Properties

Label 174.2.g.a
Level $174$
Weight $2$
Character orbit 174.g
Analytic conductor $1.389$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [174,2,Mod(7,174)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("174.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(174, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 174 = 2 \cdot 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 174.g (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.38939699517\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{14}^{4} q^{2} + ( - \zeta_{14}^{5} + \zeta_{14}^{4} + \cdots + 1) q^{3} - \zeta_{14} q^{4} + ( - 2 \zeta_{14}^{5} + 2 \zeta_{14}^{4} + \cdots + 1) q^{5} + \zeta_{14}^{3} q^{6} + ( - 2 \zeta_{14}^{4} + \cdots + 2 \zeta_{14}) q^{7} + \cdots + ( - \zeta_{14}^{5} + \cdots + \zeta_{14}^{2}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + q^{3} - q^{4} - q^{5} + q^{6} + 6 q^{7} - q^{8} - q^{9} + 6 q^{10} + q^{11} - 6 q^{12} + 4 q^{13} - q^{14} + q^{15} - q^{16} - q^{18} - 4 q^{19} - 8 q^{20} + 8 q^{21} - 6 q^{22}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/174\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-\zeta_{14}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
0.900969 0.433884i
0.900969 + 0.433884i
−0.623490 + 0.781831i
−0.623490 0.781831i
0.222521 + 0.974928i
0.222521 0.974928i
−0.222521 0.974928i 0.900969 + 0.433884i −0.900969 + 0.433884i 0.455927 + 1.99755i 0.222521 0.974928i 1.84601 + 0.888992i 0.623490 + 0.781831i 0.623490 + 0.781831i 1.84601 0.888992i
25.1 −0.222521 + 0.974928i 0.900969 0.433884i −0.900969 0.433884i 0.455927 1.99755i 0.222521 + 0.974928i 1.84601 0.888992i 0.623490 0.781831i 0.623490 0.781831i 1.84601 + 0.888992i
49.1 −0.900969 + 0.433884i −0.623490 0.781831i 0.623490 0.781831i −2.42543 + 1.16802i 0.900969 + 0.433884i 1.67845 + 2.10471i −0.222521 + 0.974928i −0.222521 + 0.974928i 1.67845 2.10471i
103.1 −0.900969 0.433884i −0.623490 + 0.781831i 0.623490 + 0.781831i −2.42543 1.16802i 0.900969 0.433884i 1.67845 2.10471i −0.222521 0.974928i −0.222521 0.974928i 1.67845 + 2.10471i
139.1 0.623490 0.781831i 0.222521 0.974928i −0.222521 0.974928i 1.46950 1.84270i −0.623490 0.781831i −0.524459 + 2.29780i −0.900969 0.433884i −0.900969 0.433884i −0.524459 2.29780i
169.1 0.623490 + 0.781831i 0.222521 + 0.974928i −0.222521 + 0.974928i 1.46950 + 1.84270i −0.623490 + 0.781831i −0.524459 2.29780i −0.900969 + 0.433884i −0.900969 + 0.433884i −0.524459 + 2.29780i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.d even 7 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 174.2.g.a 6
3.b odd 2 1 522.2.k.d 6
29.d even 7 1 inner 174.2.g.a 6
29.d even 7 1 5046.2.a.bb 3
29.e even 14 1 5046.2.a.ba 3
87.j odd 14 1 522.2.k.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
174.2.g.a 6 1.a even 1 1 trivial
174.2.g.a 6 29.d even 7 1 inner
522.2.k.d 6 3.b odd 2 1
522.2.k.d 6 87.j odd 14 1
5046.2.a.ba 3 29.e even 14 1
5046.2.a.bb 3 29.d even 7 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + T_{5}^{5} + T_{5}^{4} + 15T_{5}^{3} + 29T_{5}^{2} - 13T_{5} + 169 \) acting on \(S_{2}^{\mathrm{new}}(174, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} - T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} + T^{5} + \cdots + 169 \) Copy content Toggle raw display
$7$ \( T^{6} - 6 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$11$ \( T^{6} - T^{5} + 15 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{6} - 4 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$17$ \( (T^{3} - 28 T + 56)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 4 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( T^{6} + 4 T^{5} + \cdots + 10816 \) Copy content Toggle raw display
$29$ \( T^{6} - T^{5} + \cdots + 24389 \) Copy content Toggle raw display
$31$ \( T^{6} + 14 T^{5} + \cdots + 49 \) Copy content Toggle raw display
$37$ \( T^{6} + 14 T^{5} + \cdots + 3136 \) Copy content Toggle raw display
$41$ \( (T^{3} - 8 T^{2} - 44 T + 8)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 2 T^{5} + \cdots + 53824 \) Copy content Toggle raw display
$47$ \( T^{6} + 2 T^{5} + \cdots + 118336 \) Copy content Toggle raw display
$53$ \( T^{6} + 10 T^{5} + \cdots + 121801 \) Copy content Toggle raw display
$59$ \( (T^{3} - 9 T^{2} + \cdots + 449)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 10 T^{5} + \cdots + 118336 \) Copy content Toggle raw display
$67$ \( T^{6} + 28 T^{5} + \cdots + 529984 \) Copy content Toggle raw display
$71$ \( T^{6} + 24 T^{5} + \cdots + 4096 \) Copy content Toggle raw display
$73$ \( T^{6} + 10 T^{5} + \cdots + 12769 \) Copy content Toggle raw display
$79$ \( T^{6} - 20 T^{5} + \cdots + 692224 \) Copy content Toggle raw display
$83$ \( T^{6} - 26 T^{5} + \cdots + 253009 \) Copy content Toggle raw display
$89$ \( T^{6} - 24 T^{5} + \cdots + 4096 \) Copy content Toggle raw display
$97$ \( T^{6} - 22 T^{5} + \cdots + 1681 \) Copy content Toggle raw display
show more
show less