Properties

Label 1728.3.h.i.161.9
Level $1728$
Weight $3$
Character 1728.161
Analytic conductor $47.085$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,3,Mod(161,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.161"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0, 0,0,0,0,0,0,-252,0,0,0,0,0,0,0,0,0,0,0,0,0,168] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(49)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 13x^{10} + 129x^{8} - 512x^{6} + 1548x^{4} - 160x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{26}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.9
Root \(1.88569 + 1.08870i\) of defining polynomial
Character \(\chi\) \(=\) 1728.161
Dual form 1728.3.h.i.161.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.32298 q^{5} +4.21979 q^{7} -16.0645 q^{11} -17.6528i q^{13} -4.44668i q^{17} +26.5756i q^{19} -5.59004i q^{23} -13.9578 q^{25} -50.0589 q^{29} -11.4803 q^{31} +14.0223 q^{35} +24.5810i q^{37} +18.5756i q^{41} -37.2356i q^{43} +73.5339i q^{47} -31.1934 q^{49} -2.32602 q^{53} -53.3819 q^{55} -26.8934 q^{59} +12.3091i q^{61} -58.6600i q^{65} +45.2356i q^{67} +83.3476i q^{71} -3.04219 q^{73} -67.7886 q^{77} +17.2115 q^{79} -92.8734 q^{83} -14.7762i q^{85} -160.431i q^{89} -74.4912i q^{91} +88.3101i q^{95} +122.538 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{11} + 72 q^{25} - 252 q^{35} + 168 q^{49} - 264 q^{59} - 276 q^{73} - 396 q^{83} - 396 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.32298 0.664596 0.332298 0.943174i \(-0.392176\pi\)
0.332298 + 0.943174i \(0.392176\pi\)
\(6\) 0 0
\(7\) 4.21979 0.602827 0.301414 0.953494i \(-0.402542\pi\)
0.301414 + 0.953494i \(0.402542\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −16.0645 −1.46041 −0.730203 0.683231i \(-0.760574\pi\)
−0.730203 + 0.683231i \(0.760574\pi\)
\(12\) 0 0
\(13\) − 17.6528i − 1.35791i −0.734180 0.678955i \(-0.762433\pi\)
0.734180 0.678955i \(-0.237567\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 4.44668i − 0.261569i −0.991411 0.130785i \(-0.958250\pi\)
0.991411 0.130785i \(-0.0417496\pi\)
\(18\) 0 0
\(19\) 26.5756i 1.39872i 0.714772 + 0.699358i \(0.246531\pi\)
−0.714772 + 0.699358i \(0.753469\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 5.59004i − 0.243045i −0.992589 0.121523i \(-0.961222\pi\)
0.992589 0.121523i \(-0.0387777\pi\)
\(24\) 0 0
\(25\) −13.9578 −0.558313
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −50.0589 −1.72617 −0.863084 0.505060i \(-0.831470\pi\)
−0.863084 + 0.505060i \(0.831470\pi\)
\(30\) 0 0
\(31\) −11.4803 −0.370333 −0.185166 0.982707i \(-0.559282\pi\)
−0.185166 + 0.982707i \(0.559282\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 14.0223 0.400636
\(36\) 0 0
\(37\) 24.5810i 0.664352i 0.943217 + 0.332176i \(0.107783\pi\)
−0.943217 + 0.332176i \(0.892217\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 18.5756i 0.453063i 0.974004 + 0.226532i \(0.0727387\pi\)
−0.974004 + 0.226532i \(0.927261\pi\)
\(42\) 0 0
\(43\) − 37.2356i − 0.865943i −0.901408 0.432972i \(-0.857465\pi\)
0.901408 0.432972i \(-0.142535\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 73.5339i 1.56455i 0.622932 + 0.782276i \(0.285941\pi\)
−0.622932 + 0.782276i \(0.714059\pi\)
\(48\) 0 0
\(49\) −31.1934 −0.636599
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.32602 −0.0438872 −0.0219436 0.999759i \(-0.506985\pi\)
−0.0219436 + 0.999759i \(0.506985\pi\)
\(54\) 0 0
\(55\) −53.3819 −0.970579
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −26.8934 −0.455820 −0.227910 0.973682i \(-0.573189\pi\)
−0.227910 + 0.973682i \(0.573189\pi\)
\(60\) 0 0
\(61\) 12.3091i 0.201788i 0.994897 + 0.100894i \(0.0321703\pi\)
−0.994897 + 0.100894i \(0.967830\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 58.6600i − 0.902461i
\(66\) 0 0
\(67\) 45.2356i 0.675158i 0.941297 + 0.337579i \(0.109608\pi\)
−0.941297 + 0.337579i \(0.890392\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 83.3476i 1.17391i 0.809620 + 0.586955i \(0.199673\pi\)
−0.809620 + 0.586955i \(0.800327\pi\)
\(72\) 0 0
\(73\) −3.04219 −0.0416738 −0.0208369 0.999783i \(-0.506633\pi\)
−0.0208369 + 0.999783i \(0.506633\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −67.7886 −0.880372
\(78\) 0 0
\(79\) 17.2115 0.217867 0.108933 0.994049i \(-0.465256\pi\)
0.108933 + 0.994049i \(0.465256\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −92.8734 −1.11896 −0.559479 0.828845i \(-0.688999\pi\)
−0.559479 + 0.828845i \(0.688999\pi\)
\(84\) 0 0
\(85\) − 14.7762i − 0.173838i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 160.431i − 1.80260i −0.433197 0.901299i \(-0.642614\pi\)
0.433197 0.901299i \(-0.357386\pi\)
\(90\) 0 0
\(91\) − 74.4912i − 0.818585i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 88.3101i 0.929580i
\(96\) 0 0
\(97\) 122.538 1.26328 0.631639 0.775263i \(-0.282383\pi\)
0.631639 + 0.775263i \(0.282383\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −104.556 −1.03520 −0.517602 0.855622i \(-0.673175\pi\)
−0.517602 + 0.855622i \(0.673175\pi\)
\(102\) 0 0
\(103\) 172.509 1.67484 0.837420 0.546560i \(-0.184063\pi\)
0.837420 + 0.546560i \(0.184063\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.82654 −0.0264163 −0.0132081 0.999913i \(-0.504204\pi\)
−0.0132081 + 0.999913i \(0.504204\pi\)
\(108\) 0 0
\(109\) − 59.6686i − 0.547419i −0.961812 0.273709i \(-0.911749\pi\)
0.961812 0.273709i \(-0.0882506\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 153.682i − 1.36002i −0.733203 0.680010i \(-0.761975\pi\)
0.733203 0.680010i \(-0.238025\pi\)
\(114\) 0 0
\(115\) − 18.5756i − 0.161527i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 18.7640i − 0.157681i
\(120\) 0 0
\(121\) 137.067 1.13278
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −129.456 −1.03565
\(126\) 0 0
\(127\) 52.3530 0.412228 0.206114 0.978528i \(-0.433918\pi\)
0.206114 + 0.978528i \(0.433918\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −118.364 −0.903546 −0.451773 0.892133i \(-0.649208\pi\)
−0.451773 + 0.892133i \(0.649208\pi\)
\(132\) 0 0
\(133\) 112.143i 0.843184i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 188.689i 1.37729i 0.725097 + 0.688646i \(0.241795\pi\)
−0.725097 + 0.688646i \(0.758205\pi\)
\(138\) 0 0
\(139\) 104.000i 0.748201i 0.927388 + 0.374101i \(0.122049\pi\)
−0.927388 + 0.374101i \(0.877951\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 283.583i 1.98310i
\(144\) 0 0
\(145\) −166.345 −1.14720
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −289.387 −1.94220 −0.971098 0.238679i \(-0.923286\pi\)
−0.971098 + 0.238679i \(0.923286\pi\)
\(150\) 0 0
\(151\) −151.374 −1.00247 −0.501237 0.865310i \(-0.667122\pi\)
−0.501237 + 0.865310i \(0.667122\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −38.1488 −0.246121
\(156\) 0 0
\(157\) − 176.964i − 1.12716i −0.826061 0.563581i \(-0.809423\pi\)
0.826061 0.563581i \(-0.190577\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 23.5888i − 0.146514i
\(162\) 0 0
\(163\) − 196.962i − 1.20836i −0.796849 0.604179i \(-0.793501\pi\)
0.796849 0.604179i \(-0.206499\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 319.981i 1.91605i 0.286682 + 0.958026i \(0.407448\pi\)
−0.286682 + 0.958026i \(0.592552\pi\)
\(168\) 0 0
\(169\) −142.622 −0.843919
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.3852 0.0831512 0.0415756 0.999135i \(-0.486762\pi\)
0.0415756 + 0.999135i \(0.486762\pi\)
\(174\) 0 0
\(175\) −58.8990 −0.336566
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −131.342 −0.733755 −0.366878 0.930269i \(-0.619573\pi\)
−0.366878 + 0.930269i \(0.619573\pi\)
\(180\) 0 0
\(181\) 339.492i 1.87565i 0.347110 + 0.937824i \(0.387163\pi\)
−0.347110 + 0.937824i \(0.612837\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 81.6822i 0.441526i
\(186\) 0 0
\(187\) 71.4335i 0.381997i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 34.4036i 0.180124i 0.995936 + 0.0900618i \(0.0287065\pi\)
−0.995936 + 0.0900618i \(0.971294\pi\)
\(192\) 0 0
\(193\) 179.513 0.930121 0.465060 0.885279i \(-0.346033\pi\)
0.465060 + 0.885279i \(0.346033\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −261.378 −1.32679 −0.663396 0.748268i \(-0.730886\pi\)
−0.663396 + 0.748268i \(0.730886\pi\)
\(198\) 0 0
\(199\) −208.861 −1.04955 −0.524776 0.851240i \(-0.675851\pi\)
−0.524776 + 0.851240i \(0.675851\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −211.238 −1.04058
\(204\) 0 0
\(205\) 61.7263i 0.301104i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 426.923i − 2.04269i
\(210\) 0 0
\(211\) − 71.5178i − 0.338947i −0.985535 0.169474i \(-0.945793\pi\)
0.985535 0.169474i \(-0.0542067\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 123.733i − 0.575502i
\(216\) 0 0
\(217\) −48.4445 −0.223247
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −78.4964 −0.355187
\(222\) 0 0
\(223\) −33.5721 −0.150548 −0.0752739 0.997163i \(-0.523983\pi\)
−0.0752739 + 0.997163i \(0.523983\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 56.3024 0.248028 0.124014 0.992280i \(-0.460423\pi\)
0.124014 + 0.992280i \(0.460423\pi\)
\(228\) 0 0
\(229\) − 382.162i − 1.66883i −0.551136 0.834416i \(-0.685805\pi\)
0.551136 0.834416i \(-0.314195\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 43.9645i − 0.188689i −0.995540 0.0943445i \(-0.969924\pi\)
0.995540 0.0943445i \(-0.0300755\pi\)
\(234\) 0 0
\(235\) 244.352i 1.03979i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 172.049i − 0.719872i −0.932977 0.359936i \(-0.882798\pi\)
0.932977 0.359936i \(-0.117202\pi\)
\(240\) 0 0
\(241\) −383.547 −1.59148 −0.795741 0.605638i \(-0.792918\pi\)
−0.795741 + 0.605638i \(0.792918\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −103.655 −0.423081
\(246\) 0 0
\(247\) 469.134 1.89933
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −184.391 −0.734627 −0.367314 0.930097i \(-0.619722\pi\)
−0.367314 + 0.930097i \(0.619722\pi\)
\(252\) 0 0
\(253\) 89.8010i 0.354945i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 302.918i − 1.17867i −0.807889 0.589334i \(-0.799390\pi\)
0.807889 0.589334i \(-0.200610\pi\)
\(258\) 0 0
\(259\) 103.727i 0.400490i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 397.614i 1.51184i 0.654664 + 0.755920i \(0.272810\pi\)
−0.654664 + 0.755920i \(0.727190\pi\)
\(264\) 0 0
\(265\) −7.72932 −0.0291672
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 73.1579 0.271962 0.135981 0.990711i \(-0.456581\pi\)
0.135981 + 0.990711i \(0.456581\pi\)
\(270\) 0 0
\(271\) −325.980 −1.20288 −0.601439 0.798919i \(-0.705406\pi\)
−0.601439 + 0.798919i \(0.705406\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 224.225 0.815363
\(276\) 0 0
\(277\) − 341.933i − 1.23441i −0.786800 0.617207i \(-0.788264\pi\)
0.786800 0.617207i \(-0.211736\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 137.251i 0.488438i 0.969720 + 0.244219i \(0.0785315\pi\)
−0.969720 + 0.244219i \(0.921468\pi\)
\(282\) 0 0
\(283\) 351.727i 1.24285i 0.783473 + 0.621425i \(0.213446\pi\)
−0.783473 + 0.621425i \(0.786554\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 78.3851i 0.273119i
\(288\) 0 0
\(289\) 269.227 0.931582
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 417.493 1.42489 0.712445 0.701728i \(-0.247588\pi\)
0.712445 + 0.701728i \(0.247588\pi\)
\(294\) 0 0
\(295\) −89.3660 −0.302936
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −98.6801 −0.330034
\(300\) 0 0
\(301\) − 157.126i − 0.522014i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 40.9028i 0.134107i
\(306\) 0 0
\(307\) − 93.7177i − 0.305269i −0.988283 0.152635i \(-0.951224\pi\)
0.988283 0.152635i \(-0.0487758\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 183.230i 0.589162i 0.955626 + 0.294581i \(0.0951802\pi\)
−0.955626 + 0.294581i \(0.904820\pi\)
\(312\) 0 0
\(313\) 126.882 0.405375 0.202688 0.979243i \(-0.435032\pi\)
0.202688 + 0.979243i \(0.435032\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −371.872 −1.17310 −0.586548 0.809914i \(-0.699514\pi\)
−0.586548 + 0.809914i \(0.699514\pi\)
\(318\) 0 0
\(319\) 804.169 2.52090
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 118.173 0.365861
\(324\) 0 0
\(325\) 246.395i 0.758138i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 310.298i 0.943154i
\(330\) 0 0
\(331\) − 548.352i − 1.65665i −0.560247 0.828326i \(-0.689294\pi\)
0.560247 0.828326i \(-0.310706\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 150.317i 0.448707i
\(336\) 0 0
\(337\) 329.663 0.978227 0.489114 0.872220i \(-0.337320\pi\)
0.489114 + 0.872220i \(0.337320\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 184.425 0.540836
\(342\) 0 0
\(343\) −338.399 −0.986587
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 567.567 1.63564 0.817820 0.575474i \(-0.195182\pi\)
0.817820 + 0.575474i \(0.195182\pi\)
\(348\) 0 0
\(349\) 425.470i 1.21911i 0.792743 + 0.609556i \(0.208652\pi\)
−0.792743 + 0.609556i \(0.791348\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 299.260i − 0.847762i −0.905718 0.423881i \(-0.860667\pi\)
0.905718 0.423881i \(-0.139333\pi\)
\(354\) 0 0
\(355\) 276.962i 0.780176i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 279.248i − 0.777850i −0.921269 0.388925i \(-0.872847\pi\)
0.921269 0.388925i \(-0.127153\pi\)
\(360\) 0 0
\(361\) −345.262 −0.956405
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.1091 −0.0276962
\(366\) 0 0
\(367\) −402.044 −1.09549 −0.547744 0.836646i \(-0.684513\pi\)
−0.547744 + 0.836646i \(0.684513\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −9.81532 −0.0264564
\(372\) 0 0
\(373\) − 342.832i − 0.919120i −0.888147 0.459560i \(-0.848007\pi\)
0.888147 0.459560i \(-0.151993\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 883.681i 2.34398i
\(378\) 0 0
\(379\) − 640.832i − 1.69085i −0.534095 0.845425i \(-0.679347\pi\)
0.534095 0.845425i \(-0.320653\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 563.570i − 1.47146i −0.677274 0.735731i \(-0.736839\pi\)
0.677274 0.735731i \(-0.263161\pi\)
\(384\) 0 0
\(385\) −225.260 −0.585091
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 342.245 0.879806 0.439903 0.898045i \(-0.355013\pi\)
0.439903 + 0.898045i \(0.355013\pi\)
\(390\) 0 0
\(391\) −24.8571 −0.0635732
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 57.1934 0.144793
\(396\) 0 0
\(397\) 403.500i 1.01637i 0.861247 + 0.508187i \(0.169684\pi\)
−0.861247 + 0.508187i \(0.830316\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 169.827i − 0.423508i −0.977323 0.211754i \(-0.932082\pi\)
0.977323 0.211754i \(-0.0679176\pi\)
\(402\) 0 0
\(403\) 202.660i 0.502878i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 394.881i − 0.970223i
\(408\) 0 0
\(409\) 356.191 0.870884 0.435442 0.900217i \(-0.356592\pi\)
0.435442 + 0.900217i \(0.356592\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −113.484 −0.274780
\(414\) 0 0
\(415\) −308.616 −0.743654
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −417.045 −0.995334 −0.497667 0.867368i \(-0.665810\pi\)
−0.497667 + 0.867368i \(0.665810\pi\)
\(420\) 0 0
\(421\) 660.848i 1.56971i 0.619679 + 0.784855i \(0.287263\pi\)
−0.619679 + 0.784855i \(0.712737\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 62.0659i 0.146037i
\(426\) 0 0
\(427\) 51.9417i 0.121643i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 639.445i − 1.48363i −0.670604 0.741816i \(-0.733965\pi\)
0.670604 0.741816i \(-0.266035\pi\)
\(432\) 0 0
\(433\) −464.454 −1.07264 −0.536321 0.844014i \(-0.680186\pi\)
−0.536321 + 0.844014i \(0.680186\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 148.559 0.339951
\(438\) 0 0
\(439\) 79.8478 0.181886 0.0909428 0.995856i \(-0.471012\pi\)
0.0909428 + 0.995856i \(0.471012\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 389.622 0.879509 0.439754 0.898118i \(-0.355066\pi\)
0.439754 + 0.898118i \(0.355066\pi\)
\(444\) 0 0
\(445\) − 533.110i − 1.19800i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 654.843i − 1.45845i −0.684275 0.729224i \(-0.739881\pi\)
0.684275 0.729224i \(-0.260119\pi\)
\(450\) 0 0
\(451\) − 298.407i − 0.661656i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 247.533i − 0.544028i
\(456\) 0 0
\(457\) 470.596 1.02975 0.514876 0.857265i \(-0.327838\pi\)
0.514876 + 0.857265i \(0.327838\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 805.808 1.74796 0.873979 0.485965i \(-0.161532\pi\)
0.873979 + 0.485965i \(0.161532\pi\)
\(462\) 0 0
\(463\) 487.786 1.05353 0.526767 0.850010i \(-0.323404\pi\)
0.526767 + 0.850010i \(0.323404\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −449.958 −0.963508 −0.481754 0.876306i \(-0.660000\pi\)
−0.481754 + 0.876306i \(0.660000\pi\)
\(468\) 0 0
\(469\) 190.885i 0.407003i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 598.169i 1.26463i
\(474\) 0 0
\(475\) − 370.937i − 0.780920i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 152.266i − 0.317883i −0.987288 0.158942i \(-0.949192\pi\)
0.987288 0.158942i \(-0.0508082\pi\)
\(480\) 0 0
\(481\) 433.925 0.902130
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 407.191 0.839569
\(486\) 0 0
\(487\) 527.351 1.08286 0.541429 0.840747i \(-0.317884\pi\)
0.541429 + 0.840747i \(0.317884\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −285.609 −0.581689 −0.290844 0.956770i \(-0.593936\pi\)
−0.290844 + 0.956770i \(0.593936\pi\)
\(492\) 0 0
\(493\) 222.596i 0.451512i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 351.709i 0.707665i
\(498\) 0 0
\(499\) 420.062i 0.841808i 0.907105 + 0.420904i \(0.138287\pi\)
−0.907105 + 0.420904i \(0.861713\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 80.8820i 0.160799i 0.996763 + 0.0803996i \(0.0256197\pi\)
−0.996763 + 0.0803996i \(0.974380\pi\)
\(504\) 0 0
\(505\) −347.436 −0.687992
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 549.502 1.07957 0.539786 0.841802i \(-0.318505\pi\)
0.539786 + 0.841802i \(0.318505\pi\)
\(510\) 0 0
\(511\) −12.8374 −0.0251221
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 573.242 1.11309
\(516\) 0 0
\(517\) − 1181.28i − 2.28488i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 990.371i 1.90090i 0.310870 + 0.950452i \(0.399380\pi\)
−0.310870 + 0.950452i \(0.600620\pi\)
\(522\) 0 0
\(523\) 103.016i 0.196971i 0.995139 + 0.0984853i \(0.0313997\pi\)
−0.995139 + 0.0984853i \(0.968600\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 51.0492i 0.0968676i
\(528\) 0 0
\(529\) 497.751 0.940929
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 327.912 0.615219
\(534\) 0 0
\(535\) −9.39254 −0.0175561
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 501.105 0.929693
\(540\) 0 0
\(541\) 306.170i 0.565934i 0.959130 + 0.282967i \(0.0913187\pi\)
−0.959130 + 0.282967i \(0.908681\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 198.278i − 0.363812i
\(546\) 0 0
\(547\) 421.171i 0.769966i 0.922924 + 0.384983i \(0.125793\pi\)
−0.922924 + 0.384983i \(0.874207\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1330.34i − 2.41442i
\(552\) 0 0
\(553\) 72.6288 0.131336
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 387.083 0.694942 0.347471 0.937691i \(-0.387040\pi\)
0.347471 + 0.937691i \(0.387040\pi\)
\(558\) 0 0
\(559\) −657.313 −1.17587
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 915.887 1.62680 0.813399 0.581706i \(-0.197615\pi\)
0.813399 + 0.581706i \(0.197615\pi\)
\(564\) 0 0
\(565\) − 510.683i − 0.903863i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1080.19i 1.89840i 0.314679 + 0.949198i \(0.398103\pi\)
−0.314679 + 0.949198i \(0.601897\pi\)
\(570\) 0 0
\(571\) 1025.40i 1.79579i 0.440206 + 0.897897i \(0.354906\pi\)
−0.440206 + 0.897897i \(0.645094\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 78.0248i 0.135695i
\(576\) 0 0
\(577\) −686.792 −1.19028 −0.595140 0.803622i \(-0.702903\pi\)
−0.595140 + 0.803622i \(0.702903\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −391.906 −0.674538
\(582\) 0 0
\(583\) 37.3663 0.0640931
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 68.2446 0.116260 0.0581300 0.998309i \(-0.481486\pi\)
0.0581300 + 0.998309i \(0.481486\pi\)
\(588\) 0 0
\(589\) − 305.096i − 0.517990i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 1113.53i − 1.87779i −0.344203 0.938895i \(-0.611851\pi\)
0.344203 0.938895i \(-0.388149\pi\)
\(594\) 0 0
\(595\) − 62.3525i − 0.104794i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 127.721i 0.213223i 0.994301 + 0.106612i \(0.0340002\pi\)
−0.994301 + 0.106612i \(0.966000\pi\)
\(600\) 0 0
\(601\) −776.688 −1.29233 −0.646163 0.763200i \(-0.723627\pi\)
−0.646163 + 0.763200i \(0.723627\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 455.470 0.752843
\(606\) 0 0
\(607\) 863.872 1.42318 0.711592 0.702593i \(-0.247975\pi\)
0.711592 + 0.702593i \(0.247975\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1298.08 2.12452
\(612\) 0 0
\(613\) − 178.086i − 0.290516i −0.989394 0.145258i \(-0.953599\pi\)
0.989394 0.145258i \(-0.0464012\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 79.7883i 0.129317i 0.997907 + 0.0646583i \(0.0205957\pi\)
−0.997907 + 0.0646583i \(0.979404\pi\)
\(618\) 0 0
\(619\) − 578.660i − 0.934830i −0.884038 0.467415i \(-0.845185\pi\)
0.884038 0.467415i \(-0.154815\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 676.986i − 1.08666i
\(624\) 0 0
\(625\) −81.2341 −0.129975
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 109.304 0.173774
\(630\) 0 0
\(631\) −999.072 −1.58332 −0.791658 0.610965i \(-0.790782\pi\)
−0.791658 + 0.610965i \(0.790782\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 173.968 0.273965
\(636\) 0 0
\(637\) 550.651i 0.864445i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 66.9225i 0.104403i 0.998637 + 0.0522016i \(0.0166239\pi\)
−0.998637 + 0.0522016i \(0.983376\pi\)
\(642\) 0 0
\(643\) − 521.676i − 0.811315i −0.914025 0.405658i \(-0.867043\pi\)
0.914025 0.405658i \(-0.132957\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 485.924i − 0.751041i −0.926814 0.375521i \(-0.877464\pi\)
0.926814 0.375521i \(-0.122536\pi\)
\(648\) 0 0
\(649\) 432.027 0.665681
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 370.358 0.567165 0.283582 0.958948i \(-0.408477\pi\)
0.283582 + 0.958948i \(0.408477\pi\)
\(654\) 0 0
\(655\) −393.323 −0.600493
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −291.218 −0.441910 −0.220955 0.975284i \(-0.570917\pi\)
−0.220955 + 0.975284i \(0.570917\pi\)
\(660\) 0 0
\(661\) 441.331i 0.667672i 0.942631 + 0.333836i \(0.108343\pi\)
−0.942631 + 0.333836i \(0.891657\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 372.650i 0.560376i
\(666\) 0 0
\(667\) 279.831i 0.419537i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 197.739i − 0.294692i
\(672\) 0 0
\(673\) −432.036 −0.641955 −0.320977 0.947087i \(-0.604011\pi\)
−0.320977 + 0.947087i \(0.604011\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 106.934 0.157953 0.0789764 0.996876i \(-0.474835\pi\)
0.0789764 + 0.996876i \(0.474835\pi\)
\(678\) 0 0
\(679\) 517.084 0.761538
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −102.329 −0.149823 −0.0749113 0.997190i \(-0.523867\pi\)
−0.0749113 + 0.997190i \(0.523867\pi\)
\(684\) 0 0
\(685\) 627.010i 0.915343i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 41.0608i 0.0595948i
\(690\) 0 0
\(691\) − 387.134i − 0.560252i −0.959963 0.280126i \(-0.909624\pi\)
0.959963 0.280126i \(-0.0903763\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 345.590i 0.497251i
\(696\) 0 0
\(697\) 82.5997 0.118507
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 942.899 1.34508 0.672538 0.740062i \(-0.265204\pi\)
0.672538 + 0.740062i \(0.265204\pi\)
\(702\) 0 0
\(703\) −653.255 −0.929240
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −441.203 −0.624049
\(708\) 0 0
\(709\) 486.394i 0.686028i 0.939330 + 0.343014i \(0.111448\pi\)
−0.939330 + 0.343014i \(0.888552\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 64.1754i 0.0900076i
\(714\) 0 0
\(715\) 942.341i 1.31796i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 370.683i 0.515553i 0.966205 + 0.257777i \(0.0829899\pi\)
−0.966205 + 0.257777i \(0.917010\pi\)
\(720\) 0 0
\(721\) 727.950 1.00964
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 698.712 0.963741
\(726\) 0 0
\(727\) −799.119 −1.09920 −0.549600 0.835428i \(-0.685220\pi\)
−0.549600 + 0.835428i \(0.685220\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −165.575 −0.226504
\(732\) 0 0
\(733\) − 601.978i − 0.821252i −0.911804 0.410626i \(-0.865310\pi\)
0.911804 0.410626i \(-0.134690\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 726.685i − 0.986004i
\(738\) 0 0
\(739\) − 320.189i − 0.433273i −0.976252 0.216637i \(-0.930491\pi\)
0.976252 0.216637i \(-0.0695087\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1138.71i − 1.53259i −0.642491 0.766293i \(-0.722099\pi\)
0.642491 0.766293i \(-0.277901\pi\)
\(744\) 0 0
\(745\) −961.628 −1.29078
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.9274 −0.0159244
\(750\) 0 0
\(751\) 258.212 0.343824 0.171912 0.985112i \(-0.445006\pi\)
0.171912 + 0.985112i \(0.445006\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −503.011 −0.666240
\(756\) 0 0
\(757\) 728.371i 0.962181i 0.876671 + 0.481090i \(0.159759\pi\)
−0.876671 + 0.481090i \(0.840241\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 613.280i 0.805887i 0.915225 + 0.402943i \(0.132013\pi\)
−0.915225 + 0.402943i \(0.867987\pi\)
\(762\) 0 0
\(763\) − 251.789i − 0.329999i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 474.744i 0.618962i
\(768\) 0 0
\(769\) −869.758 −1.13103 −0.565513 0.824740i \(-0.691322\pi\)
−0.565513 + 0.824740i \(0.691322\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 255.034 0.329928 0.164964 0.986300i \(-0.447249\pi\)
0.164964 + 0.986300i \(0.447249\pi\)
\(774\) 0 0
\(775\) 160.240 0.206761
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −493.657 −0.633707
\(780\) 0 0
\(781\) − 1338.93i − 1.71438i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 588.049i − 0.749107i
\(786\) 0 0
\(787\) − 984.076i − 1.25041i −0.780459 0.625207i \(-0.785014\pi\)
0.780459 0.625207i \(-0.214986\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 648.507i − 0.819857i
\(792\) 0 0
\(793\) 217.290 0.274010
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −163.608 −0.205280 −0.102640 0.994719i \(-0.532729\pi\)
−0.102640 + 0.994719i \(0.532729\pi\)
\(798\) 0 0
\(799\) 326.982 0.409239
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 48.8711 0.0608606
\(804\) 0 0
\(805\) − 78.3851i − 0.0973728i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1116.97i 1.38067i 0.723488 + 0.690337i \(0.242538\pi\)
−0.723488 + 0.690337i \(0.757462\pi\)
\(810\) 0 0
\(811\) 596.540i 0.735562i 0.929913 + 0.367781i \(0.119882\pi\)
−0.929913 + 0.367781i \(0.880118\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 654.502i − 0.803070i
\(816\) 0 0
\(817\) 989.557 1.21121
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −752.641 −0.916737 −0.458369 0.888762i \(-0.651566\pi\)
−0.458369 + 0.888762i \(0.651566\pi\)
\(822\) 0 0
\(823\) 946.576 1.15015 0.575076 0.818100i \(-0.304972\pi\)
0.575076 + 0.818100i \(0.304972\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 613.125 0.741385 0.370693 0.928756i \(-0.379120\pi\)
0.370693 + 0.928756i \(0.379120\pi\)
\(828\) 0 0
\(829\) − 346.852i − 0.418398i −0.977873 0.209199i \(-0.932914\pi\)
0.977873 0.209199i \(-0.0670857\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 138.707i 0.166515i
\(834\) 0 0
\(835\) 1063.29i 1.27340i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 717.830i 0.855578i 0.903879 + 0.427789i \(0.140707\pi\)
−0.903879 + 0.427789i \(0.859293\pi\)
\(840\) 0 0
\(841\) 1664.89 1.97966
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −473.931 −0.560865
\(846\) 0 0
\(847\) 578.393 0.682873
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 137.409 0.161468
\(852\) 0 0
\(853\) 510.640i 0.598640i 0.954153 + 0.299320i \(0.0967598\pi\)
−0.954153 + 0.299320i \(0.903240\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 210.292i − 0.245381i −0.992445 0.122691i \(-0.960848\pi\)
0.992445 0.122691i \(-0.0391523\pi\)
\(858\) 0 0
\(859\) 1.80806i 0.00210484i 0.999999 + 0.00105242i \(0.000334996\pi\)
−0.999999 + 0.00105242i \(0.999665\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 598.210i 0.693174i 0.938018 + 0.346587i \(0.112660\pi\)
−0.938018 + 0.346587i \(0.887340\pi\)
\(864\) 0 0
\(865\) 47.8016 0.0552619
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −276.493 −0.318174
\(870\) 0 0
\(871\) 798.536 0.916803
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −546.277 −0.624317
\(876\) 0 0
\(877\) − 177.942i − 0.202899i −0.994841 0.101449i \(-0.967652\pi\)
0.994841 0.101449i \(-0.0323480\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 291.465i − 0.330834i −0.986224 0.165417i \(-0.947103\pi\)
0.986224 0.165417i \(-0.0528970\pi\)
\(882\) 0 0
\(883\) − 1218.02i − 1.37941i −0.724091 0.689704i \(-0.757741\pi\)
0.724091 0.689704i \(-0.242259\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 481.322i 0.542640i 0.962489 + 0.271320i \(0.0874602\pi\)
−0.962489 + 0.271320i \(0.912540\pi\)
\(888\) 0 0
\(889\) 220.919 0.248502
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1954.21 −2.18836
\(894\) 0 0
\(895\) −436.447 −0.487651
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 574.691 0.639256
\(900\) 0 0
\(901\) 10.3431i 0.0114795i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1128.13i 1.24655i
\(906\) 0 0
\(907\) − 808.482i − 0.891381i −0.895187 0.445690i \(-0.852958\pi\)
0.895187 0.445690i \(-0.147042\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 7.69529i − 0.00844708i −0.999991 0.00422354i \(-0.998656\pi\)
0.999991 0.00422354i \(-0.00134440\pi\)
\(912\) 0 0
\(913\) 1491.96 1.63413
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −499.473 −0.544682
\(918\) 0 0
\(919\) 460.757 0.501368 0.250684 0.968069i \(-0.419345\pi\)
0.250684 + 0.968069i \(0.419345\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1471.32 1.59406
\(924\) 0 0
\(925\) − 343.097i − 0.370916i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 353.817i − 0.380858i −0.981701 0.190429i \(-0.939012\pi\)
0.981701 0.190429i \(-0.0609880\pi\)
\(930\) 0 0
\(931\) − 828.982i − 0.890422i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 237.372i 0.253874i
\(936\) 0 0
\(937\) −850.015 −0.907166 −0.453583 0.891214i \(-0.649854\pi\)
−0.453583 + 0.891214i \(0.649854\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −826.634 −0.878464 −0.439232 0.898374i \(-0.644749\pi\)
−0.439232 + 0.898374i \(0.644749\pi\)
\(942\) 0 0
\(943\) 103.838 0.110115
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1722.44 −1.81884 −0.909418 0.415884i \(-0.863472\pi\)
−0.909418 + 0.415884i \(0.863472\pi\)
\(948\) 0 0
\(949\) 53.7032i 0.0565893i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 404.315i − 0.424255i −0.977242 0.212128i \(-0.931961\pi\)
0.977242 0.212128i \(-0.0680393\pi\)
\(954\) 0 0
\(955\) 114.322i 0.119709i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 796.228i 0.830269i
\(960\) 0 0
\(961\) −829.202 −0.862854
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 596.519 0.618154
\(966\) 0 0
\(967\) −1239.73 −1.28203 −0.641016 0.767527i \(-0.721487\pi\)
−0.641016 + 0.767527i \(0.721487\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −905.483 −0.932526 −0.466263 0.884646i \(-0.654400\pi\)
−0.466263 + 0.884646i \(0.654400\pi\)
\(972\) 0 0
\(973\) 438.858i 0.451036i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1736.17i − 1.77704i −0.458836 0.888521i \(-0.651733\pi\)
0.458836 0.888521i \(-0.348267\pi\)
\(978\) 0 0
\(979\) 2577.24i 2.63252i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1014.57i 1.03212i 0.856552 + 0.516060i \(0.172602\pi\)
−0.856552 + 0.516060i \(0.827398\pi\)
\(984\) 0 0
\(985\) −868.554 −0.881781
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −208.148 −0.210463
\(990\) 0 0
\(991\) 1470.74 1.48410 0.742048 0.670347i \(-0.233855\pi\)
0.742048 + 0.670347i \(0.233855\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −694.041 −0.697528
\(996\) 0 0
\(997\) 974.749i 0.977683i 0.872373 + 0.488841i \(0.162580\pi\)
−0.872373 + 0.488841i \(0.837420\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.3.h.i.161.9 yes 12
3.2 odd 2 1728.3.h.j.161.3 yes 12
4.3 odd 2 1728.3.h.j.161.9 yes 12
8.3 odd 2 inner 1728.3.h.i.161.4 yes 12
8.5 even 2 1728.3.h.j.161.4 yes 12
12.11 even 2 inner 1728.3.h.i.161.3 12
24.5 odd 2 inner 1728.3.h.i.161.10 yes 12
24.11 even 2 1728.3.h.j.161.10 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1728.3.h.i.161.3 12 12.11 even 2 inner
1728.3.h.i.161.4 yes 12 8.3 odd 2 inner
1728.3.h.i.161.9 yes 12 1.1 even 1 trivial
1728.3.h.i.161.10 yes 12 24.5 odd 2 inner
1728.3.h.j.161.3 yes 12 3.2 odd 2
1728.3.h.j.161.4 yes 12 8.5 even 2
1728.3.h.j.161.9 yes 12 4.3 odd 2
1728.3.h.j.161.10 yes 12 24.11 even 2