Properties

Label 1728.3.h.j.161.8
Level $1728$
Weight $3$
Character 1728.161
Analytic conductor $47.085$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,3,Mod(161,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.161"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0, 0,0,0,0,0,252,0,0,0,0,0,0,0,0,0,0,0,0,0,168] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(49)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 13x^{10} + 129x^{8} - 512x^{6} + 1548x^{4} - 160x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{26}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.8
Root \(2.47317 + 1.42789i\) of defining polynomial
Character \(\chi\) \(=\) 1728.161
Dual form 1728.3.h.j.161.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.519033 q^{5} +10.4117 q^{7} -14.1346 q^{11} +5.39052i q^{13} -24.9326i q^{17} +13.3367i q^{19} -41.1084i q^{23} -24.7306 q^{25} +7.85538 q^{29} -26.1945 q^{31} +5.40403 q^{35} +1.53769i q^{37} -21.3367i q^{41} -64.1345i q^{43} +19.8630i q^{47} +59.4039 q^{49} -68.6521 q^{53} -7.33635 q^{55} +67.8652 q^{59} -58.6563i q^{61} +2.79786i q^{65} +56.1345i q^{67} -107.615i q^{71} +7.73060 q^{73} -147.166 q^{77} +64.3579 q^{79} +125.192 q^{83} -12.9409i q^{85} +59.6159i q^{89} +56.1246i q^{91} +6.92217i q^{95} -138.481 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{11} + 72 q^{25} + 252 q^{35} + 168 q^{49} + 264 q^{59} - 276 q^{73} + 396 q^{83} - 396 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.519033 0.103807 0.0519033 0.998652i \(-0.483471\pi\)
0.0519033 + 0.998652i \(0.483471\pi\)
\(6\) 0 0
\(7\) 10.4117 1.48739 0.743694 0.668520i \(-0.233072\pi\)
0.743694 + 0.668520i \(0.233072\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −14.1346 −1.28497 −0.642483 0.766300i \(-0.722096\pi\)
−0.642483 + 0.766300i \(0.722096\pi\)
\(12\) 0 0
\(13\) 5.39052i 0.414655i 0.978272 + 0.207328i \(0.0664766\pi\)
−0.978272 + 0.207328i \(0.933523\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 24.9326i − 1.46662i −0.679892 0.733312i \(-0.737973\pi\)
0.679892 0.733312i \(-0.262027\pi\)
\(18\) 0 0
\(19\) 13.3367i 0.701929i 0.936389 + 0.350964i \(0.114146\pi\)
−0.936389 + 0.350964i \(0.885854\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 41.1084i − 1.78732i −0.448742 0.893662i \(-0.648128\pi\)
0.448742 0.893662i \(-0.351872\pi\)
\(24\) 0 0
\(25\) −24.7306 −0.989224
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.85538 0.270875 0.135438 0.990786i \(-0.456756\pi\)
0.135438 + 0.990786i \(0.456756\pi\)
\(30\) 0 0
\(31\) −26.1945 −0.844985 −0.422493 0.906366i \(-0.638845\pi\)
−0.422493 + 0.906366i \(0.638845\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.40403 0.154401
\(36\) 0 0
\(37\) 1.53769i 0.0415591i 0.999784 + 0.0207795i \(0.00661481\pi\)
−0.999784 + 0.0207795i \(0.993385\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 21.3367i − 0.520406i −0.965554 0.260203i \(-0.916210\pi\)
0.965554 0.260203i \(-0.0837895\pi\)
\(42\) 0 0
\(43\) − 64.1345i − 1.49150i −0.666226 0.745750i \(-0.732091\pi\)
0.666226 0.745750i \(-0.267909\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 19.8630i 0.422618i 0.977419 + 0.211309i \(0.0677726\pi\)
−0.977419 + 0.211309i \(0.932227\pi\)
\(48\) 0 0
\(49\) 59.4039 1.21232
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −68.6521 −1.29532 −0.647661 0.761928i \(-0.724253\pi\)
−0.647661 + 0.761928i \(0.724253\pi\)
\(54\) 0 0
\(55\) −7.33635 −0.133388
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 67.8652 1.15026 0.575129 0.818063i \(-0.304952\pi\)
0.575129 + 0.818063i \(0.304952\pi\)
\(60\) 0 0
\(61\) − 58.6563i − 0.961579i −0.876836 0.480789i \(-0.840350\pi\)
0.876836 0.480789i \(-0.159650\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.79786i 0.0430440i
\(66\) 0 0
\(67\) 56.1345i 0.837828i 0.908026 + 0.418914i \(0.137589\pi\)
−0.908026 + 0.418914i \(0.862411\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 107.615i − 1.51570i −0.652430 0.757849i \(-0.726250\pi\)
0.652430 0.757849i \(-0.273750\pi\)
\(72\) 0 0
\(73\) 7.73060 0.105899 0.0529493 0.998597i \(-0.483138\pi\)
0.0529493 + 0.998597i \(0.483138\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −147.166 −1.91124
\(78\) 0 0
\(79\) 64.3579 0.814657 0.407329 0.913282i \(-0.366460\pi\)
0.407329 + 0.913282i \(0.366460\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 125.192 1.50834 0.754168 0.656682i \(-0.228041\pi\)
0.754168 + 0.656682i \(0.228041\pi\)
\(84\) 0 0
\(85\) − 12.9409i − 0.152245i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 59.6159i 0.669841i 0.942246 + 0.334921i \(0.108710\pi\)
−0.942246 + 0.334921i \(0.891290\pi\)
\(90\) 0 0
\(91\) 56.1246i 0.616753i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.92217i 0.0728649i
\(96\) 0 0
\(97\) −138.481 −1.42764 −0.713820 0.700329i \(-0.753037\pi\)
−0.713820 + 0.700329i \(0.753037\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −137.234 −1.35876 −0.679378 0.733789i \(-0.737750\pi\)
−0.679378 + 0.733789i \(0.737750\pi\)
\(102\) 0 0
\(103\) −69.7312 −0.677002 −0.338501 0.940966i \(-0.609920\pi\)
−0.338501 + 0.940966i \(0.609920\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 102.077 0.953994 0.476997 0.878905i \(-0.341725\pi\)
0.476997 + 0.878905i \(0.341725\pi\)
\(108\) 0 0
\(109\) 172.600i 1.58349i 0.610853 + 0.791744i \(0.290827\pi\)
−0.610853 + 0.791744i \(0.709173\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 72.7981i − 0.644231i −0.946700 0.322116i \(-0.895606\pi\)
0.946700 0.322116i \(-0.104394\pi\)
\(114\) 0 0
\(115\) − 21.3367i − 0.185536i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 259.591i − 2.18144i
\(120\) 0 0
\(121\) 78.7879 0.651140
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −25.8118 −0.206495
\(126\) 0 0
\(127\) 88.0992 0.693695 0.346847 0.937922i \(-0.387252\pi\)
0.346847 + 0.937922i \(0.387252\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −43.4038 −0.331327 −0.165663 0.986182i \(-0.552976\pi\)
−0.165663 + 0.986182i \(0.552976\pi\)
\(132\) 0 0
\(133\) 138.857i 1.04404i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 152.154i − 1.11062i −0.831645 0.555308i \(-0.812600\pi\)
0.831645 0.555308i \(-0.187400\pi\)
\(138\) 0 0
\(139\) − 104.000i − 0.748201i −0.927388 0.374101i \(-0.877951\pi\)
0.927388 0.374101i \(-0.122049\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 76.1930i − 0.532818i
\(144\) 0 0
\(145\) 4.07721 0.0281187
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19.4437 −0.130495 −0.0652473 0.997869i \(-0.520784\pi\)
−0.0652473 + 0.997869i \(0.520784\pi\)
\(150\) 0 0
\(151\) 21.5254 0.142552 0.0712762 0.997457i \(-0.477293\pi\)
0.0712762 + 0.997457i \(0.477293\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −13.5958 −0.0877151
\(156\) 0 0
\(157\) − 272.808i − 1.73763i −0.495134 0.868817i \(-0.664881\pi\)
0.495134 0.868817i \(-0.335119\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 428.009i − 2.65844i
\(162\) 0 0
\(163\) − 24.1445i − 0.148126i −0.997254 0.0740628i \(-0.976403\pi\)
0.997254 0.0740628i \(-0.0235965\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 207.823i − 1.24445i −0.782839 0.622224i \(-0.786229\pi\)
0.782839 0.622224i \(-0.213771\pi\)
\(168\) 0 0
\(169\) 139.942 0.828061
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −302.257 −1.74715 −0.873575 0.486689i \(-0.838204\pi\)
−0.873575 + 0.486689i \(0.838204\pi\)
\(174\) 0 0
\(175\) −257.488 −1.47136
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.9997 −0.0614511 −0.0307256 0.999528i \(-0.509782\pi\)
−0.0307256 + 0.999528i \(0.509782\pi\)
\(180\) 0 0
\(181\) − 196.011i − 1.08293i −0.840723 0.541466i \(-0.817870\pi\)
0.840723 0.541466i \(-0.182130\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.798110i 0.00431411i
\(186\) 0 0
\(187\) 352.413i 1.88456i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 267.896i − 1.40260i −0.712868 0.701298i \(-0.752604\pi\)
0.712868 0.701298i \(-0.247396\pi\)
\(192\) 0 0
\(193\) −33.9996 −0.176164 −0.0880819 0.996113i \(-0.528074\pi\)
−0.0880819 + 0.996113i \(0.528074\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −114.706 −0.582265 −0.291133 0.956683i \(-0.594032\pi\)
−0.291133 + 0.956683i \(0.594032\pi\)
\(198\) 0 0
\(199\) 189.845 0.953996 0.476998 0.878904i \(-0.341725\pi\)
0.476998 + 0.878904i \(0.341725\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 81.7880 0.402897
\(204\) 0 0
\(205\) − 11.0744i − 0.0540216i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 188.509i − 0.901955i
\(210\) 0 0
\(211\) − 373.875i − 1.77192i −0.463764 0.885959i \(-0.653501\pi\)
0.463764 0.885959i \(-0.346499\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 33.2880i − 0.154828i
\(216\) 0 0
\(217\) −272.730 −1.25682
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 134.400 0.608144
\(222\) 0 0
\(223\) −97.7546 −0.438362 −0.219181 0.975684i \(-0.570338\pi\)
−0.219181 + 0.975684i \(0.570338\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 103.347 0.455271 0.227636 0.973746i \(-0.426900\pi\)
0.227636 + 0.973746i \(0.426900\pi\)
\(228\) 0 0
\(229\) − 126.850i − 0.553931i −0.960880 0.276966i \(-0.910671\pi\)
0.960880 0.276966i \(-0.0893288\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 380.942i 1.63494i 0.575968 + 0.817472i \(0.304625\pi\)
−0.575968 + 0.817472i \(0.695375\pi\)
\(234\) 0 0
\(235\) 10.3096i 0.0438705i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 266.998i − 1.11715i −0.829456 0.558573i \(-0.811349\pi\)
0.829456 0.558573i \(-0.188651\pi\)
\(240\) 0 0
\(241\) 341.231 1.41590 0.707949 0.706264i \(-0.249621\pi\)
0.707949 + 0.706264i \(0.249621\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 30.8326 0.125847
\(246\) 0 0
\(247\) −71.8914 −0.291058
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −52.9627 −0.211007 −0.105503 0.994419i \(-0.533645\pi\)
−0.105503 + 0.994419i \(0.533645\pi\)
\(252\) 0 0
\(253\) 581.053i 2.29665i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 120.664i − 0.469508i −0.972055 0.234754i \(-0.924572\pi\)
0.972055 0.234754i \(-0.0754285\pi\)
\(258\) 0 0
\(259\) 16.0100i 0.0618145i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 441.123i 1.67728i 0.544690 + 0.838638i \(0.316647\pi\)
−0.544690 + 0.838638i \(0.683353\pi\)
\(264\) 0 0
\(265\) −35.6327 −0.134463
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −455.412 −1.69298 −0.846490 0.532404i \(-0.821289\pi\)
−0.846490 + 0.532404i \(0.821289\pi\)
\(270\) 0 0
\(271\) 304.415 1.12330 0.561652 0.827374i \(-0.310166\pi\)
0.561652 + 0.827374i \(0.310166\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 349.558 1.27112
\(276\) 0 0
\(277\) 541.056i 1.95327i 0.214906 + 0.976635i \(0.431055\pi\)
−0.214906 + 0.976635i \(0.568945\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 276.414i 0.983680i 0.870686 + 0.491840i \(0.163675\pi\)
−0.870686 + 0.491840i \(0.836325\pi\)
\(282\) 0 0
\(283\) − 231.990i − 0.819753i −0.912141 0.409876i \(-0.865572\pi\)
0.912141 0.409876i \(-0.134428\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 222.151i − 0.774046i
\(288\) 0 0
\(289\) −332.636 −1.15099
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −548.289 −1.87129 −0.935646 0.352939i \(-0.885182\pi\)
−0.935646 + 0.352939i \(0.885182\pi\)
\(294\) 0 0
\(295\) 35.2243 0.119405
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 221.596 0.741123
\(300\) 0 0
\(301\) − 667.751i − 2.21844i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 30.4446i − 0.0998183i
\(306\) 0 0
\(307\) 437.740i 1.42586i 0.701233 + 0.712932i \(0.252633\pi\)
−0.701233 + 0.712932i \(0.747367\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 349.215i 1.12288i 0.827519 + 0.561438i \(0.189752\pi\)
−0.827519 + 0.561438i \(0.810248\pi\)
\(312\) 0 0
\(313\) −304.558 −0.973030 −0.486515 0.873672i \(-0.661732\pi\)
−0.486515 + 0.873672i \(0.661732\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 387.488 1.22236 0.611180 0.791491i \(-0.290695\pi\)
0.611180 + 0.791491i \(0.290695\pi\)
\(318\) 0 0
\(319\) −111.033 −0.348066
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 332.518 1.02947
\(324\) 0 0
\(325\) − 133.311i − 0.410187i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 206.808i 0.628597i
\(330\) 0 0
\(331\) 293.690i 0.887282i 0.896205 + 0.443641i \(0.146314\pi\)
−0.896205 + 0.443641i \(0.853686\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 29.1357i 0.0869722i
\(336\) 0 0
\(337\) 415.845 1.23396 0.616980 0.786978i \(-0.288356\pi\)
0.616980 + 0.786978i \(0.288356\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 370.250 1.08578
\(342\) 0 0
\(343\) 108.323 0.315809
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −202.882 −0.584676 −0.292338 0.956315i \(-0.594433\pi\)
−0.292338 + 0.956315i \(0.594433\pi\)
\(348\) 0 0
\(349\) − 12.3532i − 0.0353960i −0.999843 0.0176980i \(-0.994366\pi\)
0.999843 0.0176980i \(-0.00563374\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.3361i 0.0717738i 0.999356 + 0.0358869i \(0.0114256\pi\)
−0.999356 + 0.0358869i \(0.988574\pi\)
\(354\) 0 0
\(355\) − 55.8555i − 0.157340i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 264.158i 0.735816i 0.929862 + 0.367908i \(0.119926\pi\)
−0.929862 + 0.367908i \(0.880074\pi\)
\(360\) 0 0
\(361\) 183.134 0.507296
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.01244 0.0109930
\(366\) 0 0
\(367\) 417.797 1.13841 0.569206 0.822195i \(-0.307251\pi\)
0.569206 + 0.822195i \(0.307251\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −714.787 −1.92665
\(372\) 0 0
\(373\) − 529.014i − 1.41827i −0.705074 0.709134i \(-0.749086\pi\)
0.705074 0.709134i \(-0.250914\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 42.3446i 0.112320i
\(378\) 0 0
\(379\) − 280.329i − 0.739654i −0.929101 0.369827i \(-0.879417\pi\)
0.929101 0.369827i \(-0.120583\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 57.2283i 0.149421i 0.997205 + 0.0747105i \(0.0238033\pi\)
−0.997205 + 0.0747105i \(0.976197\pi\)
\(384\) 0 0
\(385\) −76.3840 −0.198400
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 279.589 0.718738 0.359369 0.933196i \(-0.382992\pi\)
0.359369 + 0.933196i \(0.382992\pi\)
\(390\) 0 0
\(391\) −1024.94 −2.62133
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 33.4039 0.0845668
\(396\) 0 0
\(397\) 458.764i 1.15558i 0.816187 + 0.577788i \(0.196084\pi\)
−0.816187 + 0.577788i \(0.803916\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 620.518i − 1.54743i −0.633537 0.773713i \(-0.718397\pi\)
0.633537 0.773713i \(-0.281603\pi\)
\(402\) 0 0
\(403\) − 141.202i − 0.350378i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 21.7346i − 0.0534020i
\(408\) 0 0
\(409\) 645.114 1.57730 0.788648 0.614845i \(-0.210782\pi\)
0.788648 + 0.614845i \(0.210782\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 706.594 1.71088
\(414\) 0 0
\(415\) 64.9787 0.156575
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −586.059 −1.39871 −0.699355 0.714775i \(-0.746529\pi\)
−0.699355 + 0.714775i \(0.746529\pi\)
\(420\) 0 0
\(421\) − 59.0014i − 0.140146i −0.997542 0.0700729i \(-0.977677\pi\)
0.997542 0.0700729i \(-0.0223232\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 616.599i 1.45082i
\(426\) 0 0
\(427\) − 610.713i − 1.43024i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 14.3336i − 0.0332565i −0.999862 0.0166283i \(-0.994707\pi\)
0.999862 0.0166283i \(-0.00529318\pi\)
\(432\) 0 0
\(433\) −224.980 −0.519585 −0.259792 0.965665i \(-0.583654\pi\)
−0.259792 + 0.965665i \(0.583654\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 548.249 1.25457
\(438\) 0 0
\(439\) 223.743 0.509666 0.254833 0.966985i \(-0.417980\pi\)
0.254833 + 0.966985i \(0.417980\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −107.058 −0.241665 −0.120833 0.992673i \(-0.538556\pi\)
−0.120833 + 0.992673i \(0.538556\pi\)
\(444\) 0 0
\(445\) 30.9426i 0.0695340i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 381.815i − 0.850367i −0.905107 0.425184i \(-0.860209\pi\)
0.905107 0.425184i \(-0.139791\pi\)
\(450\) 0 0
\(451\) 301.586i 0.668705i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 29.1305i 0.0640231i
\(456\) 0 0
\(457\) −349.194 −0.764101 −0.382051 0.924141i \(-0.624782\pi\)
−0.382051 + 0.924141i \(0.624782\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.02277 −0.00872619 −0.00436309 0.999990i \(-0.501389\pi\)
−0.00436309 + 0.999990i \(0.501389\pi\)
\(462\) 0 0
\(463\) −851.739 −1.83961 −0.919804 0.392377i \(-0.871653\pi\)
−0.919804 + 0.392377i \(0.871653\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −503.521 −1.07820 −0.539101 0.842241i \(-0.681236\pi\)
−0.539101 + 0.842241i \(0.681236\pi\)
\(468\) 0 0
\(469\) 584.457i 1.24618i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 906.518i 1.91653i
\(474\) 0 0
\(475\) − 329.823i − 0.694365i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 286.856i 0.598863i 0.954118 + 0.299432i \(0.0967971\pi\)
−0.954118 + 0.299432i \(0.903203\pi\)
\(480\) 0 0
\(481\) −8.28892 −0.0172327
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −71.8763 −0.148199
\(486\) 0 0
\(487\) 873.195 1.79301 0.896504 0.443036i \(-0.146099\pi\)
0.896504 + 0.443036i \(0.146099\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −441.288 −0.898754 −0.449377 0.893342i \(-0.648354\pi\)
−0.449377 + 0.893342i \(0.648354\pi\)
\(492\) 0 0
\(493\) − 195.855i − 0.397272i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 1120.45i − 2.25443i
\(498\) 0 0
\(499\) 897.749i 1.79910i 0.436823 + 0.899548i \(0.356104\pi\)
−0.436823 + 0.899548i \(0.643896\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 638.356i 1.26910i 0.772883 + 0.634549i \(0.218814\pi\)
−0.772883 + 0.634549i \(0.781186\pi\)
\(504\) 0 0
\(505\) −71.2292 −0.141048
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 684.754 1.34529 0.672647 0.739964i \(-0.265157\pi\)
0.672647 + 0.739964i \(0.265157\pi\)
\(510\) 0 0
\(511\) 80.4889 0.157512
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −36.1928 −0.0702773
\(516\) 0 0
\(517\) − 280.757i − 0.543050i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 568.644i 1.09145i 0.837965 + 0.545723i \(0.183745\pi\)
−0.837965 + 0.545723i \(0.816255\pi\)
\(522\) 0 0
\(523\) 972.143i 1.85878i 0.369097 + 0.929391i \(0.379667\pi\)
−0.369097 + 0.929391i \(0.620333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 653.099i 1.23928i
\(528\) 0 0
\(529\) −1160.90 −2.19452
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 115.016 0.215789
\(534\) 0 0
\(535\) 52.9815 0.0990309
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −839.653 −1.55780
\(540\) 0 0
\(541\) 213.997i 0.395558i 0.980247 + 0.197779i \(0.0633728\pi\)
−0.980247 + 0.197779i \(0.936627\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 89.5853i 0.164377i
\(546\) 0 0
\(547\) − 525.720i − 0.961097i −0.876968 0.480549i \(-0.840438\pi\)
0.876968 0.480549i \(-0.159562\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 104.764i 0.190135i
\(552\) 0 0
\(553\) 670.076 1.21171
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 171.281 0.307506 0.153753 0.988109i \(-0.450864\pi\)
0.153753 + 0.988109i \(0.450864\pi\)
\(558\) 0 0
\(559\) 345.718 0.618458
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 887.405 1.57621 0.788104 0.615543i \(-0.211063\pi\)
0.788104 + 0.615543i \(0.211063\pi\)
\(564\) 0 0
\(565\) − 37.7847i − 0.0668755i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 812.458i 1.42787i 0.700212 + 0.713935i \(0.253089\pi\)
−0.700212 + 0.713935i \(0.746911\pi\)
\(570\) 0 0
\(571\) − 528.085i − 0.924842i −0.886660 0.462421i \(-0.846981\pi\)
0.886660 0.462421i \(-0.153019\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1016.64i 1.76806i
\(576\) 0 0
\(577\) 603.116 1.04526 0.522631 0.852559i \(-0.324951\pi\)
0.522631 + 0.852559i \(0.324951\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1303.46 2.24348
\(582\) 0 0
\(583\) 970.373 1.66445
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 496.885 0.846481 0.423241 0.906017i \(-0.360892\pi\)
0.423241 + 0.906017i \(0.360892\pi\)
\(588\) 0 0
\(589\) − 349.347i − 0.593120i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 963.674i 1.62508i 0.582904 + 0.812541i \(0.301916\pi\)
−0.582904 + 0.812541i \(0.698084\pi\)
\(594\) 0 0
\(595\) − 134.737i − 0.226448i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 305.820i 0.510551i 0.966868 + 0.255276i \(0.0821662\pi\)
−0.966868 + 0.255276i \(0.917834\pi\)
\(600\) 0 0
\(601\) 148.888 0.247733 0.123867 0.992299i \(-0.460470\pi\)
0.123867 + 0.992299i \(0.460470\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 40.8936 0.0675927
\(606\) 0 0
\(607\) −257.812 −0.424731 −0.212366 0.977190i \(-0.568117\pi\)
−0.212366 + 0.977190i \(0.568117\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −107.072 −0.175241
\(612\) 0 0
\(613\) 516.885i 0.843206i 0.906781 + 0.421603i \(0.138532\pi\)
−0.906781 + 0.421603i \(0.861468\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 922.184i 1.49463i 0.664472 + 0.747313i \(0.268656\pi\)
−0.664472 + 0.747313i \(0.731344\pi\)
\(618\) 0 0
\(619\) 517.202i 0.835545i 0.908552 + 0.417772i \(0.137189\pi\)
−0.908552 + 0.417772i \(0.862811\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 620.704i 0.996314i
\(624\) 0 0
\(625\) 604.868 0.967789
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 38.3385 0.0609516
\(630\) 0 0
\(631\) −500.632 −0.793395 −0.396698 0.917949i \(-0.629844\pi\)
−0.396698 + 0.917949i \(0.629844\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 45.7264 0.0720101
\(636\) 0 0
\(637\) 320.218i 0.502697i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 171.491i − 0.267537i −0.991013 0.133769i \(-0.957292\pi\)
0.991013 0.133769i \(-0.0427079\pi\)
\(642\) 0 0
\(643\) − 614.941i − 0.956362i −0.878261 0.478181i \(-0.841296\pi\)
0.878261 0.478181i \(-0.158704\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 448.046i − 0.692497i −0.938143 0.346249i \(-0.887455\pi\)
0.938143 0.346249i \(-0.112545\pi\)
\(648\) 0 0
\(649\) −959.250 −1.47804
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −749.334 −1.14753 −0.573763 0.819021i \(-0.694517\pi\)
−0.573763 + 0.819021i \(0.694517\pi\)
\(654\) 0 0
\(655\) −22.5280 −0.0343939
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 504.555 0.765637 0.382819 0.923824i \(-0.374953\pi\)
0.382819 + 0.923824i \(0.374953\pi\)
\(660\) 0 0
\(661\) − 670.255i − 1.01400i −0.861945 0.507001i \(-0.830754\pi\)
0.861945 0.507001i \(-0.169246\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 72.0717i 0.108378i
\(666\) 0 0
\(667\) − 322.922i − 0.484142i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 829.086i 1.23560i
\(672\) 0 0
\(673\) 458.749 0.681648 0.340824 0.940127i \(-0.389294\pi\)
0.340824 + 0.940127i \(0.389294\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −260.944 −0.385442 −0.192721 0.981254i \(-0.561731\pi\)
−0.192721 + 0.981254i \(0.561731\pi\)
\(678\) 0 0
\(679\) −1441.83 −2.12346
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 831.346 1.21720 0.608599 0.793478i \(-0.291732\pi\)
0.608599 + 0.793478i \(0.291732\pi\)
\(684\) 0 0
\(685\) − 78.9732i − 0.115289i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 370.070i − 0.537112i
\(690\) 0 0
\(691\) − 693.675i − 1.00387i −0.864905 0.501936i \(-0.832621\pi\)
0.864905 0.501936i \(-0.167379\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 53.9795i − 0.0776683i
\(696\) 0 0
\(697\) −531.979 −0.763240
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 652.155 0.930321 0.465161 0.885226i \(-0.345997\pi\)
0.465161 + 0.885226i \(0.345997\pi\)
\(702\) 0 0
\(703\) −20.5076 −0.0291715
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1428.85 −2.02100
\(708\) 0 0
\(709\) − 38.0968i − 0.0537332i −0.999639 0.0268666i \(-0.991447\pi\)
0.999639 0.0268666i \(-0.00855293\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1076.82i 1.51026i
\(714\) 0 0
\(715\) − 39.5467i − 0.0553101i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 529.843i 0.736917i 0.929644 + 0.368458i \(0.120114\pi\)
−0.929644 + 0.368458i \(0.879886\pi\)
\(720\) 0 0
\(721\) −726.022 −1.00696
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −194.268 −0.267956
\(726\) 0 0
\(727\) −918.579 −1.26352 −0.631760 0.775164i \(-0.717667\pi\)
−0.631760 + 0.775164i \(0.717667\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1599.04 −2.18747
\(732\) 0 0
\(733\) − 1004.73i − 1.37070i −0.728212 0.685352i \(-0.759648\pi\)
0.728212 0.685352i \(-0.240352\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 793.441i − 1.07658i
\(738\) 0 0
\(739\) 461.471i 0.624454i 0.950008 + 0.312227i \(0.101075\pi\)
−0.950008 + 0.312227i \(0.898925\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 335.450i − 0.451481i −0.974187 0.225740i \(-0.927520\pi\)
0.974187 0.225740i \(-0.0724801\pi\)
\(744\) 0 0
\(745\) −10.0919 −0.0135462
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1062.80 1.41896
\(750\) 0 0
\(751\) 230.848 0.307387 0.153694 0.988119i \(-0.450883\pi\)
0.153694 + 0.988119i \(0.450883\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11.1724 0.0147979
\(756\) 0 0
\(757\) 115.377i 0.152414i 0.997092 + 0.0762069i \(0.0242810\pi\)
−0.997092 + 0.0762069i \(0.975719\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 121.617i 0.159812i 0.996802 + 0.0799061i \(0.0254621\pi\)
−0.996802 + 0.0799061i \(0.974538\pi\)
\(762\) 0 0
\(763\) 1797.06i 2.35526i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 365.829i 0.476961i
\(768\) 0 0
\(769\) 873.135 1.13542 0.567708 0.823230i \(-0.307830\pi\)
0.567708 + 0.823230i \(0.307830\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 559.288 0.723529 0.361765 0.932269i \(-0.382174\pi\)
0.361765 + 0.932269i \(0.382174\pi\)
\(774\) 0 0
\(775\) 647.807 0.835880
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 284.559 0.365288
\(780\) 0 0
\(781\) 1521.09i 1.94762i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 141.597i − 0.180378i
\(786\) 0 0
\(787\) − 502.213i − 0.638136i −0.947732 0.319068i \(-0.896630\pi\)
0.947732 0.319068i \(-0.103370\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 757.954i − 0.958222i
\(792\) 0 0
\(793\) 316.188 0.398724
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −655.828 −0.822871 −0.411436 0.911439i \(-0.634972\pi\)
−0.411436 + 0.911439i \(0.634972\pi\)
\(798\) 0 0
\(799\) 495.237 0.619822
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −109.269 −0.136076
\(804\) 0 0
\(805\) − 222.151i − 0.275964i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 272.193i − 0.336456i −0.985748 0.168228i \(-0.946195\pi\)
0.985748 0.168228i \(-0.0538045\pi\)
\(810\) 0 0
\(811\) − 483.162i − 0.595760i −0.954603 0.297880i \(-0.903720\pi\)
0.954603 0.297880i \(-0.0962796\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 12.5318i − 0.0153764i
\(816\) 0 0
\(817\) 855.340 1.04693
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 695.215 0.846791 0.423395 0.905945i \(-0.360838\pi\)
0.423395 + 0.905945i \(0.360838\pi\)
\(822\) 0 0
\(823\) 1496.48 1.81832 0.909161 0.416446i \(-0.136724\pi\)
0.909161 + 0.416446i \(0.136724\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −347.515 −0.420212 −0.210106 0.977679i \(-0.567381\pi\)
−0.210106 + 0.977679i \(0.567381\pi\)
\(828\) 0 0
\(829\) − 1014.09i − 1.22327i −0.791140 0.611635i \(-0.790512\pi\)
0.791140 0.611635i \(-0.209488\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 1481.09i − 1.77803i
\(834\) 0 0
\(835\) − 107.867i − 0.129182i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 207.818i − 0.247697i −0.992301 0.123848i \(-0.960476\pi\)
0.992301 0.123848i \(-0.0395237\pi\)
\(840\) 0 0
\(841\) −779.293 −0.926627
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 72.6347 0.0859583
\(846\) 0 0
\(847\) 820.318 0.968498
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 63.2118 0.0742795
\(852\) 0 0
\(853\) − 184.331i − 0.216098i −0.994146 0.108049i \(-0.965540\pi\)
0.994146 0.108049i \(-0.0344603\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 246.050i 0.287106i 0.989643 + 0.143553i \(0.0458528\pi\)
−0.989643 + 0.143553i \(0.954147\pi\)
\(858\) 0 0
\(859\) − 677.137i − 0.788286i −0.919049 0.394143i \(-0.871042\pi\)
0.919049 0.394143i \(-0.128958\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 766.243i − 0.887882i −0.896056 0.443941i \(-0.853580\pi\)
0.896056 0.443941i \(-0.146420\pi\)
\(864\) 0 0
\(865\) −156.881 −0.181366
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −909.675 −1.04681
\(870\) 0 0
\(871\) −302.594 −0.347410
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −268.746 −0.307138
\(876\) 0 0
\(877\) 917.942i 1.04668i 0.852123 + 0.523342i \(0.175315\pi\)
−0.852123 + 0.523342i \(0.824685\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 1051.56i − 1.19360i −0.802389 0.596801i \(-0.796438\pi\)
0.802389 0.596801i \(-0.203562\pi\)
\(882\) 0 0
\(883\) 232.927i 0.263790i 0.991264 + 0.131895i \(0.0421062\pi\)
−0.991264 + 0.131895i \(0.957894\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 905.279i − 1.02061i −0.859994 0.510304i \(-0.829533\pi\)
0.859994 0.510304i \(-0.170467\pi\)
\(888\) 0 0
\(889\) 917.264 1.03179
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −264.906 −0.296648
\(894\) 0 0
\(895\) −5.70924 −0.00637904
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −205.768 −0.228886
\(900\) 0 0
\(901\) 1711.68i 1.89975i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 101.736i − 0.112416i
\(906\) 0 0
\(907\) 1253.87i 1.38244i 0.722644 + 0.691221i \(0.242927\pi\)
−0.722644 + 0.691221i \(0.757073\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 533.926i − 0.586087i −0.956099 0.293044i \(-0.905332\pi\)
0.956099 0.293044i \(-0.0946681\pi\)
\(912\) 0 0
\(913\) −1769.54 −1.93816
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −451.908 −0.492811
\(918\) 0 0
\(919\) −145.848 −0.158703 −0.0793516 0.996847i \(-0.525285\pi\)
−0.0793516 + 0.996847i \(0.525285\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 580.098 0.628492
\(924\) 0 0
\(925\) − 38.0279i − 0.0411112i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 916.827i − 0.986897i −0.869775 0.493449i \(-0.835736\pi\)
0.869775 0.493449i \(-0.164264\pi\)
\(930\) 0 0
\(931\) 792.249i 0.850966i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 182.914i 0.195630i
\(936\) 0 0
\(937\) 282.716 0.301725 0.150862 0.988555i \(-0.451795\pi\)
0.150862 + 0.988555i \(0.451795\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1669.95 1.77465 0.887327 0.461140i \(-0.152560\pi\)
0.887327 + 0.461140i \(0.152560\pi\)
\(942\) 0 0
\(943\) −877.116 −0.930134
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 833.418 0.880062 0.440031 0.897983i \(-0.354968\pi\)
0.440031 + 0.897983i \(0.354968\pi\)
\(948\) 0 0
\(949\) 41.6720i 0.0439114i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 978.132i 1.02637i 0.858278 + 0.513186i \(0.171535\pi\)
−0.858278 + 0.513186i \(0.828465\pi\)
\(954\) 0 0
\(955\) − 139.047i − 0.145599i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 1584.19i − 1.65192i
\(960\) 0 0
\(961\) −274.846 −0.286000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −17.6469 −0.0182870
\(966\) 0 0
\(967\) −743.175 −0.768537 −0.384268 0.923221i \(-0.625546\pi\)
−0.384268 + 0.923221i \(0.625546\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 562.344 0.579139 0.289569 0.957157i \(-0.406488\pi\)
0.289569 + 0.957157i \(0.406488\pi\)
\(972\) 0 0
\(973\) − 1082.82i − 1.11287i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 116.016i − 0.118747i −0.998236 0.0593734i \(-0.981090\pi\)
0.998236 0.0593734i \(-0.0189103\pi\)
\(978\) 0 0
\(979\) − 842.649i − 0.860724i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1088.69i 1.10752i 0.832676 + 0.553760i \(0.186808\pi\)
−0.832676 + 0.553760i \(0.813192\pi\)
\(984\) 0 0
\(985\) −59.5364 −0.0604430
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2636.47 −2.66579
\(990\) 0 0
\(991\) −938.958 −0.947486 −0.473743 0.880663i \(-0.657097\pi\)
−0.473743 + 0.880663i \(0.657097\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 98.5360 0.0990312
\(996\) 0 0
\(997\) − 970.068i − 0.972987i −0.873684 0.486494i \(-0.838276\pi\)
0.873684 0.486494i \(-0.161724\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.3.h.j.161.8 yes 12
3.2 odd 2 1728.3.h.i.161.6 yes 12
4.3 odd 2 1728.3.h.i.161.8 yes 12
8.3 odd 2 inner 1728.3.h.j.161.5 yes 12
8.5 even 2 1728.3.h.i.161.5 12
12.11 even 2 inner 1728.3.h.j.161.6 yes 12
24.5 odd 2 inner 1728.3.h.j.161.7 yes 12
24.11 even 2 1728.3.h.i.161.7 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1728.3.h.i.161.5 12 8.5 even 2
1728.3.h.i.161.6 yes 12 3.2 odd 2
1728.3.h.i.161.7 yes 12 24.11 even 2
1728.3.h.i.161.8 yes 12 4.3 odd 2
1728.3.h.j.161.5 yes 12 8.3 odd 2 inner
1728.3.h.j.161.6 yes 12 12.11 even 2 inner
1728.3.h.j.161.7 yes 12 24.5 odd 2 inner
1728.3.h.j.161.8 yes 12 1.1 even 1 trivial