Properties

Label 174.2.h.a
Level $174$
Weight $2$
Character orbit 174.h
Analytic conductor $1.389$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [174,2,Mod(13,174)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("174.13"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(174, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 174 = 2 \cdot 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 174.h (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38939699517\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{28})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{28}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{28}^{9} q^{2} - \zeta_{28}^{3} q^{3} - \zeta_{28}^{4} q^{4} + (2 \zeta_{28}^{11} - \zeta_{28}^{9} + \cdots - \zeta_{28}) q^{5} + (\zeta_{28}^{10} - \zeta_{28}^{8} + \cdots - 1) q^{6} + ( - \zeta_{28}^{11} + \cdots + \zeta_{28}^{2}) q^{7} + \cdots + ( - \zeta_{28}^{11} - \zeta_{28}^{9} + \cdots + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{4} - 2 q^{5} - 2 q^{6} + 8 q^{7} + 2 q^{9} - 14 q^{10} + 6 q^{13} + 14 q^{15} - 2 q^{16} - 14 q^{19} + 2 q^{20} - 14 q^{21} - 14 q^{22} + 12 q^{23} + 2 q^{24} - 6 q^{25} - 14 q^{26} + 20 q^{28}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/174\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-\zeta_{28}^{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1
−0.974928 0.222521i
0.974928 + 0.222521i
−0.974928 + 0.222521i
0.974928 0.222521i
0.781831 0.623490i
−0.781831 + 0.623490i
0.781831 + 0.623490i
−0.781831 0.623490i
−0.433884 + 0.900969i
0.433884 0.900969i
−0.433884 0.900969i
0.433884 + 0.900969i
−0.433884 + 0.900969i 0.781831 + 0.623490i −0.623490 0.781831i 1.28967 + 0.621074i −0.900969 + 0.433884i −2.18522 + 2.74017i 0.974928 0.222521i 0.222521 + 0.974928i −1.11914 + 0.892482i
13.2 0.433884 0.900969i −0.781831 0.623490i −0.623490 0.781831i −3.09161 1.48884i −0.900969 + 0.433884i 0.246215 0.308743i −0.974928 + 0.222521i 0.222521 + 0.974928i −2.68280 + 2.13946i
67.1 −0.433884 0.900969i 0.781831 0.623490i −0.623490 + 0.781831i 1.28967 0.621074i −0.900969 0.433884i −2.18522 2.74017i 0.974928 + 0.222521i 0.222521 0.974928i −1.11914 0.892482i
67.2 0.433884 + 0.900969i −0.781831 + 0.623490i −0.623490 + 0.781831i −3.09161 + 1.48884i −0.900969 0.433884i 0.246215 + 0.308743i −0.974928 0.222521i 0.222521 0.974928i −2.68280 2.13946i
91.1 −0.974928 0.222521i 0.433884 + 0.900969i 0.900969 + 0.433884i 0.404459 1.77205i −0.222521 0.974928i 1.51662 0.730364i −0.781831 0.623490i −0.623490 + 0.781831i −0.788637 + 1.63762i
91.2 0.974928 + 0.222521i −0.433884 0.900969i 0.900969 + 0.433884i −0.849501 + 3.72191i −0.222521 0.974928i 4.33424 2.08726i 0.781831 + 0.623490i −0.623490 + 0.781831i −1.65640 + 3.43956i
109.1 −0.974928 + 0.222521i 0.433884 0.900969i 0.900969 0.433884i 0.404459 + 1.77205i −0.222521 + 0.974928i 1.51662 + 0.730364i −0.781831 + 0.623490i −0.623490 0.781831i −0.788637 1.63762i
109.2 0.974928 0.222521i −0.433884 + 0.900969i 0.900969 0.433884i −0.849501 3.72191i −0.222521 + 0.974928i 4.33424 + 2.08726i 0.781831 0.623490i −0.623490 0.781831i −1.65640 3.43956i
121.1 −0.781831 + 0.623490i −0.974928 + 0.222521i 0.222521 0.974928i 0.864277 + 1.08377i 0.623490 0.781831i 0.237169 + 1.03911i 0.433884 + 0.900969i 0.900969 0.433884i −1.35144 0.308457i
121.2 0.781831 0.623490i 0.974928 0.222521i 0.222521 0.974928i 0.382702 + 0.479894i 0.623490 0.781831i −0.149023 0.652914i −0.433884 0.900969i 0.900969 0.433884i 0.598418 + 0.136585i
151.1 −0.781831 0.623490i −0.974928 0.222521i 0.222521 + 0.974928i 0.864277 1.08377i 0.623490 + 0.781831i 0.237169 1.03911i 0.433884 0.900969i 0.900969 + 0.433884i −1.35144 + 0.308457i
151.2 0.781831 + 0.623490i 0.974928 + 0.222521i 0.222521 + 0.974928i 0.382702 0.479894i 0.623490 + 0.781831i −0.149023 + 0.652914i −0.433884 + 0.900969i 0.900969 + 0.433884i 0.598418 0.136585i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.e even 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 174.2.h.a 12
3.b odd 2 1 522.2.n.b 12
29.e even 14 1 inner 174.2.h.a 12
29.f odd 28 1 5046.2.a.bn 6
29.f odd 28 1 5046.2.a.bp 6
87.h odd 14 1 522.2.n.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
174.2.h.a 12 1.a even 1 1 trivial
174.2.h.a 12 29.e even 14 1 inner
522.2.n.b 12 3.b odd 2 1
522.2.n.b 12 87.h odd 14 1
5046.2.a.bn 6 29.f odd 28 1
5046.2.a.bp 6 29.f odd 28 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} + 2 T_{5}^{11} + 10 T_{5}^{10} + 4 T_{5}^{9} - 30 T_{5}^{8} + 6 T_{5}^{7} + 553 T_{5}^{6} + \cdots + 841 \) acting on \(S_{2}^{\mathrm{new}}(174, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - T^{10} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{12} - T^{10} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{12} + 2 T^{11} + \cdots + 841 \) Copy content Toggle raw display
$7$ \( T^{12} - 8 T^{11} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{12} - 112 T^{9} + \cdots + 3136 \) Copy content Toggle raw display
$13$ \( T^{12} - 6 T^{11} + \cdots + 12769 \) Copy content Toggle raw display
$17$ \( T^{12} + 54 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{12} + 14 T^{11} + \cdots + 1236544 \) Copy content Toggle raw display
$23$ \( T^{12} - 12 T^{11} + \cdots + 1236544 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 594823321 \) Copy content Toggle raw display
$31$ \( T^{12} + 14 T^{11} + \cdots + 440896 \) Copy content Toggle raw display
$37$ \( T^{12} - 14 T^{11} + \cdots + 27889 \) Copy content Toggle raw display
$41$ \( T^{12} + 234 T^{10} + \cdots + 10374841 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 260370496 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 155950144 \) Copy content Toggle raw display
$53$ \( T^{12} + 16 T^{11} + \cdots + 82791801 \) Copy content Toggle raw display
$59$ \( (T^{6} + 30 T^{5} + \cdots + 55112)^{2} \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 8260446769 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 370793536 \) Copy content Toggle raw display
$71$ \( T^{12} - 4 T^{11} + \cdots + 64 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 9041917921 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 2980153121344 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 11562270784 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 634346938681 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 134769017881 \) Copy content Toggle raw display
show more
show less