Properties

Label 1728.4.f.h.863.5
Level $1728$
Weight $4$
Character 1728.863
Analytic conductor $101.955$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,4,Mod(863,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.863"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-384,0,304,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1248,0,-720] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(49)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.955300490\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 29x^{14} + 601x^{12} - 5608x^{10} + 37420x^{8} - 128832x^{6} + 318736x^{4} - 389376x^{2} + 331776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{30}\cdot 3^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 863.5
Root \(-2.33286 + 1.34688i\) of defining polynomial
Character \(\chi\) \(=\) 1728.863
Dual form 1728.4.f.h.863.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.34090 q^{5} -21.0128i q^{7} +9.52051i q^{11} +8.89335i q^{13} +42.5915i q^{17} -24.3503 q^{19} +124.587 q^{23} -55.4293 q^{25} -88.0933 q^{29} -15.1632i q^{31} +175.266i q^{35} +79.3110i q^{37} +164.542i q^{41} -393.223 q^{43} +374.718 q^{47} -98.5375 q^{49} +90.1098 q^{53} -79.4096i q^{55} -25.3654i q^{59} +669.799i q^{61} -74.1786i q^{65} +236.666 q^{67} -128.089 q^{71} +152.044 q^{73} +200.052 q^{77} -525.676i q^{79} +761.686i q^{83} -355.252i q^{85} -1587.03i q^{89} +186.874 q^{91} +203.104 q^{95} -1050.34 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 384 q^{23} + 304 q^{25} + 1248 q^{47} - 720 q^{49} + 5088 q^{71} - 128 q^{73} + 11712 q^{95} + 4592 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −8.34090 −0.746033 −0.373017 0.927825i \(-0.621677\pi\)
−0.373017 + 0.927825i \(0.621677\pi\)
\(6\) 0 0
\(7\) − 21.0128i − 1.13458i −0.823517 0.567292i \(-0.807991\pi\)
0.823517 0.567292i \(-0.192009\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 9.52051i 0.260958i 0.991451 + 0.130479i \(0.0416516\pi\)
−0.991451 + 0.130479i \(0.958348\pi\)
\(12\) 0 0
\(13\) 8.89335i 0.189736i 0.995490 + 0.0948682i \(0.0302430\pi\)
−0.995490 + 0.0948682i \(0.969757\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 42.5915i 0.607645i 0.952729 + 0.303822i \(0.0982629\pi\)
−0.952729 + 0.303822i \(0.901737\pi\)
\(18\) 0 0
\(19\) −24.3503 −0.294018 −0.147009 0.989135i \(-0.546965\pi\)
−0.147009 + 0.989135i \(0.546965\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 124.587 1.12948 0.564742 0.825267i \(-0.308976\pi\)
0.564742 + 0.825267i \(0.308976\pi\)
\(24\) 0 0
\(25\) −55.4293 −0.443435
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −88.0933 −0.564087 −0.282043 0.959402i \(-0.591012\pi\)
−0.282043 + 0.959402i \(0.591012\pi\)
\(30\) 0 0
\(31\) − 15.1632i − 0.0878511i −0.999035 0.0439256i \(-0.986014\pi\)
0.999035 0.0439256i \(-0.0139864\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 175.266i 0.846437i
\(36\) 0 0
\(37\) 79.3110i 0.352396i 0.984355 + 0.176198i \(0.0563799\pi\)
−0.984355 + 0.176198i \(0.943620\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 164.542i 0.626760i 0.949628 + 0.313380i \(0.101461\pi\)
−0.949628 + 0.313380i \(0.898539\pi\)
\(42\) 0 0
\(43\) −393.223 −1.39456 −0.697278 0.716801i \(-0.745606\pi\)
−0.697278 + 0.716801i \(0.745606\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 374.718 1.16294 0.581471 0.813567i \(-0.302478\pi\)
0.581471 + 0.813567i \(0.302478\pi\)
\(48\) 0 0
\(49\) −98.5375 −0.287281
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 90.1098 0.233538 0.116769 0.993159i \(-0.462746\pi\)
0.116769 + 0.993159i \(0.462746\pi\)
\(54\) 0 0
\(55\) − 79.4096i − 0.194683i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 25.3654i − 0.0559711i −0.999608 0.0279855i \(-0.991091\pi\)
0.999608 0.0279855i \(-0.00890923\pi\)
\(60\) 0 0
\(61\) 669.799i 1.40588i 0.711247 + 0.702942i \(0.248131\pi\)
−0.711247 + 0.702942i \(0.751869\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 74.1786i − 0.141550i
\(66\) 0 0
\(67\) 236.666 0.431543 0.215771 0.976444i \(-0.430773\pi\)
0.215771 + 0.976444i \(0.430773\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −128.089 −0.214103 −0.107052 0.994253i \(-0.534141\pi\)
−0.107052 + 0.994253i \(0.534141\pi\)
\(72\) 0 0
\(73\) 152.044 0.243773 0.121887 0.992544i \(-0.461106\pi\)
0.121887 + 0.992544i \(0.461106\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 200.052 0.296079
\(78\) 0 0
\(79\) − 525.676i − 0.748647i −0.927298 0.374324i \(-0.877875\pi\)
0.927298 0.374324i \(-0.122125\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 761.686i 1.00730i 0.863908 + 0.503650i \(0.168010\pi\)
−0.863908 + 0.503650i \(0.831990\pi\)
\(84\) 0 0
\(85\) − 355.252i − 0.453323i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 1587.03i − 1.89017i −0.326830 0.945083i \(-0.605981\pi\)
0.326830 0.945083i \(-0.394019\pi\)
\(90\) 0 0
\(91\) 186.874 0.215272
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 203.104 0.219347
\(96\) 0 0
\(97\) −1050.34 −1.09944 −0.549720 0.835349i \(-0.685265\pi\)
−0.549720 + 0.835349i \(0.685265\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 800.038 0.788186 0.394093 0.919071i \(-0.371059\pi\)
0.394093 + 0.919071i \(0.371059\pi\)
\(102\) 0 0
\(103\) 788.835i 0.754623i 0.926086 + 0.377312i \(0.123151\pi\)
−0.926086 + 0.377312i \(0.876849\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1368.22i − 1.23618i −0.786108 0.618089i \(-0.787907\pi\)
0.786108 0.618089i \(-0.212093\pi\)
\(108\) 0 0
\(109\) − 953.026i − 0.837461i −0.908110 0.418731i \(-0.862475\pi\)
0.908110 0.418731i \(-0.137525\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1477.75i − 1.23022i −0.788440 0.615112i \(-0.789111\pi\)
0.788440 0.615112i \(-0.210889\pi\)
\(114\) 0 0
\(115\) −1039.17 −0.842633
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 894.967 0.689424
\(120\) 0 0
\(121\) 1240.36 0.931901
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1504.94 1.07685
\(126\) 0 0
\(127\) 410.595i 0.286885i 0.989659 + 0.143442i \(0.0458172\pi\)
−0.989659 + 0.143442i \(0.954183\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1599.45i 1.06675i 0.845879 + 0.533375i \(0.179076\pi\)
−0.845879 + 0.533375i \(0.820924\pi\)
\(132\) 0 0
\(133\) 511.668i 0.333588i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1064.13i − 0.663611i −0.943348 0.331806i \(-0.892342\pi\)
0.943348 0.331806i \(-0.107658\pi\)
\(138\) 0 0
\(139\) 2144.33 1.30848 0.654242 0.756285i \(-0.272988\pi\)
0.654242 + 0.756285i \(0.272988\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −84.6692 −0.0495133
\(144\) 0 0
\(145\) 734.777 0.420827
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 593.265 0.326189 0.163095 0.986610i \(-0.447852\pi\)
0.163095 + 0.986610i \(0.447852\pi\)
\(150\) 0 0
\(151\) − 506.715i − 0.273085i −0.990634 0.136543i \(-0.956401\pi\)
0.990634 0.136543i \(-0.0435991\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 126.475i 0.0655399i
\(156\) 0 0
\(157\) − 811.801i − 0.412667i −0.978482 0.206334i \(-0.933847\pi\)
0.978482 0.206334i \(-0.0661533\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 2617.92i − 1.28150i
\(162\) 0 0
\(163\) 714.183 0.343185 0.171593 0.985168i \(-0.445109\pi\)
0.171593 + 0.985168i \(0.445109\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3332.48 1.54416 0.772080 0.635525i \(-0.219216\pi\)
0.772080 + 0.635525i \(0.219216\pi\)
\(168\) 0 0
\(169\) 2117.91 0.964000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −427.084 −0.187691 −0.0938456 0.995587i \(-0.529916\pi\)
−0.0938456 + 0.995587i \(0.529916\pi\)
\(174\) 0 0
\(175\) 1164.73i 0.503114i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3217.18i 1.34337i 0.740837 + 0.671685i \(0.234429\pi\)
−0.740837 + 0.671685i \(0.765571\pi\)
\(180\) 0 0
\(181\) − 1783.70i − 0.732496i −0.930517 0.366248i \(-0.880642\pi\)
0.930517 0.366248i \(-0.119358\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 661.525i − 0.262899i
\(186\) 0 0
\(187\) −405.493 −0.158570
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5100.33 1.93218 0.966091 0.258203i \(-0.0831303\pi\)
0.966091 + 0.258203i \(0.0831303\pi\)
\(192\) 0 0
\(193\) −2430.38 −0.906440 −0.453220 0.891399i \(-0.649725\pi\)
−0.453220 + 0.891399i \(0.649725\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3291.04 1.19024 0.595119 0.803637i \(-0.297105\pi\)
0.595119 + 0.803637i \(0.297105\pi\)
\(198\) 0 0
\(199\) − 66.7409i − 0.0237746i −0.999929 0.0118873i \(-0.996216\pi\)
0.999929 0.0118873i \(-0.00378393\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1851.09i 0.640004i
\(204\) 0 0
\(205\) − 1372.43i − 0.467583i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 231.827i − 0.0767264i
\(210\) 0 0
\(211\) 1777.87 0.580066 0.290033 0.957017i \(-0.406334\pi\)
0.290033 + 0.957017i \(0.406334\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3279.83 1.04038
\(216\) 0 0
\(217\) −318.621 −0.0996745
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −378.781 −0.115292
\(222\) 0 0
\(223\) 139.145i 0.0417841i 0.999782 + 0.0208921i \(0.00665063\pi\)
−0.999782 + 0.0208921i \(0.993349\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4440.80i 1.29844i 0.760600 + 0.649221i \(0.224905\pi\)
−0.760600 + 0.649221i \(0.775095\pi\)
\(228\) 0 0
\(229\) 4173.79i 1.20442i 0.798338 + 0.602209i \(0.205713\pi\)
−0.798338 + 0.602209i \(0.794287\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 3213.92i − 0.903653i −0.892106 0.451826i \(-0.850773\pi\)
0.892106 0.451826i \(-0.149227\pi\)
\(234\) 0 0
\(235\) −3125.49 −0.867593
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5234.01 1.41657 0.708284 0.705928i \(-0.249470\pi\)
0.708284 + 0.705928i \(0.249470\pi\)
\(240\) 0 0
\(241\) −2537.35 −0.678195 −0.339097 0.940751i \(-0.610122\pi\)
−0.339097 + 0.940751i \(0.610122\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 821.892 0.214321
\(246\) 0 0
\(247\) − 216.556i − 0.0557859i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1435.00i 0.360863i 0.983588 + 0.180431i \(0.0577493\pi\)
−0.983588 + 0.180431i \(0.942251\pi\)
\(252\) 0 0
\(253\) 1186.13i 0.294748i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 2950.34i − 0.716099i −0.933703 0.358049i \(-0.883442\pi\)
0.933703 0.358049i \(-0.116558\pi\)
\(258\) 0 0
\(259\) 1666.54 0.399823
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3240.53 0.759771 0.379885 0.925034i \(-0.375963\pi\)
0.379885 + 0.925034i \(0.375963\pi\)
\(264\) 0 0
\(265\) −751.597 −0.174227
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −456.419 −0.103451 −0.0517255 0.998661i \(-0.516472\pi\)
−0.0517255 + 0.998661i \(0.516472\pi\)
\(270\) 0 0
\(271\) − 2459.31i − 0.551263i −0.961263 0.275632i \(-0.911113\pi\)
0.961263 0.275632i \(-0.0888870\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 527.715i − 0.115718i
\(276\) 0 0
\(277\) − 2754.09i − 0.597391i −0.954348 0.298695i \(-0.903449\pi\)
0.954348 0.298695i \(-0.0965515\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 3166.15i − 0.672159i −0.941834 0.336080i \(-0.890899\pi\)
0.941834 0.336080i \(-0.109101\pi\)
\(282\) 0 0
\(283\) −1576.28 −0.331095 −0.165548 0.986202i \(-0.552939\pi\)
−0.165548 + 0.986202i \(0.552939\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3457.49 0.711112
\(288\) 0 0
\(289\) 3098.96 0.630768
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8729.65 1.74058 0.870292 0.492535i \(-0.163930\pi\)
0.870292 + 0.492535i \(0.163930\pi\)
\(294\) 0 0
\(295\) 211.570i 0.0417563i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1107.99i 0.214304i
\(300\) 0 0
\(301\) 8262.70i 1.58224i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 5586.73i − 1.04884i
\(306\) 0 0
\(307\) −6993.96 −1.30022 −0.650108 0.759842i \(-0.725276\pi\)
−0.650108 + 0.759842i \(0.725276\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1684.03 0.307050 0.153525 0.988145i \(-0.450937\pi\)
0.153525 + 0.988145i \(0.450937\pi\)
\(312\) 0 0
\(313\) 7673.11 1.38565 0.692827 0.721104i \(-0.256365\pi\)
0.692827 + 0.721104i \(0.256365\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2739.03 0.485297 0.242648 0.970114i \(-0.421984\pi\)
0.242648 + 0.970114i \(0.421984\pi\)
\(318\) 0 0
\(319\) − 838.693i − 0.147203i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 1037.12i − 0.178658i
\(324\) 0 0
\(325\) − 492.952i − 0.0841356i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 7873.87i − 1.31945i
\(330\) 0 0
\(331\) 351.062 0.0582964 0.0291482 0.999575i \(-0.490721\pi\)
0.0291482 + 0.999575i \(0.490721\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1974.01 −0.321945
\(336\) 0 0
\(337\) −9518.32 −1.53856 −0.769282 0.638909i \(-0.779386\pi\)
−0.769282 + 0.638909i \(0.779386\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 144.361 0.0229255
\(342\) 0 0
\(343\) − 5136.84i − 0.808639i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7173.42i 1.10977i 0.831928 + 0.554884i \(0.187237\pi\)
−0.831928 + 0.554884i \(0.812763\pi\)
\(348\) 0 0
\(349\) − 4567.04i − 0.700482i −0.936660 0.350241i \(-0.886100\pi\)
0.936660 0.350241i \(-0.113900\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 11197.0i − 1.68826i −0.536139 0.844130i \(-0.680118\pi\)
0.536139 0.844130i \(-0.319882\pi\)
\(354\) 0 0
\(355\) 1068.37 0.159728
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2666.74 0.392048 0.196024 0.980599i \(-0.437197\pi\)
0.196024 + 0.980599i \(0.437197\pi\)
\(360\) 0 0
\(361\) −6266.06 −0.913553
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1268.19 −0.181863
\(366\) 0 0
\(367\) 5057.41i 0.719332i 0.933081 + 0.359666i \(0.117109\pi\)
−0.933081 + 0.359666i \(0.882891\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 1893.46i − 0.264969i
\(372\) 0 0
\(373\) 7410.03i 1.02862i 0.857603 + 0.514312i \(0.171953\pi\)
−0.857603 + 0.514312i \(0.828047\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 783.444i − 0.107028i
\(378\) 0 0
\(379\) −3745.08 −0.507578 −0.253789 0.967260i \(-0.581677\pi\)
−0.253789 + 0.967260i \(0.581677\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3335.14 −0.444955 −0.222477 0.974938i \(-0.571414\pi\)
−0.222477 + 0.974938i \(0.571414\pi\)
\(384\) 0 0
\(385\) −1668.62 −0.220885
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13683.2 1.78346 0.891729 0.452570i \(-0.149493\pi\)
0.891729 + 0.452570i \(0.149493\pi\)
\(390\) 0 0
\(391\) 5306.34i 0.686325i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4384.61i 0.558516i
\(396\) 0 0
\(397\) − 6688.01i − 0.845495i −0.906248 0.422747i \(-0.861066\pi\)
0.906248 0.422747i \(-0.138934\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 936.356i 0.116607i 0.998299 + 0.0583034i \(0.0185691\pi\)
−0.998299 + 0.0583034i \(0.981431\pi\)
\(402\) 0 0
\(403\) 134.851 0.0166685
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −755.080 −0.0919606
\(408\) 0 0
\(409\) −2176.86 −0.263176 −0.131588 0.991305i \(-0.542008\pi\)
−0.131588 + 0.991305i \(0.542008\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −532.998 −0.0635039
\(414\) 0 0
\(415\) − 6353.15i − 0.751479i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 11402.9i − 1.32952i −0.747057 0.664760i \(-0.768534\pi\)
0.747057 0.664760i \(-0.231466\pi\)
\(420\) 0 0
\(421\) − 11065.0i − 1.28094i −0.767982 0.640471i \(-0.778739\pi\)
0.767982 0.640471i \(-0.221261\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 2360.82i − 0.269451i
\(426\) 0 0
\(427\) 14074.3 1.59509
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9230.40 1.03158 0.515792 0.856714i \(-0.327498\pi\)
0.515792 + 0.856714i \(0.327498\pi\)
\(432\) 0 0
\(433\) 16809.1 1.86558 0.932788 0.360425i \(-0.117368\pi\)
0.932788 + 0.360425i \(0.117368\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3033.73 −0.332089
\(438\) 0 0
\(439\) − 7087.15i − 0.770504i −0.922811 0.385252i \(-0.874115\pi\)
0.922811 0.385252i \(-0.125885\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1035.88i 0.111098i 0.998456 + 0.0555488i \(0.0176908\pi\)
−0.998456 + 0.0555488i \(0.982309\pi\)
\(444\) 0 0
\(445\) 13237.3i 1.41013i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10505.0i 1.10414i 0.833797 + 0.552071i \(0.186162\pi\)
−0.833797 + 0.552071i \(0.813838\pi\)
\(450\) 0 0
\(451\) −1566.52 −0.163558
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1558.70 −0.160600
\(456\) 0 0
\(457\) 5252.21 0.537610 0.268805 0.963195i \(-0.413371\pi\)
0.268805 + 0.963195i \(0.413371\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12272.1 −1.23985 −0.619924 0.784662i \(-0.712837\pi\)
−0.619924 + 0.784662i \(0.712837\pi\)
\(462\) 0 0
\(463\) 10710.1i 1.07503i 0.843254 + 0.537516i \(0.180637\pi\)
−0.843254 + 0.537516i \(0.819363\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6462.30i 0.640342i 0.947360 + 0.320171i \(0.103740\pi\)
−0.947360 + 0.320171i \(0.896260\pi\)
\(468\) 0 0
\(469\) − 4973.02i − 0.489622i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 3743.68i − 0.363921i
\(474\) 0 0
\(475\) 1349.72 0.130378
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3634.99 0.346737 0.173368 0.984857i \(-0.444535\pi\)
0.173368 + 0.984857i \(0.444535\pi\)
\(480\) 0 0
\(481\) −705.340 −0.0668623
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8760.76 0.820218
\(486\) 0 0
\(487\) 7438.33i 0.692121i 0.938212 + 0.346061i \(0.112481\pi\)
−0.938212 + 0.346061i \(0.887519\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13466.3i 1.23773i 0.785498 + 0.618865i \(0.212407\pi\)
−0.785498 + 0.618865i \(0.787593\pi\)
\(492\) 0 0
\(493\) − 3752.03i − 0.342764i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2691.50i 0.242918i
\(498\) 0 0
\(499\) 14751.7 1.32340 0.661702 0.749767i \(-0.269835\pi\)
0.661702 + 0.749767i \(0.269835\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3906.71 0.346306 0.173153 0.984895i \(-0.444605\pi\)
0.173153 + 0.984895i \(0.444605\pi\)
\(504\) 0 0
\(505\) −6673.04 −0.588013
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8809.20 −0.767114 −0.383557 0.923517i \(-0.625301\pi\)
−0.383557 + 0.923517i \(0.625301\pi\)
\(510\) 0 0
\(511\) − 3194.88i − 0.276581i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 6579.60i − 0.562974i
\(516\) 0 0
\(517\) 3567.50i 0.303479i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18473.2i 1.55340i 0.629868 + 0.776702i \(0.283109\pi\)
−0.629868 + 0.776702i \(0.716891\pi\)
\(522\) 0 0
\(523\) −8529.50 −0.713133 −0.356567 0.934270i \(-0.616053\pi\)
−0.356567 + 0.934270i \(0.616053\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 645.822 0.0533823
\(528\) 0 0
\(529\) 3354.86 0.275735
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1463.33 −0.118919
\(534\) 0 0
\(535\) 11412.2i 0.922229i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 938.127i − 0.0749685i
\(540\) 0 0
\(541\) − 18895.8i − 1.50165i −0.660501 0.750825i \(-0.729656\pi\)
0.660501 0.750825i \(-0.270344\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7949.09i 0.624774i
\(546\) 0 0
\(547\) −13183.5 −1.03050 −0.515251 0.857039i \(-0.672301\pi\)
−0.515251 + 0.857039i \(0.672301\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2145.10 0.165852
\(552\) 0 0
\(553\) −11045.9 −0.849403
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24772.1 −1.88443 −0.942213 0.335014i \(-0.891259\pi\)
−0.942213 + 0.335014i \(0.891259\pi\)
\(558\) 0 0
\(559\) − 3497.07i − 0.264598i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 12773.3i − 0.956184i −0.878310 0.478092i \(-0.841329\pi\)
0.878310 0.478092i \(-0.158671\pi\)
\(564\) 0 0
\(565\) 12325.8i 0.917788i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6082.50i 0.448140i 0.974573 + 0.224070i \(0.0719344\pi\)
−0.974573 + 0.224070i \(0.928066\pi\)
\(570\) 0 0
\(571\) 20646.2 1.51316 0.756581 0.653899i \(-0.226868\pi\)
0.756581 + 0.653899i \(0.226868\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6905.76 −0.500852
\(576\) 0 0
\(577\) 16942.5 1.22240 0.611202 0.791475i \(-0.290686\pi\)
0.611202 + 0.791475i \(0.290686\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16005.2 1.14287
\(582\) 0 0
\(583\) 857.891i 0.0609438i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 2780.60i − 0.195516i −0.995210 0.0977578i \(-0.968833\pi\)
0.995210 0.0977578i \(-0.0311670\pi\)
\(588\) 0 0
\(589\) 369.228i 0.0258298i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 86.9257i 0.00601958i 0.999995 + 0.00300979i \(0.000958047\pi\)
−0.999995 + 0.00300979i \(0.999042\pi\)
\(594\) 0 0
\(595\) −7464.83 −0.514333
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5769.53 −0.393550 −0.196775 0.980449i \(-0.563047\pi\)
−0.196775 + 0.980449i \(0.563047\pi\)
\(600\) 0 0
\(601\) −2807.07 −0.190520 −0.0952601 0.995452i \(-0.530368\pi\)
−0.0952601 + 0.995452i \(0.530368\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10345.7 −0.695229
\(606\) 0 0
\(607\) − 4199.36i − 0.280802i −0.990095 0.140401i \(-0.955161\pi\)
0.990095 0.140401i \(-0.0448392\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3332.50i 0.220652i
\(612\) 0 0
\(613\) − 20700.8i − 1.36394i −0.731378 0.681972i \(-0.761123\pi\)
0.731378 0.681972i \(-0.238877\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11915.5i 0.777472i 0.921349 + 0.388736i \(0.127088\pi\)
−0.921349 + 0.388736i \(0.872912\pi\)
\(618\) 0 0
\(619\) −23887.2 −1.55106 −0.775531 0.631310i \(-0.782518\pi\)
−0.775531 + 0.631310i \(0.782518\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −33347.9 −2.14455
\(624\) 0 0
\(625\) −5623.92 −0.359931
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3377.97 −0.214131
\(630\) 0 0
\(631\) − 16604.4i − 1.04756i −0.851853 0.523781i \(-0.824521\pi\)
0.851853 0.523781i \(-0.175479\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 3424.73i − 0.214026i
\(636\) 0 0
\(637\) − 876.329i − 0.0545077i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19290.4i 1.18865i 0.804225 + 0.594325i \(0.202581\pi\)
−0.804225 + 0.594325i \(0.797419\pi\)
\(642\) 0 0
\(643\) 31649.9 1.94114 0.970569 0.240825i \(-0.0774178\pi\)
0.970569 + 0.240825i \(0.0774178\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11446.1 −0.695508 −0.347754 0.937586i \(-0.613056\pi\)
−0.347754 + 0.937586i \(0.613056\pi\)
\(648\) 0 0
\(649\) 241.491 0.0146061
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13206.8 −0.791455 −0.395728 0.918368i \(-0.629508\pi\)
−0.395728 + 0.918368i \(0.629508\pi\)
\(654\) 0 0
\(655\) − 13340.8i − 0.795830i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1855.68i 0.109692i 0.998495 + 0.0548461i \(0.0174668\pi\)
−0.998495 + 0.0548461i \(0.982533\pi\)
\(660\) 0 0
\(661\) 26168.4i 1.53983i 0.638144 + 0.769917i \(0.279703\pi\)
−0.638144 + 0.769917i \(0.720297\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 4267.77i − 0.248868i
\(666\) 0 0
\(667\) −10975.3 −0.637127
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6376.82 −0.366877
\(672\) 0 0
\(673\) −7781.63 −0.445706 −0.222853 0.974852i \(-0.571537\pi\)
−0.222853 + 0.974852i \(0.571537\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 25165.8 1.42866 0.714328 0.699811i \(-0.246733\pi\)
0.714328 + 0.699811i \(0.246733\pi\)
\(678\) 0 0
\(679\) 22070.5i 1.24741i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 33273.8i − 1.86411i −0.362321 0.932054i \(-0.618015\pi\)
0.362321 0.932054i \(-0.381985\pi\)
\(684\) 0 0
\(685\) 8875.80i 0.495076i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 801.378i 0.0443107i
\(690\) 0 0
\(691\) −6250.73 −0.344123 −0.172062 0.985086i \(-0.555043\pi\)
−0.172062 + 0.985086i \(0.555043\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17885.6 −0.976173
\(696\) 0 0
\(697\) −7008.09 −0.380847
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −13370.0 −0.720366 −0.360183 0.932882i \(-0.617286\pi\)
−0.360183 + 0.932882i \(0.617286\pi\)
\(702\) 0 0
\(703\) − 1931.25i − 0.103611i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 16811.0i − 0.894264i
\(708\) 0 0
\(709\) 11341.8i 0.600777i 0.953817 + 0.300389i \(0.0971164\pi\)
−0.953817 + 0.300389i \(0.902884\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 1889.13i − 0.0992265i
\(714\) 0 0
\(715\) 706.218 0.0369385
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12962.9 −0.672370 −0.336185 0.941796i \(-0.609137\pi\)
−0.336185 + 0.941796i \(0.609137\pi\)
\(720\) 0 0
\(721\) 16575.6 0.856184
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4882.95 0.250135
\(726\) 0 0
\(727\) − 33452.0i − 1.70656i −0.521457 0.853278i \(-0.674611\pi\)
0.521457 0.853278i \(-0.325389\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 16747.9i − 0.847394i
\(732\) 0 0
\(733\) 21088.6i 1.06265i 0.847167 + 0.531326i \(0.178306\pi\)
−0.847167 + 0.531326i \(0.821694\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2253.18i 0.112615i
\(738\) 0 0
\(739\) −27140.6 −1.35099 −0.675497 0.737363i \(-0.736071\pi\)
−0.675497 + 0.737363i \(0.736071\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −35192.4 −1.73766 −0.868832 0.495106i \(-0.835129\pi\)
−0.868832 + 0.495106i \(0.835129\pi\)
\(744\) 0 0
\(745\) −4948.37 −0.243348
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −28750.2 −1.40255
\(750\) 0 0
\(751\) 29014.9i 1.40981i 0.709300 + 0.704907i \(0.249011\pi\)
−0.709300 + 0.704907i \(0.750989\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4226.46i 0.203731i
\(756\) 0 0
\(757\) − 20465.9i − 0.982621i −0.870984 0.491311i \(-0.836518\pi\)
0.870984 0.491311i \(-0.163482\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 28142.8i 1.34057i 0.742102 + 0.670287i \(0.233829\pi\)
−0.742102 + 0.670287i \(0.766171\pi\)
\(762\) 0 0
\(763\) −20025.7 −0.950170
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 225.583 0.0106197
\(768\) 0 0
\(769\) −14678.3 −0.688313 −0.344156 0.938912i \(-0.611835\pi\)
−0.344156 + 0.938912i \(0.611835\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 28245.5 1.31426 0.657129 0.753778i \(-0.271771\pi\)
0.657129 + 0.753778i \(0.271771\pi\)
\(774\) 0 0
\(775\) 840.484i 0.0389562i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 4006.65i − 0.184279i
\(780\) 0 0
\(781\) − 1219.47i − 0.0558720i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6771.16i 0.307864i
\(786\) 0 0
\(787\) 20062.3 0.908698 0.454349 0.890824i \(-0.349872\pi\)
0.454349 + 0.890824i \(0.349872\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −31051.7 −1.39579
\(792\) 0 0
\(793\) −5956.76 −0.266747
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −27596.3 −1.22649 −0.613244 0.789893i \(-0.710136\pi\)
−0.613244 + 0.789893i \(0.710136\pi\)
\(798\) 0 0
\(799\) 15959.8i 0.706655i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1447.54i 0.0636146i
\(804\) 0 0
\(805\) 21835.8i 0.956038i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2338.39i 0.101623i 0.998708 + 0.0508117i \(0.0161808\pi\)
−0.998708 + 0.0508117i \(0.983819\pi\)
\(810\) 0 0
\(811\) 4326.82 0.187343 0.0936715 0.995603i \(-0.470140\pi\)
0.0936715 + 0.995603i \(0.470140\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5956.94 −0.256027
\(816\) 0 0
\(817\) 9575.09 0.410024
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −29931.7 −1.27238 −0.636190 0.771532i \(-0.719491\pi\)
−0.636190 + 0.771532i \(0.719491\pi\)
\(822\) 0 0
\(823\) 9285.33i 0.393276i 0.980476 + 0.196638i \(0.0630024\pi\)
−0.980476 + 0.196638i \(0.936998\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 17292.6i − 0.727113i −0.931572 0.363557i \(-0.881562\pi\)
0.931572 0.363557i \(-0.118438\pi\)
\(828\) 0 0
\(829\) − 18165.0i − 0.761033i −0.924774 0.380516i \(-0.875746\pi\)
0.924774 0.380516i \(-0.124254\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 4196.86i − 0.174565i
\(834\) 0 0
\(835\) −27795.9 −1.15200
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −3851.73 −0.158494 −0.0792469 0.996855i \(-0.525252\pi\)
−0.0792469 + 0.996855i \(0.525252\pi\)
\(840\) 0 0
\(841\) −16628.6 −0.681806
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −17665.3 −0.719176
\(846\) 0 0
\(847\) − 26063.4i − 1.05732i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 9881.10i 0.398025i
\(852\) 0 0
\(853\) − 38776.8i − 1.55650i −0.627956 0.778249i \(-0.716108\pi\)
0.627956 0.778249i \(-0.283892\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 43562.3i 1.73636i 0.496251 + 0.868179i \(0.334709\pi\)
−0.496251 + 0.868179i \(0.665291\pi\)
\(858\) 0 0
\(859\) 44787.5 1.77896 0.889481 0.456972i \(-0.151066\pi\)
0.889481 + 0.456972i \(0.151066\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −35822.5 −1.41299 −0.706496 0.707717i \(-0.749725\pi\)
−0.706496 + 0.707717i \(0.749725\pi\)
\(864\) 0 0
\(865\) 3562.26 0.140024
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5004.70 0.195366
\(870\) 0 0
\(871\) 2104.76i 0.0818793i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 31623.1i − 1.22178i
\(876\) 0 0
\(877\) 41341.0i 1.59178i 0.605444 + 0.795888i \(0.292995\pi\)
−0.605444 + 0.795888i \(0.707005\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 39795.2i 1.52183i 0.648849 + 0.760917i \(0.275250\pi\)
−0.648849 + 0.760917i \(0.724750\pi\)
\(882\) 0 0
\(883\) −8467.92 −0.322727 −0.161364 0.986895i \(-0.551589\pi\)
−0.161364 + 0.986895i \(0.551589\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24074.8 0.911333 0.455667 0.890151i \(-0.349401\pi\)
0.455667 + 0.890151i \(0.349401\pi\)
\(888\) 0 0
\(889\) 8627.74 0.325495
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9124.50 −0.341926
\(894\) 0 0
\(895\) − 26834.2i − 1.00220i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1335.77i 0.0495556i
\(900\) 0 0
\(901\) 3837.91i 0.141908i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14877.7i 0.546466i
\(906\) 0 0
\(907\) 39195.4 1.43491 0.717454 0.696606i \(-0.245307\pi\)
0.717454 + 0.696606i \(0.245307\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 31378.8 1.14119 0.570596 0.821231i \(-0.306712\pi\)
0.570596 + 0.821231i \(0.306712\pi\)
\(912\) 0 0
\(913\) −7251.64 −0.262863
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 33608.8 1.21032
\(918\) 0 0
\(919\) − 19895.4i − 0.714133i −0.934079 0.357067i \(-0.883777\pi\)
0.934079 0.357067i \(-0.116223\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 1139.14i − 0.0406231i
\(924\) 0 0
\(925\) − 4396.15i − 0.156264i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 27091.5i 0.956775i 0.878149 + 0.478388i \(0.158779\pi\)
−0.878149 + 0.478388i \(0.841221\pi\)
\(930\) 0 0
\(931\) 2399.42 0.0844659
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3382.18 0.118298
\(936\) 0 0
\(937\) 41248.6 1.43814 0.719069 0.694939i \(-0.244569\pi\)
0.719069 + 0.694939i \(0.244569\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −53921.1 −1.86799 −0.933994 0.357288i \(-0.883701\pi\)
−0.933994 + 0.357288i \(0.883701\pi\)
\(942\) 0 0
\(943\) 20499.8i 0.707915i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33948.7i 1.16492i 0.812858 + 0.582462i \(0.197911\pi\)
−0.812858 + 0.582462i \(0.802089\pi\)
\(948\) 0 0
\(949\) 1352.18i 0.0462526i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 14737.7i − 0.500946i −0.968124 0.250473i \(-0.919414\pi\)
0.968124 0.250473i \(-0.0805861\pi\)
\(954\) 0 0
\(955\) −42541.3 −1.44147
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −22360.3 −0.752923
\(960\) 0 0
\(961\) 29561.1 0.992282
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 20271.6 0.676234
\(966\) 0 0
\(967\) 33349.1i 1.10903i 0.832173 + 0.554516i \(0.187096\pi\)
−0.832173 + 0.554516i \(0.812904\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 10903.8i − 0.360370i −0.983633 0.180185i \(-0.942330\pi\)
0.983633 0.180185i \(-0.0576697\pi\)
\(972\) 0 0
\(973\) − 45058.3i − 1.48459i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 27911.7i 0.913998i 0.889467 + 0.456999i \(0.151076\pi\)
−0.889467 + 0.456999i \(0.848924\pi\)
\(978\) 0 0
\(979\) 15109.3 0.493254
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2039.07 0.0661610 0.0330805 0.999453i \(-0.489468\pi\)
0.0330805 + 0.999453i \(0.489468\pi\)
\(984\) 0 0
\(985\) −27450.3 −0.887958
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −48990.3 −1.57513
\(990\) 0 0
\(991\) 8879.39i 0.284625i 0.989822 + 0.142312i \(0.0454538\pi\)
−0.989822 + 0.142312i \(0.954546\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 556.680i 0.0177366i
\(996\) 0 0
\(997\) − 32084.2i − 1.01917i −0.860419 0.509587i \(-0.829798\pi\)
0.860419 0.509587i \(-0.170202\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.4.f.h.863.5 16
3.2 odd 2 1728.4.f.j.863.11 yes 16
4.3 odd 2 1728.4.f.j.863.6 yes 16
8.3 odd 2 1728.4.f.j.863.12 yes 16
8.5 even 2 inner 1728.4.f.h.863.11 yes 16
12.11 even 2 inner 1728.4.f.h.863.12 yes 16
24.5 odd 2 1728.4.f.j.863.5 yes 16
24.11 even 2 inner 1728.4.f.h.863.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1728.4.f.h.863.5 16 1.1 even 1 trivial
1728.4.f.h.863.6 yes 16 24.11 even 2 inner
1728.4.f.h.863.11 yes 16 8.5 even 2 inner
1728.4.f.h.863.12 yes 16 12.11 even 2 inner
1728.4.f.j.863.5 yes 16 24.5 odd 2
1728.4.f.j.863.6 yes 16 4.3 odd 2
1728.4.f.j.863.11 yes 16 3.2 odd 2
1728.4.f.j.863.12 yes 16 8.3 odd 2