Properties

Label 174.4.d.a
Level $174$
Weight $4$
Character orbit 174.d
Analytic conductor $10.266$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [174,4,Mod(115,174)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(174, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("174.115"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 174 = 2 \cdot 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 174.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2663323410\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 98x^{4} + 2401x^{2} + 9216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_1 q^{2} + 3 \beta_1 q^{3} - 4 q^{4} + ( - \beta_{3} + 4) q^{5} - 6 q^{6} + ( - 2 \beta_{2} - 9) q^{7} - 8 \beta_1 q^{8} - 9 q^{9} + ( - 2 \beta_{5} + 8 \beta_1) q^{10} + ( - 3 \beta_{5} - 4 \beta_{4} + 9 \beta_1) q^{11}+ \cdots + (27 \beta_{5} + 36 \beta_{4} - 81 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{4} + 22 q^{5} - 36 q^{6} - 50 q^{7} - 54 q^{9} - 20 q^{13} + 96 q^{16} - 88 q^{20} - 112 q^{22} - 528 q^{23} + 144 q^{24} - 84 q^{25} + 200 q^{28} + 238 q^{29} - 132 q^{30} - 168 q^{33} + 428 q^{34}+ \cdots - 576 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 98x^{4} + 2401x^{2} + 9216 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 49\nu ) / 96 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 145\nu^{2} + 3072 ) / 192 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{4} - 341\nu^{2} - 3072 ) / 192 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 81\nu^{3} + 1472\nu ) / 192 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} - 81\nu^{3} - 1088\nu ) / 192 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 5\beta_{2} - 64 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -49\beta_{5} - 49\beta_{4} + 192\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -145\beta_{3} - 341\beta_{2} + 3136 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2497\beta_{5} + 2881\beta_{4} - 15552\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/174\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
115.1
5.66039i
7.82719i
2.16680i
5.66039i
7.82719i
2.16680i
2.00000i 3.00000i −4.00000 −10.1710 −6.00000 −3.29956 8.00000i −9.00000 20.3420i
115.2 2.00000i 3.00000i −4.00000 8.93551 −6.00000 12.4377 8.00000i −9.00000 17.8710i
115.3 2.00000i 3.00000i −4.00000 12.2355 −6.00000 −34.1382 8.00000i −9.00000 24.4710i
115.4 2.00000i 3.00000i −4.00000 −10.1710 −6.00000 −3.29956 8.00000i −9.00000 20.3420i
115.5 2.00000i 3.00000i −4.00000 8.93551 −6.00000 12.4377 8.00000i −9.00000 17.8710i
115.6 2.00000i 3.00000i −4.00000 12.2355 −6.00000 −34.1382 8.00000i −9.00000 24.4710i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 115.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 174.4.d.a 6
3.b odd 2 1 522.4.d.a 6
4.b odd 2 1 1392.4.o.a 6
29.b even 2 1 inner 174.4.d.a 6
87.d odd 2 1 522.4.d.a 6
116.d odd 2 1 1392.4.o.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
174.4.d.a 6 1.a even 1 1 trivial
174.4.d.a 6 29.b even 2 1 inner
522.4.d.a 6 3.b odd 2 1
522.4.d.a 6 87.d odd 2 1
1392.4.o.a 6 4.b odd 2 1
1392.4.o.a 6 116.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 11T_{5}^{2} - 106T_{5} + 1112 \) acting on \(S_{4}^{\mathrm{new}}(174, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{3} \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{3} \) Copy content Toggle raw display
$5$ \( (T^{3} - 11 T^{2} + \cdots + 1112)^{2} \) Copy content Toggle raw display
$7$ \( (T^{3} + 25 T^{2} + \cdots - 1401)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + 5210 T^{4} + \cdots + 596922624 \) Copy content Toggle raw display
$13$ \( (T^{3} + 10 T^{2} + \cdots + 30500)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 123574043961 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 3957919744 \) Copy content Toggle raw display
$23$ \( (T^{3} + 264 T^{2} + \cdots - 610416)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 14507145975869 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 25247938816 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 22587663011904 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 3248371800976 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 16\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 99\!\cdots\!41 \) Copy content Toggle raw display
$53$ \( (T^{3} - 408 T^{2} + \cdots + 42052512)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} + 595 T^{2} + \cdots - 161932048)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 33\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( (T^{3} + 172 T^{2} + \cdots + 41447078)^{2} \) Copy content Toggle raw display
$71$ \( (T^{3} + 150 T^{2} + \cdots + 36888000)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 40\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 25247938816 \) Copy content Toggle raw display
$83$ \( (T^{3} + 2044 T^{2} + \cdots - 351351856)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 74\!\cdots\!76 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 2591636340736 \) Copy content Toggle raw display
show more
show less