(361\) 0.433884 + 0.900969i 0.433884 + 0.900969i
\(362\) −0.175075 + 1.55383i −0.175075 + 1.55383i
\(363\) 0.532032 + 0.846724i 0.532032 + 0.846724i
\(364\) 0 0
\(365\) 0 0
\(366\) −0.467085 1.33485i −0.467085 1.33485i
\(367\) 1.65099 + 1.03739i 1.65099 + 1.03739i 0.943883 + 0.330279i \(0.107143\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) 0.0971591 0.201753i 0.0971591 0.201753i
\(369\) −0.656405 + 0.0739590i −0.656405 + 0.0739590i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(374\) 0 0
\(375\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(376\) 1.94986i 1.94986i
\(377\) 0 0
\(378\) 1.52574 0.734760i 1.52574 0.734760i
\(379\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(380\) 0 0
\(381\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(382\) 0 0
\(383\) −1.23914 1.55383i −1.23914 1.55383i −0.707107 0.707107i \(-0.750000\pi\)
−0.532032 0.846724i \(-0.678571\pi\)
\(384\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(385\) 0 0
\(386\) 0 0
\(387\) −1.27416 1.27416i −1.27416 1.27416i
\(388\) 0 0
\(389\) 1.40532 1.40532i 1.40532 1.40532i 0.623490 0.781831i \(-0.285714\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.85602 + 0.209124i 1.85602 + 0.209124i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.623490 0.781831i −0.623490 0.781831i
\(401\) 0.347948 + 0.277479i 0.347948 + 0.277479i 0.781831 0.623490i \(-0.214286\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(402\) −0.881748 + 1.10568i −0.881748 + 1.10568i
\(403\) 0 0
\(404\) 0.222521 + 1.97493i 0.222521 + 1.97493i
\(405\) −0.900969 0.433884i −0.900969 0.433884i
\(406\) −1.59842 0.559311i −1.59842 0.559311i
\(407\) 0 0
\(408\) 0 0
\(409\) −0.566116 0.900969i −0.566116 0.900969i 0.433884 0.900969i \(-0.357143\pi\)
−1.00000 \(\pi\)
\(410\) 0.146988 + 0.643997i 0.146988 + 0.643997i
\(411\) 0 0
\(412\) 1.47592 1.17700i 1.47592 1.17700i
\(413\) 0 0
\(414\) −0.222521 + 0.0250721i −0.222521 + 0.0250721i
\(415\) −0.819071 + 1.70082i −0.819071 + 1.70082i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(420\) −0.900969 1.43388i −0.900969 1.43388i
\(421\) −0.211363 + 1.87590i −0.211363 + 1.87590i 0.222521 + 0.974928i \(0.428571\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(422\) 0 0
\(423\) −1.65099 + 1.03739i −1.65099 + 1.03739i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.26050 + 0.790985i −2.26050 + 0.790985i
\(428\) 0.442244 1.93760i 0.442244 1.93760i
\(429\) 0 0
\(430\) −1.12349 + 1.40881i −1.12349 + 1.40881i
\(431\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(432\) 0.846724 + 0.532032i 0.846724 + 0.532032i
\(433\) 0 0 0.993712 0.111964i \(-0.0357143\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(434\) 0 0
\(435\) 0.330279 + 0.943883i 0.330279 + 0.943883i
\(436\) −1.80194 −1.80194
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(440\) 0 0
\(441\) −0.810394 1.68280i −0.810394 1.68280i
\(442\) 0 0
\(443\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(444\) 0 0
\(445\) −0.566116 + 0.900969i −0.566116 + 0.900969i
\(446\) 1.00435 + 0.351438i 1.00435 + 0.351438i
\(447\) −0.0498289 + 0.442244i −0.0498289 + 0.442244i
\(448\) 0.734760 + 1.52574i 0.734760 + 1.52574i
\(449\) 0.119137 1.05737i 0.119137 1.05737i −0.781831 0.623490i \(-0.785714\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(450\) −0.330279 + 0.943883i −0.330279 + 0.943883i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −0.559311 0.351438i −0.559311 0.351438i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(458\) −1.47592 + 1.17700i −1.47592 + 1.17700i
\(459\) 0 0
\(460\) 0.0498289 + 0.218315i 0.0498289 + 0.218315i
\(461\) −1.00435 1.59842i −1.00435 1.59842i −0.781831 0.623490i \(-0.785714\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(462\) 0 0
\(463\) 0.660558i 0.660558i 0.943883 + 0.330279i \(0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(464\) −0.222521 0.974928i −0.222521 0.974928i
\(465\) 0 0
\(466\) 0 0
\(467\) 0.734760 0.461680i 0.734760 0.461680i −0.111964 0.993712i \(-0.535714\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(468\) 0 0
\(469\) 1.87241 + 1.49319i 1.87241 + 1.49319i
\(470\) 1.21572 + 1.52446i 1.21572 + 1.52446i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.993712 0.111964i \(-0.964286\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(480\) 0.433884 0.900969i 0.433884 0.900969i
\(481\) 0 0
\(482\) 0.516445 1.47592i 0.516445 1.47592i
\(483\) 0.0424583 + 0.376828i 0.0424583 + 0.376828i
\(484\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(485\) 0 0
\(486\) 1.00000i 1.00000i
\(487\) 0.663433 + 0.831919i 0.663433 + 0.831919i 0.993712 0.111964i \(-0.0357143\pi\)
−0.330279 + 0.943883i \(0.607143\pi\)
\(488\) −1.10568 0.881748i −1.10568 0.881748i
\(489\) 0.678448 + 0.541044i 0.678448 + 0.541044i
\(490\) −1.58148 + 0.993712i −1.58148 + 0.993712i
\(491\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(492\) −0.516445 + 0.411851i −0.516445 + 0.411851i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −1.88777 −1.88777
\(499\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(500\) 0.974928 + 0.222521i 0.974928 + 0.222521i
\(501\) 0.351438 0.559311i 0.351438 0.559311i
\(502\) 0 0
\(503\) −0.734760 0.461680i −0.734760 0.461680i 0.111964 0.993712i \(-0.464286\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(504\) 0.900969 1.43388i 0.900969 1.43388i
\(505\) −1.40532 1.40532i −1.40532 1.40532i
\(506\) 0 0
\(507\) −0.846724 + 0.532032i −0.846724 + 0.532032i
\(508\) −0.0498289 + 0.442244i −0.0498289 + 0.442244i
\(509\) −0.781831 1.62349i −0.781831 1.62349i −0.781831 0.623490i \(-0.785714\pi\)
1.00000i \(-0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.532032 + 0.846724i −0.532032 + 0.846724i
\(513\) 0 0
\(514\) 0 0
\(515\) −0.420068 + 1.84044i −0.420068 + 1.84044i
\(516\) −1.75676 0.400969i −1.75676 0.400969i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(522\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(523\) 0.660558 0.660558 0.330279 0.943883i \(-0.392857\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(524\) 0 0
\(525\) 1.59842 + 0.559311i 1.59842 + 0.559311i
\(526\) 0.433884 0.0990311i 0.433884 0.0990311i
\(527\) 0 0
\(528\) 0 0
\(529\) −0.211363 + 0.926041i −0.211363 + 0.926041i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −1.05737 0.119137i −1.05737 0.119137i
\(535\) 0.862311 + 1.79061i 0.862311 + 1.79061i
\(536\) −0.158342 + 1.40532i −0.158342 + 1.40532i
\(537\) 0 0
\(538\) 0.201753 0.0971591i 0.201753 0.0971591i
\(539\) 0 0
\(540\) −0.993712 + 0.111964i −0.993712 + 0.111964i
\(541\) −1.43388 0.900969i −1.43388 0.900969i −0.433884 0.900969i \(-0.642857\pi\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0.831919 1.32399i 0.831919 1.32399i
\(544\) 0 0
\(545\) 1.40881 1.12349i 1.40881 1.12349i
\(546\) 0 0
\(547\) 0.420068 + 1.84044i 0.420068 + 1.84044i 0.532032 + 0.846724i \(0.321429\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(548\) 0 0
\(549\) −0.158342 + 1.40532i −0.158342 + 1.40532i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.175075 + 0.139617i −0.175075 + 0.139617i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.52574 0.734760i −1.52574 0.734760i
\(561\) 0 0
\(562\) −0.411851 + 1.17700i −0.411851 + 1.17700i
\(563\) −0.314692 + 0.314692i −0.314692 + 0.314692i −0.846724 0.532032i \(-0.821429\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(564\) −0.846011 + 1.75676i −0.846011 + 1.75676i
\(565\) 0 0
\(566\) 1.97493 + 0.222521i 1.97493 + 0.222521i
\(567\) −1.69345 −1.69345
\(568\) 0 0
\(569\) −0.0739590 + 0.211363i −0.0739590 + 0.211363i −0.974928 0.222521i \(-0.928571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(570\) 0 0
\(571\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0.697449 + 0.874573i 0.697449 + 0.874573i
\(575\) −0.175075 0.139617i −0.175075 0.139617i
\(576\) 1.00000 1.00000
\(577\) 0 0 0.846724 0.532032i \(-0.178571\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(578\) −0.111964 0.993712i −0.111964 0.993712i
\(579\) 0 0
\(580\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(581\) 3.19684i 3.19684i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.93760 + 0.442244i 1.93760 + 0.442244i 0.993712 + 0.111964i \(0.0357143\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(588\) −1.58148 0.993712i −1.58148 0.993712i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.193096 + 0.400969i 0.193096 + 0.400969i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(600\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(601\) 1.59842 0.559311i 1.59842 0.559311i 0.623490 0.781831i \(-0.285714\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(602\) −0.679020 + 2.97498i −0.679020 + 2.97498i
\(603\) 1.27416 0.613604i 1.27416 0.613604i
\(604\) 0 0
\(605\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(606\) 0.656405 1.87590i 0.656405 1.87590i
\(607\) −1.23914 + 0.139617i −1.23914 + 0.139617i −0.707107 0.707107i \(-0.750000\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(608\) 0 0
\(609\) 1.19745 + 1.19745i 1.19745 + 1.19745i
\(610\) 1.41421 1.41421
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(614\) −0.777479 + 0.974928i −0.777479 + 0.974928i
\(615\) 0.146988 0.643997i 0.146988 0.643997i
\(616\) 0 0
\(617\) 0 0 0.943883 0.330279i \(-0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(618\) −1.84044 + 0.420068i −1.84044 + 0.420068i
\(619\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(620\) 0 0
\(621\) 0.211363 + 0.0739590i 0.211363 + 0.0739590i
\(622\) 0 0
\(623\) −0.201753 + 1.79061i −0.201753 + 1.79061i
\(624\) 0 0
\(625\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0.189606 + 1.68280i 0.189606 + 1.68280i
\(631\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.236777 0.376828i −0.236777 0.376828i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −0.111964 0.993712i −0.111964 0.993712i
\(641\) −1.68280 + 1.05737i −1.68280 + 1.05737i −0.781831 + 0.623490i \(0.785714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(642\) −1.23914 + 1.55383i −1.23914 + 1.55383i
\(643\) −0.175075 0.139617i −0.175075 0.139617i 0.532032 0.846724i \(-0.321429\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0.236435 + 0.296480i 0.236435 + 0.296480i
\(645\) 1.62349 0.781831i 1.62349 0.781831i
\(646\) 0 0
\(647\) −0.958689 0.461680i −0.958689 0.461680i −0.111964 0.993712i \(-0.535714\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(648\) −0.532032 0.846724i −0.532032 0.846724i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.862311 + 0.0971591i 0.862311 + 0.0971591i
\(653\) 0 0 −0.993712 0.111964i \(-0.964286\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(654\) 1.62349 + 0.781831i 1.62349 + 0.781831i
\(655\) 0 0
\(656\) −0.218169 + 0.623490i −0.218169 + 0.623490i
\(657\) 0 0
\(658\) 2.97498 + 1.43268i 2.97498 + 1.43268i
\(659\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(660\) 0 0
\(661\) −0.974928 1.22252i −0.974928 1.22252i −0.974928 0.222521i \(-0.928571\pi\)
1.00000i \(-0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −1.59842 + 1.00435i −1.59842 + 1.00435i
\(665\) 0 0
\(666\) 0 0
\(667\) −0.0971591 0.201753i −0.0971591 0.201753i
\(668\) 0.660558i 0.660558i
\(669\) −0.752407 0.752407i −0.752407 0.752407i
\(670\) −0.752407 1.19745i −0.752407 1.19745i
\(671\) 0 0
\(672\) 1.69345i 1.69345i
\(673\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(674\) 0 0
\(675\) 0.707107 0.707107i 0.707107 0.707107i
\(676\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(677\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.351438 + 0.559311i 0.351438 + 0.559311i
\(682\) 0 0
\(683\) −0.461680 0.958689i −0.461680 0.958689i −0.993712 0.111964i \(-0.964286\pi\)
0.532032 0.846724i \(-0.321429\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.781831 + 1.24428i −0.781831 + 1.24428i
\(687\) 1.84044 0.420068i 1.84044 0.420068i
\(688\) −1.70082 + 0.595142i −1.70082 + 0.595142i
\(689\) 0 0
\(690\) 0.0498289 0.218315i 0.0498289 0.218315i
\(691\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.40532 + 0.158342i −1.40532 + 0.158342i
\(695\) 0 0
\(696\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(697\) 0 0
\(698\) −1.79061 + 0.201753i −1.79061 + 0.201753i
\(699\) 0 0
\(700\) 1.65099 0.376828i 1.65099 0.376828i
\(701\) 0.974928 1.22252i 0.974928 1.22252i 1.00000i \(-0.5\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −0.433884 1.90097i −0.433884 1.90097i
\(706\) 0 0
\(707\) −3.17673 1.11159i −3.17673 1.11159i
\(708\) 0 0
\(709\) −0.541044 1.12349i −0.541044 1.12349i −0.974928 0.222521i \(-0.928571\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.958689 + 0.461680i −0.958689 + 0.461680i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(720\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(721\) 0.711363 + 3.11668i 0.711363 + 3.11668i
\(722\) −0.532032 0.846724i −0.532032 0.846724i
\(723\) −1.10568 + 1.10568i −1.10568 + 1.10568i
\(724\) 1.56366i 1.56366i
\(725\) −1.00000 −1.00000
\(726\) −0.623490 0.781831i −0.623490 0.781831i
\(727\) −0.0971591 0.862311i −0.0971591 0.862311i −0.943883 0.330279i \(-0.892857\pi\)
0.846724 0.532032i \(-0.178571\pi\)
\(728\) 0 0
\(729\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.613604 + 1.27416i 0.613604 + 1.27416i
\(733\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(734\) −1.75676 0.846011i −1.75676 0.846011i
\(735\) 1.85602 0.209124i 1.85602 0.209124i
\(736\) −0.0739590 + 0.211363i −0.0739590 + 0.211363i
\(737\) 0 0
\(738\) 0.643997 0.146988i 0.643997 0.146988i
\(739\) 0 0 −0.993712 0.111964i \(-0.964286\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.286605 + 0.819071i −0.286605 + 0.819071i 0.707107 + 0.707107i \(0.250000\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(744\) 0 0
\(745\) −0.400969 0.193096i −0.400969 0.193096i
\(746\) 0 0
\(747\) 1.70082 + 0.819071i 1.70082 + 0.819071i
\(748\) 0 0
\(749\) 2.63133 + 2.09842i 2.63133 + 2.09842i
\(750\) −0.781831 0.623490i −0.781831 0.623490i
\(751\) 0 0 0.846724 0.532032i \(-0.178571\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(752\) 0.218315 + 1.93760i 0.218315 + 1.93760i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −1.43388 + 0.900969i −1.43388 + 0.900969i
\(757\) 0 0 −0.532032 0.846724i \(-0.678571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.52446 + 0.347948i 1.52446 + 0.347948i 0.900969 0.433884i \(-0.142857\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(762\) 0.236777 0.376828i 0.236777 0.376828i
\(763\) 1.32399 2.74930i 1.32399 2.74930i
\(764\) 0 0
\(765\) 0 0
\(766\) 1.40532 + 1.40532i 1.40532 + 1.40532i
\(767\) 0 0
\(768\) 0.846724 0.532032i 0.846724 0.532032i
\(769\) −0.119137 + 1.05737i −0.119137 + 1.05737i 0.781831 + 0.623490i \(0.214286\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(774\) 1.40881 + 1.12349i 1.40881 + 1.12349i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −1.23914 + 1.55383i −1.23914 + 1.55383i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.943883 0.330279i 0.943883 0.330279i
\(784\) −1.86777 −1.86777
\(785\) 0 0
\(786\) 0 0
\(787\) −1.37876 + 0.314692i −1.37876 + 0.314692i −0.846724 0.532032i \(-0.821429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(788\) 0 0
\(789\) −0.433884 0.0990311i −0.433884 0.0990311i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.111964 0.993712i \(-0.464286\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(801\) 0.900969 + 0.566116i 0.900969 + 0.566116i
\(802\) −0.376828 0.236777i −0.376828 0.236777i
\(803\) 0 0
\(804\) 0.752407 1.19745i 0.752407 1.19745i
\(805\) −0.369704 0.0843826i −0.369704 0.0843826i
\(806\) 0 0
\(807\) −0.223929 −0.223929
\(808\) −0.442244 1.93760i −0.442244 1.93760i
\(809\) −0.119137 0.189606i −0.119137 0.189606i 0.781831 0.623490i \(-0.214286\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(810\) 0.943883 + 0.330279i 0.943883 + 0.330279i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 1.65099 + 0.376828i 1.65099 + 0.376828i
\(813\) 0 0
\(814\) 0 0
\(815\) −0.734760 + 0.461680i −0.734760 + 0.461680i
\(816\) 0 0
\(817\) 0 0
\(818\) 0.663433 + 0.831919i 0.663433 + 0.831919i
\(819\) 0 0
\(820\) −0.218169 0.623490i −0.218169 0.623490i
\(821\) −1.62349 0.781831i −1.62349 0.781831i −0.623490 0.781831i \(-0.714286\pi\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0.643997 1.84044i 0.643997 1.84044i 0.111964 0.993712i \(-0.464286\pi\)
0.532032 0.846724i \(-0.321429\pi\)
\(824\) −1.33485 + 1.33485i −1.33485 + 1.33485i
\(825\) 0 0
\(826\) 0 0
\(827\) −1.93760 0.218315i −1.93760 0.218315i −0.943883 0.330279i \(-0.892857\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(828\) 0.218315 0.0498289i 0.218315 0.0498289i
\(829\) 0.158342 0.158342i 0.158342 0.158342i −0.623490 0.781831i \(-0.714286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(830\) 0.623490 1.78183i 0.623490 1.78183i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0.411851 + 0.516445i 0.411851 + 0.516445i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(840\) 1.05585 + 1.32399i 1.05585 + 1.32399i
\(841\) −0.900969 0.433884i −0.900969 0.433884i
\(842\) 1.88777i 1.88777i
\(843\) 0.881748 0.881748i 0.881748 0.881748i
\(844\) 0 0
\(845\) −0.222521 0.974928i −0.222521 0.974928i
\(846\) 1.52446 1.21572i 1.52446 1.21572i
\(847\) −1.32399 + 1.05585i −1.32399 + 1.05585i
\(848\) 0 0
\(849\) −1.68280 1.05737i −1.68280 1.05737i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 2.15773 1.03911i 2.15773 1.03911i
\(855\) 0 0
\(856\) −0.222521 + 1.97493i −0.222521 + 1.97493i
\(857\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(858\) 0 0
\(859\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(860\) 0.958689 1.52574i 0.958689 1.52574i
\(861\) −0.248917 1.09057i −0.248917 1.09057i
\(862\) 0 0
\(863\) −0.146988 + 0.643997i −0.146988 + 0.643997i 0.846724 + 0.532032i \(0.178571\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(864\) −0.900969 0.433884i −0.900969 0.433884i
\(865\) 0 0
\(866\) 0 0
\(867\) −0.330279 + 0.943883i −0.330279 + 0.943883i
\(868\) 0 0
\(869\) 0 0
\(870\) −0.433884 0.900969i −0.433884 0.900969i
\(871\) 0 0
\(872\) 1.79061 0.201753i 1.79061 0.201753i
\(873\) 0 0
\(874\) 0 0
\(875\) −1.05585 + 1.32399i −1.05585 + 1.32399i
\(876\) 0 0
\(877\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.78183 + 0.623490i 1.78183 + 0.623490i 1.00000 \(0\)
0.781831 + 0.623490i \(0.214286\pi\)
\(882\) 0.993712 + 1.58148i 0.993712 + 1.58148i
\(883\) −0.613604 1.27416i −0.613604 1.27416i −0.943883 0.330279i \(-0.892857\pi\)
0.330279 0.943883i \(-0.392857\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.37876 + 1.37876i 1.37876 + 1.37876i 0.846724 + 0.532032i \(0.178571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(888\) 0 0
\(889\) −0.638138 0.400969i −0.638138 0.400969i
\(890\) 0.461680 0.958689i 0.461680 0.958689i
\(891\) 0 0
\(892\) −1.03739 0.236777i −1.03739 0.236777i
\(893\) 0 0
\(894\) 0.445042i 0.445042i
\(895\) 0 0
\(896\) −0.900969 1.43388i −0.900969 1.43388i
\(897\) 0 0
\(898\) 1.06406i 1.06406i
\(899\) 0 0
\(900\) 0.222521 0.974928i 0.222521 0.974928i
\(901\) 0 0
\(902\) 0 0
\(903\) 1.90257 2.38575i 1.90257 2.38575i
\(904\) 0 0
\(905\) 0.974928 + 1.22252i 0.974928 + 1.22252i
\(906\) 0 0
\(907\) −0.595142 1.70082i −0.595142 1.70082i −0.707107 0.707107i \(-0.750000\pi\)
0.111964 0.993712i \(-0.464286\pi\)
\(908\) 0.595142 + 0.286605i 0.595142 + 0.286605i
\(909\) −1.40532 + 1.40532i −1.40532 + 1.40532i
\(910\) 0 0
\(911\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −1.27416 0.613604i −1.27416 0.613604i
\(916\) 1.33485 1.33485i 1.33485 1.33485i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(920\) −0.0739590 0.211363i −0.0739590 0.211363i
\(921\) 1.12349 0.541044i 1.12349 0.541044i
\(922\) 1.17700 + 1.47592i 1.17700 + 1.47592i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −0.0739590 0.656405i −0.0739590 0.656405i
\(927\) 1.84044 + 0.420068i 1.84044 + 0.420068i
\(928\) 0.330279 + 0.943883i 0.330279 + 0.943883i
\(929\) 1.56366i 1.56366i 0.623490 + 0.781831i \(0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −0.678448 + 0.541044i −0.678448 + 0.541044i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(938\) −2.02782 1.27416i −2.02782 1.27416i
\(939\) 0 0
\(940\) −1.37876 1.37876i −1.37876 1.37876i
\(941\) 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(942\) 0 0
\(943\) −0.0165616 + 0.146988i −0.0165616 + 0.146988i
\(944\) 0 0
\(945\) 0.559311 1.59842i 0.559311 1.59842i
\(946\) 0 0
\(947\) −0.831919 + 1.32399i −0.831919 + 1.32399i 0.111964 + 0.993712i \(0.464286\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.330279 + 0.943883i −0.330279 + 0.943883i
\(961\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(962\) 0 0
\(963\) 1.79061 0.862311i 1.79061 0.862311i
\(964\) −0.347948 + 1.52446i −0.347948 + 1.52446i
\(965\) 0 0
\(966\) −0.0843826 0.369704i −0.0843826 0.369704i
\(967\) 0.461680 0.734760i 0.461680 0.734760i −0.532032 0.846724i \(-0.678571\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(968\) −0.943883 0.330279i −0.943883 0.330279i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.111964 0.993712i \(-0.464286\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(972\) 0.111964 + 0.993712i 0.111964 + 0.993712i
\(973\) 0 0
\(974\) −0.752407 0.752407i −0.752407 0.752407i
\(975\) 0 0
\(976\) 1.19745 + 0.752407i 1.19745 + 0.752407i
\(977\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(978\) −0.734760 0.461680i −0.734760 0.461680i
\(979\) 0 0
\(980\) 1.46028 1.16453i 1.46028 1.16453i
\(981\) −1.12349 1.40881i −1.12349 1.40881i
\(982\) 0 0
\(983\) 0 0 0.846724 0.532032i \(-0.178571\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(984\) 0.467085 0.467085i 0.467085 0.467085i
\(985\) 0 0
\(986\) 0 0
\(987\) −2.05875 2.58159i −2.05875 2.58159i
\(988\) 0 0
\(989\) −0.341658 + 0.214678i −0.341658 + 0.214678i
\(990\) 0 0
\(991\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 1.87590 0.211363i 1.87590 0.211363i
\(997\) 0 0 0.330279 0.943883i \(-0.392857\pi\)
−0.330279 + 0.943883i \(0.607143\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1740.1.cf.b.1319.1 yes 24
3.2 odd 2 1740.1.cf.a.1319.2 yes 24
4.3 odd 2 inner 1740.1.cf.b.1319.2 yes 24
5.4 even 2 inner 1740.1.cf.b.1319.2 yes 24
12.11 even 2 1740.1.cf.a.1319.1 yes 24
15.14 odd 2 1740.1.cf.a.1319.1 yes 24
20.19 odd 2 CM 1740.1.cf.b.1319.1 yes 24
29.27 odd 28 1740.1.cf.a.839.2 yes 24
60.59 even 2 1740.1.cf.a.1319.2 yes 24
87.56 even 28 inner 1740.1.cf.b.839.1 yes 24
116.27 even 28 1740.1.cf.a.839.1 24
145.114 odd 28 1740.1.cf.a.839.1 24
348.143 odd 28 inner 1740.1.cf.b.839.2 yes 24
435.404 even 28 inner 1740.1.cf.b.839.2 yes 24
580.259 even 28 1740.1.cf.a.839.2 yes 24
1740.839 odd 28 inner 1740.1.cf.b.839.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.1.cf.a.839.1 24 116.27 even 28
1740.1.cf.a.839.1 24 145.114 odd 28
1740.1.cf.a.839.2 yes 24 29.27 odd 28
1740.1.cf.a.839.2 yes 24 580.259 even 28
1740.1.cf.a.1319.1 yes 24 12.11 even 2
1740.1.cf.a.1319.1 yes 24 15.14 odd 2
1740.1.cf.a.1319.2 yes 24 3.2 odd 2
1740.1.cf.a.1319.2 yes 24 60.59 even 2
1740.1.cf.b.839.1 yes 24 87.56 even 28 inner
1740.1.cf.b.839.1 yes 24 1740.839 odd 28 inner
1740.1.cf.b.839.2 yes 24 348.143 odd 28 inner
1740.1.cf.b.839.2 yes 24 435.404 even 28 inner
1740.1.cf.b.1319.1 yes 24 1.1 even 1 trivial
1740.1.cf.b.1319.1 yes 24 20.19 odd 2 CM
1740.1.cf.b.1319.2 yes 24 4.3 odd 2 inner
1740.1.cf.b.1319.2 yes 24 5.4 even 2 inner