Properties

Label 174.2.g.b
Level $174$
Weight $2$
Character orbit 174.g
Analytic conductor $1.389$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [174,2,Mod(7,174)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("174.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(174, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 174 = 2 \cdot 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 174.g (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38939699517\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{14}^{4} q^{2} + ( - \zeta_{14}^{5} + \zeta_{14}^{4} + \cdots + 1) q^{3} - \zeta_{14} q^{4} + ( - \zeta_{14}^{5} - \zeta_{14}^{4} + \cdots + 1) q^{5} - \zeta_{14}^{3} q^{6} + (2 \zeta_{14}^{4} - 2 \zeta_{14}) q^{7} + \cdots + ( - 2 \zeta_{14}^{5} + 2 \zeta_{14}^{2} + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + q^{3} - q^{4} + 4 q^{5} - q^{6} - 4 q^{7} + q^{8} - q^{9} - 4 q^{10} + 8 q^{11} - 6 q^{12} + 4 q^{14} - 4 q^{15} - q^{16} + 14 q^{17} + q^{18} + 2 q^{19} - 3 q^{20} - 10 q^{21} + 6 q^{22}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/174\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-\zeta_{14}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
0.900969 0.433884i
0.900969 + 0.433884i
−0.623490 + 0.781831i
−0.623490 0.781831i
0.222521 + 0.974928i
0.222521 0.974928i
0.222521 + 0.974928i 0.900969 + 0.433884i −0.900969 + 0.433884i 0.722521 + 3.16557i −0.222521 + 0.974928i −2.24698 1.08209i −0.623490 0.781831i 0.623490 + 0.781831i −2.92543 + 1.40881i
25.1 0.222521 0.974928i 0.900969 0.433884i −0.900969 0.433884i 0.722521 3.16557i −0.222521 0.974928i −2.24698 + 1.08209i −0.623490 + 0.781831i 0.623490 0.781831i −2.92543 1.40881i
49.1 0.900969 0.433884i −0.623490 0.781831i 0.623490 0.781831i 1.40097 0.674671i −0.900969 0.433884i −0.554958 0.695895i 0.222521 0.974928i −0.222521 + 0.974928i 0.969501 1.21572i
103.1 0.900969 + 0.433884i −0.623490 + 0.781831i 0.623490 + 0.781831i 1.40097 + 0.674671i −0.900969 + 0.433884i −0.554958 + 0.695895i 0.222521 + 0.974928i −0.222521 0.974928i 0.969501 + 1.21572i
139.1 −0.623490 + 0.781831i 0.222521 0.974928i −0.222521 0.974928i −0.123490 + 0.154851i 0.623490 + 0.781831i 0.801938 3.51352i 0.900969 + 0.433884i −0.900969 0.433884i −0.0440730 0.193096i
169.1 −0.623490 0.781831i 0.222521 + 0.974928i −0.222521 + 0.974928i −0.123490 0.154851i 0.623490 0.781831i 0.801938 + 3.51352i 0.900969 0.433884i −0.900969 + 0.433884i −0.0440730 + 0.193096i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.d even 7 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 174.2.g.b 6
3.b odd 2 1 522.2.k.a 6
29.d even 7 1 inner 174.2.g.b 6
29.d even 7 1 5046.2.a.z 3
29.e even 14 1 5046.2.a.bc 3
87.j odd 14 1 522.2.k.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
174.2.g.b 6 1.a even 1 1 trivial
174.2.g.b 6 29.d even 7 1 inner
522.2.k.a 6 3.b odd 2 1
522.2.k.a 6 87.j odd 14 1
5046.2.a.z 3 29.d even 7 1
5046.2.a.bc 3 29.e even 14 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} - 4T_{5}^{5} + 16T_{5}^{4} - 29T_{5}^{3} + 18T_{5}^{2} + 5T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(174, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} - T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} - 4 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{6} + 4 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{6} - 8 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{6} - 35 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$17$ \( (T^{3} - 7 T^{2} + 14 T - 7)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} - 2 T^{5} + \cdots + 10816 \) Copy content Toggle raw display
$23$ \( T^{6} - 8 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$29$ \( T^{6} + T^{5} + \cdots + 24389 \) Copy content Toggle raw display
$31$ \( T^{6} + 6 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( T^{6} + 32 T^{5} + \cdots + 703921 \) Copy content Toggle raw display
$41$ \( (T^{3} + T^{2} - 72 T + 41)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} - 4 T^{5} + \cdots + 10816 \) Copy content Toggle raw display
$47$ \( T^{6} + 2 T^{5} + \cdots + 53824 \) Copy content Toggle raw display
$53$ \( T^{6} - 23 T^{5} + \cdots + 49729 \) Copy content Toggle raw display
$59$ \( (T^{3} - 2 T^{2} - 8 T + 8)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 36 T^{5} + \cdots + 613089 \) Copy content Toggle raw display
$67$ \( T^{6} - 784 T^{3} + \cdots + 153664 \) Copy content Toggle raw display
$71$ \( T^{6} + 56 T^{4} + \cdots + 2637376 \) Copy content Toggle raw display
$73$ \( T^{6} - 17 T^{5} + \cdots + 6889 \) Copy content Toggle raw display
$79$ \( T^{6} - 2 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$83$ \( T^{6} + 14 T^{5} + \cdots + 3136 \) Copy content Toggle raw display
$89$ \( T^{6} - 4 T^{5} + \cdots + 284089 \) Copy content Toggle raw display
$97$ \( T^{6} + 7 T^{5} + \cdots + 3869089 \) Copy content Toggle raw display
show more
show less