# Properties

 Label 1728.3.q.c Level $1728$ Weight $3$ Character orbit 1728.q Analytic conductor $47.085$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1728 = 2^{6} \cdot 3^{3}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 1728.q (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$47.0845896815$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} - 2x^{2} + 4$$ x^4 - 2*x^2 + 4 Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$3^{2}$$ Twist minimal: no (minimal twist has level 18) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - 3 \beta_{2} - 3) q^{5} + (\beta_{3} - \beta_{2} + \beta_1) q^{7}+O(q^{10})$$ q + (-3*b2 - 3) * q^5 + (b3 - b2 + b1) * q^7 $$q + ( - 3 \beta_{2} - 3) q^{5} + (\beta_{3} - \beta_{2} + \beta_1) q^{7} + (\beta_{3} + 3 \beta_{2} - \beta_1 - 6) q^{11} + ( - 4 \beta_{3} - 5 \beta_{2} + 2 \beta_1 + 5) q^{13} + (2 \beta_{3} - 12 \beta_{2} + 6) q^{17} + ( - 2 \beta_{3} + 4 \beta_1 - 10) q^{19} + (3 \beta_{2} + \beta_1 + 3) q^{23} + 2 \beta_{2} q^{25} + (2 \beta_{3} - 3 \beta_{2} - 2 \beta_1 + 6) q^{29} + (6 \beta_{3} + 19 \beta_{2} - 3 \beta_1 - 19) q^{31} + ( - 9 \beta_{3} + 6 \beta_{2} - 3) q^{35} + ( - 2 \beta_{3} + 4 \beta_1 - 32) q^{37} + (21 \beta_{2} + 6 \beta_1 + 21) q^{41} + (3 \beta_{3} - 23 \beta_{2} + 3 \beta_1) q^{43} + (7 \beta_{3} - 9 \beta_{2} - 7 \beta_1 + 18) q^{47} + ( - 4 \beta_{3} + 6 \beta_{2} + 2 \beta_1 - 6) q^{49} + ( - 10 \beta_{3} + 60 \beta_{2} - 30) q^{53} + ( - 3 \beta_{3} + 6 \beta_1 + 27) q^{55} + ( - 21 \beta_{2} - 13 \beta_1 - 21) q^{59} + ( - 6 \beta_{3} - 31 \beta_{2} - 6 \beta_1) q^{61} + (18 \beta_{3} + 15 \beta_{2} - 18 \beta_1 - 30) q^{65} + ( - 6 \beta_{3} + 53 \beta_{2} + 3 \beta_1 - 53) q^{67} + ( - 8 \beta_{3} - 60 \beta_{2} + 30) q^{71} + (6 \beta_{3} - 12 \beta_1 - 52) q^{73} + ( - 15 \beta_{2} - 8 \beta_1 - 15) q^{77} + (5 \beta_{3} - 7 \beta_{2} + 5 \beta_1) q^{79} + (5 \beta_{3} - 63 \beta_{2} - 5 \beta_1 + 126) q^{83} + ( - 12 \beta_{3} + 54 \beta_{2} + 6 \beta_1 - 54) q^{85} + ( - 22 \beta_{3} + 60 \beta_{2} - 30) q^{89} + ( - 3 \beta_{3} + 6 \beta_1 + 103) q^{91} + (30 \beta_{2} - 18 \beta_1 + 30) q^{95} + ( - 14 \beta_{3} + 7 \beta_{2} - 14 \beta_1) q^{97}+O(q^{100})$$ q + (-3*b2 - 3) * q^5 + (b3 - b2 + b1) * q^7 + (b3 + 3*b2 - b1 - 6) * q^11 + (-4*b3 - 5*b2 + 2*b1 + 5) * q^13 + (2*b3 - 12*b2 + 6) * q^17 + (-2*b3 + 4*b1 - 10) * q^19 + (3*b2 + b1 + 3) * q^23 + 2*b2 * q^25 + (2*b3 - 3*b2 - 2*b1 + 6) * q^29 + (6*b3 + 19*b2 - 3*b1 - 19) * q^31 + (-9*b3 + 6*b2 - 3) * q^35 + (-2*b3 + 4*b1 - 32) * q^37 + (21*b2 + 6*b1 + 21) * q^41 + (3*b3 - 23*b2 + 3*b1) * q^43 + (7*b3 - 9*b2 - 7*b1 + 18) * q^47 + (-4*b3 + 6*b2 + 2*b1 - 6) * q^49 + (-10*b3 + 60*b2 - 30) * q^53 + (-3*b3 + 6*b1 + 27) * q^55 + (-21*b2 - 13*b1 - 21) * q^59 + (-6*b3 - 31*b2 - 6*b1) * q^61 + (18*b3 + 15*b2 - 18*b1 - 30) * q^65 + (-6*b3 + 53*b2 + 3*b1 - 53) * q^67 + (-8*b3 - 60*b2 + 30) * q^71 + (6*b3 - 12*b1 - 52) * q^73 + (-15*b2 - 8*b1 - 15) * q^77 + (5*b3 - 7*b2 + 5*b1) * q^79 + (5*b3 - 63*b2 - 5*b1 + 126) * q^83 + (-12*b3 + 54*b2 + 6*b1 - 54) * q^85 + (-22*b3 + 60*b2 - 30) * q^89 + (-3*b3 + 6*b1 + 103) * q^91 + (30*b2 - 18*b1 + 30) * q^95 + (-14*b3 + 7*b2 - 14*b1) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 18 q^{5} - 2 q^{7}+O(q^{10})$$ 4 * q - 18 * q^5 - 2 * q^7 $$4 q - 18 q^{5} - 2 q^{7} - 18 q^{11} + 10 q^{13} - 40 q^{19} + 18 q^{23} + 4 q^{25} + 18 q^{29} - 38 q^{31} - 128 q^{37} + 126 q^{41} - 46 q^{43} + 54 q^{47} - 12 q^{49} + 108 q^{55} - 126 q^{59} - 62 q^{61} - 90 q^{65} - 106 q^{67} - 208 q^{73} - 90 q^{77} - 14 q^{79} + 378 q^{83} - 108 q^{85} + 412 q^{91} + 180 q^{95} + 14 q^{97}+O(q^{100})$$ 4 * q - 18 * q^5 - 2 * q^7 - 18 * q^11 + 10 * q^13 - 40 * q^19 + 18 * q^23 + 4 * q^25 + 18 * q^29 - 38 * q^31 - 128 * q^37 + 126 * q^41 - 46 * q^43 + 54 * q^47 - 12 * q^49 + 108 * q^55 - 126 * q^59 - 62 * q^61 - 90 * q^65 - 106 * q^67 - 208 * q^73 - 90 * q^77 - 14 * q^79 + 378 * q^83 - 108 * q^85 + 412 * q^91 + 180 * q^95 + 14 * q^97

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - 2x^{2} + 4$$ :

 $$\beta_{1}$$ $$=$$ $$3\nu$$ 3*v $$\beta_{2}$$ $$=$$ $$( \nu^{2} ) / 2$$ (v^2) / 2 $$\beta_{3}$$ $$=$$ $$( 3\nu^{3} ) / 2$$ (3*v^3) / 2
 $$\nu$$ $$=$$ $$( \beta_1 ) / 3$$ (b1) / 3 $$\nu^{2}$$ $$=$$ $$2\beta_{2}$$ 2*b2 $$\nu^{3}$$ $$=$$ $$( 2\beta_{3} ) / 3$$ (2*b3) / 3

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$703$$ $$1217$$ $$\chi(n)$$ $$1$$ $$1$$ $$1 - \beta_{2}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 −1.22474 − 0.707107i 1.22474 + 0.707107i −1.22474 + 0.707107i 1.22474 − 0.707107i
0 0 0 −4.50000 2.59808i 0 −4.17423 7.22999i 0 0 0
449.2 0 0 0 −4.50000 2.59808i 0 3.17423 + 5.49794i 0 0 0
1601.1 0 0 0 −4.50000 + 2.59808i 0 −4.17423 + 7.22999i 0 0 0
1601.2 0 0 0 −4.50000 + 2.59808i 0 3.17423 5.49794i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.d odd 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1728.3.q.c 4
3.b odd 2 1 576.3.q.e 4
4.b odd 2 1 1728.3.q.d 4
8.b even 2 1 432.3.q.d 4
8.d odd 2 1 54.3.d.a 4
9.c even 3 1 576.3.q.e 4
9.d odd 6 1 inner 1728.3.q.c 4
12.b even 2 1 576.3.q.f 4
24.f even 2 1 18.3.d.a 4
24.h odd 2 1 144.3.q.c 4
36.f odd 6 1 576.3.q.f 4
36.h even 6 1 1728.3.q.d 4
40.e odd 2 1 1350.3.i.b 4
40.k even 4 2 1350.3.k.a 8
72.j odd 6 1 432.3.q.d 4
72.j odd 6 1 1296.3.e.g 4
72.l even 6 1 54.3.d.a 4
72.l even 6 1 162.3.b.a 4
72.n even 6 1 144.3.q.c 4
72.n even 6 1 1296.3.e.g 4
72.p odd 6 1 18.3.d.a 4
72.p odd 6 1 162.3.b.a 4
120.m even 2 1 450.3.i.b 4
120.q odd 4 2 450.3.k.a 8
360.z odd 6 1 450.3.i.b 4
360.bd even 6 1 1350.3.i.b 4
360.bo even 12 2 450.3.k.a 8
360.bt odd 12 2 1350.3.k.a 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.3.d.a 4 24.f even 2 1
18.3.d.a 4 72.p odd 6 1
54.3.d.a 4 8.d odd 2 1
54.3.d.a 4 72.l even 6 1
144.3.q.c 4 24.h odd 2 1
144.3.q.c 4 72.n even 6 1
162.3.b.a 4 72.l even 6 1
162.3.b.a 4 72.p odd 6 1
432.3.q.d 4 8.b even 2 1
432.3.q.d 4 72.j odd 6 1
450.3.i.b 4 120.m even 2 1
450.3.i.b 4 360.z odd 6 1
450.3.k.a 8 120.q odd 4 2
450.3.k.a 8 360.bo even 12 2
576.3.q.e 4 3.b odd 2 1
576.3.q.e 4 9.c even 3 1
576.3.q.f 4 12.b even 2 1
576.3.q.f 4 36.f odd 6 1
1296.3.e.g 4 72.j odd 6 1
1296.3.e.g 4 72.n even 6 1
1350.3.i.b 4 40.e odd 2 1
1350.3.i.b 4 360.bd even 6 1
1350.3.k.a 8 40.k even 4 2
1350.3.k.a 8 360.bt odd 12 2
1728.3.q.c 4 1.a even 1 1 trivial
1728.3.q.c 4 9.d odd 6 1 inner
1728.3.q.d 4 4.b odd 2 1
1728.3.q.d 4 36.h even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(1728, [\chi])$$:

 $$T_{5}^{2} + 9T_{5} + 27$$ T5^2 + 9*T5 + 27 $$T_{7}^{4} + 2T_{7}^{3} + 57T_{7}^{2} - 106T_{7} + 2809$$ T7^4 + 2*T7^3 + 57*T7^2 - 106*T7 + 2809

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4}$$
$5$ $$(T^{2} + 9 T + 27)^{2}$$
$7$ $$T^{4} + 2 T^{3} + 57 T^{2} + \cdots + 2809$$
$11$ $$T^{4} + 18 T^{3} + 117 T^{2} + \cdots + 81$$
$13$ $$T^{4} - 10 T^{3} + 291 T^{2} + \cdots + 36481$$
$17$ $$T^{4} + 360T^{2} + 1296$$
$19$ $$(T^{2} + 20 T - 116)^{2}$$
$23$ $$T^{4} - 18 T^{3} + 117 T^{2} + \cdots + 81$$
$29$ $$T^{4} - 18 T^{3} + 63 T^{2} + \cdots + 2025$$
$31$ $$T^{4} + 38 T^{3} + 1569 T^{2} + \cdots + 15625$$
$37$ $$(T^{2} + 64 T + 808)^{2}$$
$41$ $$T^{4} - 126 T^{3} + 5967 T^{2} + \cdots + 455625$$
$43$ $$T^{4} + 46 T^{3} + 2073 T^{2} + \cdots + 1849$$
$47$ $$T^{4} - 54 T^{3} + 333 T^{2} + \cdots + 408321$$
$53$ $$T^{4} + 9000 T^{2} + 810000$$
$59$ $$T^{4} + 126 T^{3} + 3573 T^{2} + \cdots + 2954961$$
$61$ $$T^{4} + 62 T^{3} + 4827 T^{2} + \cdots + 966289$$
$67$ $$T^{4} + 106 T^{3} + 8913 T^{2} + \cdots + 5396329$$
$71$ $$T^{4} + 7704 T^{2} + \cdots + 2396304$$
$73$ $$(T^{2} + 104 T + 760)^{2}$$
$79$ $$T^{4} + 14 T^{3} + 1497 T^{2} + \cdots + 1692601$$
$83$ $$T^{4} - 378 T^{3} + \cdots + 131262849$$
$89$ $$T^{4} + 22824 T^{2} + \cdots + 36144144$$
$97$ $$T^{4} - 14 T^{3} + \cdots + 110986225$$