Newspace parameters
| Level: | \( N \) | \(=\) | \( 1728 = 2^{6} \cdot 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1728.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(47.0845896815\) |
| Analytic rank: | \(0\) |
| Dimension: | \(4\) |
| Coefficient field: | \(\Q(\zeta_{12})\) |
|
|
|
| Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
| Coefficient ring: | \(\Z[a_1, \ldots, a_{19}]\) |
| Coefficient ring index: | \( 2^{2}\cdot 3^{2} \) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
| Embedding label | 161.1 | ||
| Root | \(-0.866025 - 0.500000i\) of defining polynomial | ||
| Character | \(\chi\) | \(=\) | 1728.161 |
| Dual form | 1728.3.h.c.161.2 |
$q$-expansion
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).
| \(n\) | \(325\) | \(703\) | \(1217\) |
| \(\chi(n)\) | \(-1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
| \(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| \(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
| \(2\) | 0 | 0 | ||||||||
| \(3\) | 0 | 0 | ||||||||
| \(4\) | 0 | 0 | ||||||||
| \(5\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(6\) | 0 | 0 | ||||||||
| \(7\) | −5.19615 | −0.742307 | −0.371154 | − | 0.928571i | \(-0.621038\pi\) | ||||
| −0.371154 | + | 0.928571i | \(0.621038\pi\) | |||||||
| \(8\) | 0 | 0 | ||||||||
| \(9\) | 0 | 0 | ||||||||
| \(10\) | 0 | 0 | ||||||||
| \(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(12\) | 0 | 0 | ||||||||
| \(13\) | − 25.9808i | − 1.99852i | −0.0384615 | − | 0.999260i | \(-0.512246\pi\) | ||||
| 0.0384615 | − | 0.999260i | \(-0.487754\pi\) | |||||||
| \(14\) | 0 | 0 | ||||||||
| \(15\) | 0 | 0 | ||||||||
| \(16\) | 0 | 0 | ||||||||
| \(17\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(18\) | 0 | 0 | ||||||||
| \(19\) | 11.0000i | 0.578947i | 0.957186 | + | 0.289474i | \(0.0934803\pi\) | ||||
| −0.957186 | + | 0.289474i | \(0.906520\pi\) | |||||||
| \(20\) | 0 | 0 | ||||||||
| \(21\) | 0 | 0 | ||||||||
| \(22\) | 0 | 0 | ||||||||
| \(23\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(24\) | 0 | 0 | ||||||||
| \(25\) | −25.0000 | −1.00000 | ||||||||
| \(26\) | 0 | 0 | ||||||||
| \(27\) | 0 | 0 | ||||||||
| \(28\) | 0 | 0 | ||||||||
| \(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(30\) | 0 | 0 | ||||||||
| \(31\) | 41.5692 | 1.34094 | 0.670471 | − | 0.741935i | \(-0.266092\pi\) | ||||
| 0.670471 | + | 0.741935i | \(0.266092\pi\) | |||||||
| \(32\) | 0 | 0 | ||||||||
| \(33\) | 0 | 0 | ||||||||
| \(34\) | 0 | 0 | ||||||||
| \(35\) | 0 | 0 | ||||||||
| \(36\) | 0 | 0 | ||||||||
| \(37\) | 57.1577i | 1.54480i | 0.635135 | + | 0.772401i | \(0.280944\pi\) | ||||
| −0.635135 | + | 0.772401i | \(0.719056\pi\) | |||||||
| \(38\) | 0 | 0 | ||||||||
| \(39\) | 0 | 0 | ||||||||
| \(40\) | 0 | 0 | ||||||||
| \(41\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(42\) | 0 | 0 | ||||||||
| \(43\) | 22.0000i | 0.511628i | 0.966726 | + | 0.255814i | \(0.0823435\pi\) | ||||
| −0.966726 | + | 0.255814i | \(0.917657\pi\) | |||||||
| \(44\) | 0 | 0 | ||||||||
| \(45\) | 0 | 0 | ||||||||
| \(46\) | 0 | 0 | ||||||||
| \(47\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(48\) | 0 | 0 | ||||||||
| \(49\) | −22.0000 | −0.448980 | ||||||||
| \(50\) | 0 | 0 | ||||||||
| \(51\) | 0 | 0 | ||||||||
| \(52\) | 0 | 0 | ||||||||
| \(53\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(54\) | 0 | 0 | ||||||||
| \(55\) | 0 | 0 | ||||||||
| \(56\) | 0 | 0 | ||||||||
| \(57\) | 0 | 0 | ||||||||
| \(58\) | 0 | 0 | ||||||||
| \(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(60\) | 0 | 0 | ||||||||
| \(61\) | − 15.5885i | − 0.255548i | −0.991803 | − | 0.127774i | \(-0.959217\pi\) | ||||
| 0.991803 | − | 0.127774i | \(-0.0407833\pi\) | |||||||
| \(62\) | 0 | 0 | ||||||||
| \(63\) | 0 | 0 | ||||||||
| \(64\) | 0 | 0 | ||||||||
| \(65\) | 0 | 0 | ||||||||
| \(66\) | 0 | 0 | ||||||||
| \(67\) | 109.000i | 1.62687i | 0.581659 | + | 0.813433i | \(0.302404\pi\) | ||||
| −0.581659 | + | 0.813433i | \(0.697596\pi\) | |||||||
| \(68\) | 0 | 0 | ||||||||
| \(69\) | 0 | 0 | ||||||||
| \(70\) | 0 | 0 | ||||||||
| \(71\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(72\) | 0 | 0 | ||||||||
| \(73\) | −97.0000 | −1.32877 | −0.664384 | − | 0.747392i | \(-0.731306\pi\) | ||||
| −0.664384 | + | 0.747392i | \(0.731306\pi\) | |||||||
| \(74\) | 0 | 0 | ||||||||
| \(75\) | 0 | 0 | ||||||||
| \(76\) | 0 | 0 | ||||||||
| \(77\) | 0 | 0 | ||||||||
| \(78\) | 0 | 0 | ||||||||
| \(79\) | −88.3346 | −1.11816 | −0.559080 | − | 0.829114i | \(-0.688845\pi\) | ||||
| −0.559080 | + | 0.829114i | \(0.688845\pi\) | |||||||
| \(80\) | 0 | 0 | ||||||||
| \(81\) | 0 | 0 | ||||||||
| \(82\) | 0 | 0 | ||||||||
| \(83\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(84\) | 0 | 0 | ||||||||
| \(85\) | 0 | 0 | ||||||||
| \(86\) | 0 | 0 | ||||||||
| \(87\) | 0 | 0 | ||||||||
| \(88\) | 0 | 0 | ||||||||
| \(89\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(90\) | 0 | 0 | ||||||||
| \(91\) | 135.000i | 1.48352i | ||||||||
| \(92\) | 0 | 0 | ||||||||
| \(93\) | 0 | 0 | ||||||||
| \(94\) | 0 | 0 | ||||||||
| \(95\) | 0 | 0 | ||||||||
| \(96\) | 0 | 0 | ||||||||
| \(97\) | −167.000 | −1.72165 | −0.860825 | − | 0.508902i | \(-0.830052\pi\) | ||||
| −0.860825 | + | 0.508902i | \(0.830052\pi\) | |||||||
| \(98\) | 0 | 0 | ||||||||
| \(99\) | 0 | 0 | ||||||||
| \(100\) | 0 | 0 | ||||||||
| \(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(102\) | 0 | 0 | ||||||||
| \(103\) | −202.650 | −1.96748 | −0.983738 | − | 0.179612i | \(-0.942516\pi\) | ||||
| −0.983738 | + | 0.179612i | \(0.942516\pi\) | |||||||
| \(104\) | 0 | 0 | ||||||||
| \(105\) | 0 | 0 | ||||||||
| \(106\) | 0 | 0 | ||||||||
| \(107\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(108\) | 0 | 0 | ||||||||
| \(109\) | − 41.5692i | − 0.381369i | −0.981651 | − | 0.190684i | \(-0.938929\pi\) | ||||
| 0.981651 | − | 0.190684i | \(-0.0610707\pi\) | |||||||
| \(110\) | 0 | 0 | ||||||||
| \(111\) | 0 | 0 | ||||||||
| \(112\) | 0 | 0 | ||||||||
| \(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(114\) | 0 | 0 | ||||||||
| \(115\) | 0 | 0 | ||||||||
| \(116\) | 0 | 0 | ||||||||
| \(117\) | 0 | 0 | ||||||||
| \(118\) | 0 | 0 | ||||||||
| \(119\) | 0 | 0 | ||||||||
| \(120\) | 0 | 0 | ||||||||
| \(121\) | −121.000 | −1.00000 | ||||||||
| \(122\) | 0 | 0 | ||||||||
| \(123\) | 0 | 0 | ||||||||
| \(124\) | 0 | 0 | ||||||||
| \(125\) | 0 | 0 | ||||||||
| \(126\) | 0 | 0 | ||||||||
| \(127\) | 207.846 | 1.63658 | 0.818292 | − | 0.574803i | \(-0.194921\pi\) | ||||
| 0.818292 | + | 0.574803i | \(0.194921\pi\) | |||||||
| \(128\) | 0 | 0 | ||||||||
| \(129\) | 0 | 0 | ||||||||
| \(130\) | 0 | 0 | ||||||||
| \(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(132\) | 0 | 0 | ||||||||
| \(133\) | − 57.1577i | − 0.429757i | ||||||||
| \(134\) | 0 | 0 | ||||||||
| \(135\) | 0 | 0 | ||||||||
| \(136\) | 0 | 0 | ||||||||
| \(137\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(138\) | 0 | 0 | ||||||||
| \(139\) | 251.000i | 1.80576i | 0.429898 | + | 0.902878i | \(0.358550\pi\) | ||||
| −0.429898 | + | 0.902878i | \(0.641450\pi\) | |||||||
| \(140\) | 0 | 0 | ||||||||
| \(141\) | 0 | 0 | ||||||||
| \(142\) | 0 | 0 | ||||||||
| \(143\) | 0 | 0 | ||||||||
| \(144\) | 0 | 0 | ||||||||
| \(145\) | 0 | 0 | ||||||||
| \(146\) | 0 | 0 | ||||||||
| \(147\) | 0 | 0 | ||||||||
| \(148\) | 0 | 0 | ||||||||
| \(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(150\) | 0 | 0 | ||||||||
| \(151\) | 296.181 | 1.96146 | 0.980731 | − | 0.195364i | \(-0.0625889\pi\) | ||||
| 0.980731 | + | 0.195364i | \(0.0625889\pi\) | |||||||
| \(152\) | 0 | 0 | ||||||||
| \(153\) | 0 | 0 | ||||||||
| \(154\) | 0 | 0 | ||||||||
| \(155\) | 0 | 0 | ||||||||
| \(156\) | 0 | 0 | ||||||||
| \(157\) | 290.985i | 1.85340i | 0.375796 | + | 0.926702i | \(0.377369\pi\) | ||||
| −0.375796 | + | 0.926702i | \(0.622631\pi\) | |||||||
| \(158\) | 0 | 0 | ||||||||
| \(159\) | 0 | 0 | ||||||||
| \(160\) | 0 | 0 | ||||||||
| \(161\) | 0 | 0 | ||||||||
| \(162\) | 0 | 0 | ||||||||
| \(163\) | 299.000i | 1.83436i | 0.398478 | + | 0.917178i | \(0.369539\pi\) | ||||
| −0.398478 | + | 0.917178i | \(0.630461\pi\) | |||||||
| \(164\) | 0 | 0 | ||||||||
| \(165\) | 0 | 0 | ||||||||
| \(166\) | 0 | 0 | ||||||||
| \(167\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(168\) | 0 | 0 | ||||||||
| \(169\) | −506.000 | −2.99408 | ||||||||
| \(170\) | 0 | 0 | ||||||||
| \(171\) | 0 | 0 | ||||||||
| \(172\) | 0 | 0 | ||||||||
| \(173\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(174\) | 0 | 0 | ||||||||
| \(175\) | 129.904 | 0.742307 | ||||||||
| \(176\) | 0 | 0 | ||||||||
| \(177\) | 0 | 0 | ||||||||
| \(178\) | 0 | 0 | ||||||||
| \(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(180\) | 0 | 0 | ||||||||
| \(181\) | − 181.865i | − 1.00478i | −0.864641 | − | 0.502390i | \(-0.832454\pi\) | ||||
| 0.864641 | − | 0.502390i | \(-0.167546\pi\) | |||||||
| \(182\) | 0 | 0 | ||||||||
| \(183\) | 0 | 0 | ||||||||
| \(184\) | 0 | 0 | ||||||||
| \(185\) | 0 | 0 | ||||||||
| \(186\) | 0 | 0 | ||||||||
| \(187\) | 0 | 0 | ||||||||
| \(188\) | 0 | 0 | ||||||||
| \(189\) | 0 | 0 | ||||||||
| \(190\) | 0 | 0 | ||||||||
| \(191\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(192\) | 0 | 0 | ||||||||
| \(193\) | 143.000 | 0.740933 | 0.370466 | − | 0.928846i | \(-0.379198\pi\) | ||||
| 0.370466 | + | 0.928846i | \(0.379198\pi\) | |||||||
| \(194\) | 0 | 0 | ||||||||
| \(195\) | 0 | 0 | ||||||||
| \(196\) | 0 | 0 | ||||||||
| \(197\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(198\) | 0 | 0 | ||||||||
| \(199\) | −285.788 | −1.43612 | −0.718061 | − | 0.695980i | \(-0.754970\pi\) | ||||
| −0.718061 | + | 0.695980i | \(0.754970\pi\) | |||||||
| \(200\) | 0 | 0 | ||||||||
| \(201\) | 0 | 0 | ||||||||
| \(202\) | 0 | 0 | ||||||||
| \(203\) | 0 | 0 | ||||||||
| \(204\) | 0 | 0 | ||||||||
| \(205\) | 0 | 0 | ||||||||
| \(206\) | 0 | 0 | ||||||||
| \(207\) | 0 | 0 | ||||||||
| \(208\) | 0 | 0 | ||||||||
| \(209\) | 0 | 0 | ||||||||
| \(210\) | 0 | 0 | ||||||||
| \(211\) | 253.000i | 1.19905i | 0.800355 | + | 0.599526i | \(0.204644\pi\) | ||||
| −0.800355 | + | 0.599526i | \(0.795356\pi\) | |||||||
| \(212\) | 0 | 0 | ||||||||
| \(213\) | 0 | 0 | ||||||||
| \(214\) | 0 | 0 | ||||||||
| \(215\) | 0 | 0 | ||||||||
| \(216\) | 0 | 0 | ||||||||
| \(217\) | −216.000 | −0.995392 | ||||||||
| \(218\) | 0 | 0 | ||||||||
| \(219\) | 0 | 0 | ||||||||
| \(220\) | 0 | 0 | ||||||||
| \(221\) | 0 | 0 | ||||||||
| \(222\) | 0 | 0 | ||||||||
| \(223\) | −290.985 | −1.30486 | −0.652432 | − | 0.757848i | \(-0.726251\pi\) | ||||
| −0.652432 | + | 0.757848i | \(0.726251\pi\) | |||||||
| \(224\) | 0 | 0 | ||||||||
| \(225\) | 0 | 0 | ||||||||
| \(226\) | 0 | 0 | ||||||||
| \(227\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(228\) | 0 | 0 | ||||||||
| \(229\) | − 457.261i | − 1.99677i | −0.0567686 | − | 0.998387i | \(-0.518080\pi\) | ||||
| 0.0567686 | − | 0.998387i | \(-0.481920\pi\) | |||||||
| \(230\) | 0 | 0 | ||||||||
| \(231\) | 0 | 0 | ||||||||
| \(232\) | 0 | 0 | ||||||||
| \(233\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(234\) | 0 | 0 | ||||||||
| \(235\) | 0 | 0 | ||||||||
| \(236\) | 0 | 0 | ||||||||
| \(237\) | 0 | 0 | ||||||||
| \(238\) | 0 | 0 | ||||||||
| \(239\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(240\) | 0 | 0 | ||||||||
| \(241\) | −193.000 | −0.800830 | −0.400415 | − | 0.916334i | \(-0.631134\pi\) | ||||
| −0.400415 | + | 0.916334i | \(0.631134\pi\) | |||||||
| \(242\) | 0 | 0 | ||||||||
| \(243\) | 0 | 0 | ||||||||
| \(244\) | 0 | 0 | ||||||||
| \(245\) | 0 | 0 | ||||||||
| \(246\) | 0 | 0 | ||||||||
| \(247\) | 285.788 | 1.15704 | ||||||||
| \(248\) | 0 | 0 | ||||||||
| \(249\) | 0 | 0 | ||||||||
| \(250\) | 0 | 0 | ||||||||
| \(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(252\) | 0 | 0 | ||||||||
| \(253\) | 0 | 0 | ||||||||
| \(254\) | 0 | 0 | ||||||||
| \(255\) | 0 | 0 | ||||||||
| \(256\) | 0 | 0 | ||||||||
| \(257\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(258\) | 0 | 0 | ||||||||
| \(259\) | − 297.000i | − 1.14672i | ||||||||
| \(260\) | 0 | 0 | ||||||||
| \(261\) | 0 | 0 | ||||||||
| \(262\) | 0 | 0 | ||||||||
| \(263\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(264\) | 0 | 0 | ||||||||
| \(265\) | 0 | 0 | ||||||||
| \(266\) | 0 | 0 | ||||||||
| \(267\) | 0 | 0 | ||||||||
| \(268\) | 0 | 0 | ||||||||
| \(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(270\) | 0 | 0 | ||||||||
| \(271\) | −452.065 | −1.66814 | −0.834069 | − | 0.551661i | \(-0.813994\pi\) | ||||
| −0.834069 | + | 0.551661i | \(0.813994\pi\) | |||||||
| \(272\) | 0 | 0 | ||||||||
| \(273\) | 0 | 0 | ||||||||
| \(274\) | 0 | 0 | ||||||||
| \(275\) | 0 | 0 | ||||||||
| \(276\) | 0 | 0 | ||||||||
| \(277\) | 540.400i | 1.95090i | 0.220217 | + | 0.975451i | \(0.429324\pi\) | ||||
| −0.220217 | + | 0.975451i | \(0.570676\pi\) | |||||||
| \(278\) | 0 | 0 | ||||||||
| \(279\) | 0 | 0 | ||||||||
| \(280\) | 0 | 0 | ||||||||
| \(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(282\) | 0 | 0 | ||||||||
| \(283\) | 458.000i | 1.61837i | 0.587551 | + | 0.809187i | \(0.300092\pi\) | ||||
| −0.587551 | + | 0.809187i | \(0.699908\pi\) | |||||||
| \(284\) | 0 | 0 | ||||||||
| \(285\) | 0 | 0 | ||||||||
| \(286\) | 0 | 0 | ||||||||
| \(287\) | 0 | 0 | ||||||||
| \(288\) | 0 | 0 | ||||||||
| \(289\) | 289.000 | 1.00000 | ||||||||
| \(290\) | 0 | 0 | ||||||||
| \(291\) | 0 | 0 | ||||||||
| \(292\) | 0 | 0 | ||||||||
| \(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(294\) | 0 | 0 | ||||||||
| \(295\) | 0 | 0 | ||||||||
| \(296\) | 0 | 0 | ||||||||
| \(297\) | 0 | 0 | ||||||||
| \(298\) | 0 | 0 | ||||||||
| \(299\) | 0 | 0 | ||||||||
| \(300\) | 0 | 0 | ||||||||
| \(301\) | − 114.315i | − 0.379785i | ||||||||
| \(302\) | 0 | 0 | ||||||||
| \(303\) | 0 | 0 | ||||||||
| \(304\) | 0 | 0 | ||||||||
| \(305\) | 0 | 0 | ||||||||
| \(306\) | 0 | 0 | ||||||||
| \(307\) | 358.000i | 1.16612i | 0.812428 | + | 0.583062i | \(0.198145\pi\) | ||||
| −0.812428 | + | 0.583062i | \(0.801855\pi\) | |||||||
| \(308\) | 0 | 0 | ||||||||
| \(309\) | 0 | 0 | ||||||||
| \(310\) | 0 | 0 | ||||||||
| \(311\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(312\) | 0 | 0 | ||||||||
| \(313\) | −599.000 | −1.91374 | −0.956869 | − | 0.290520i | \(-0.906172\pi\) | ||||
| −0.956869 | + | 0.290520i | \(0.906172\pi\) | |||||||
| \(314\) | 0 | 0 | ||||||||
| \(315\) | 0 | 0 | ||||||||
| \(316\) | 0 | 0 | ||||||||
| \(317\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(318\) | 0 | 0 | ||||||||
| \(319\) | 0 | 0 | ||||||||
| \(320\) | 0 | 0 | ||||||||
| \(321\) | 0 | 0 | ||||||||
| \(322\) | 0 | 0 | ||||||||
| \(323\) | 0 | 0 | ||||||||
| \(324\) | 0 | 0 | ||||||||
| \(325\) | 649.519i | 1.99852i | ||||||||
| \(326\) | 0 | 0 | ||||||||
| \(327\) | 0 | 0 | ||||||||
| \(328\) | 0 | 0 | ||||||||
| \(329\) | 0 | 0 | ||||||||
| \(330\) | 0 | 0 | ||||||||
| \(331\) | − 661.000i | − 1.99698i | −0.0549442 | − | 0.998489i | \(-0.517498\pi\) | ||||
| 0.0549442 | − | 0.998489i | \(-0.482502\pi\) | |||||||
| \(332\) | 0 | 0 | ||||||||
| \(333\) | 0 | 0 | ||||||||
| \(334\) | 0 | 0 | ||||||||
| \(335\) | 0 | 0 | ||||||||
| \(336\) | 0 | 0 | ||||||||
| \(337\) | 649.000 | 1.92582 | 0.962908 | − | 0.269830i | \(-0.0869675\pi\) | ||||
| 0.962908 | + | 0.269830i | \(0.0869675\pi\) | |||||||
| \(338\) | 0 | 0 | ||||||||
| \(339\) | 0 | 0 | ||||||||
| \(340\) | 0 | 0 | ||||||||
| \(341\) | 0 | 0 | ||||||||
| \(342\) | 0 | 0 | ||||||||
| \(343\) | 368.927 | 1.07559 | ||||||||
| \(344\) | 0 | 0 | ||||||||
| \(345\) | 0 | 0 | ||||||||
| \(346\) | 0 | 0 | ||||||||
| \(347\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(348\) | 0 | 0 | ||||||||
| \(349\) | − 192.258i | − 0.550881i | −0.961318 | − | 0.275441i | \(-0.911176\pi\) | ||||
| 0.961318 | − | 0.275441i | \(-0.0888238\pi\) | |||||||
| \(350\) | 0 | 0 | ||||||||
| \(351\) | 0 | 0 | ||||||||
| \(352\) | 0 | 0 | ||||||||
| \(353\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(354\) | 0 | 0 | ||||||||
| \(355\) | 0 | 0 | ||||||||
| \(356\) | 0 | 0 | ||||||||
| \(357\) | 0 | 0 | ||||||||
| \(358\) | 0 | 0 | ||||||||
| \(359\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(360\) | 0 | 0 | ||||||||
| \(361\) | 240.000 | 0.664820 | ||||||||
| \(362\) | 0 | 0 | ||||||||
| \(363\) | 0 | 0 | ||||||||
| \(364\) | 0 | 0 | ||||||||
| \(365\) | 0 | 0 | ||||||||
| \(366\) | 0 | 0 | ||||||||
| \(367\) | 545.596 | 1.48664 | 0.743319 | − | 0.668937i | \(-0.233251\pi\) | ||||
| 0.743319 | + | 0.668937i | \(0.233251\pi\) | |||||||
| \(368\) | 0 | 0 | ||||||||
| \(369\) | 0 | 0 | ||||||||
| \(370\) | 0 | 0 | ||||||||
| \(371\) | 0 | 0 | ||||||||
| \(372\) | 0 | 0 | ||||||||
| \(373\) | 472.850i | 1.26769i | 0.773458 | + | 0.633847i | \(0.218525\pi\) | ||||
| −0.773458 | + | 0.633847i | \(0.781475\pi\) | |||||||
| \(374\) | 0 | 0 | ||||||||
| \(375\) | 0 | 0 | ||||||||
| \(376\) | 0 | 0 | ||||||||
| \(377\) | 0 | 0 | ||||||||
| \(378\) | 0 | 0 | ||||||||
| \(379\) | − 83.0000i | − 0.218997i | −0.993987 | − | 0.109499i | \(-0.965075\pi\) | ||||
| 0.993987 | − | 0.109499i | \(-0.0349245\pi\) | |||||||
| \(380\) | 0 | 0 | ||||||||
| \(381\) | 0 | 0 | ||||||||
| \(382\) | 0 | 0 | ||||||||
| \(383\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(384\) | 0 | 0 | ||||||||
| \(385\) | 0 | 0 | ||||||||
| \(386\) | 0 | 0 | ||||||||
| \(387\) | 0 | 0 | ||||||||
| \(388\) | 0 | 0 | ||||||||
| \(389\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(390\) | 0 | 0 | ||||||||
| \(391\) | 0 | 0 | ||||||||
| \(392\) | 0 | 0 | ||||||||
| \(393\) | 0 | 0 | ||||||||
| \(394\) | 0 | 0 | ||||||||
| \(395\) | 0 | 0 | ||||||||
| \(396\) | 0 | 0 | ||||||||
| \(397\) | − 706.677i | − 1.78004i | −0.455919 | − | 0.890021i | \(-0.650689\pi\) | ||||
| 0.455919 | − | 0.890021i | \(-0.349311\pi\) | |||||||
| \(398\) | 0 | 0 | ||||||||
| \(399\) | 0 | 0 | ||||||||
| \(400\) | 0 | 0 | ||||||||
| \(401\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(402\) | 0 | 0 | ||||||||
| \(403\) | − 1080.00i | − 2.67990i | ||||||||
| \(404\) | 0 | 0 | ||||||||
| \(405\) | 0 | 0 | ||||||||
| \(406\) | 0 | 0 | ||||||||
| \(407\) | 0 | 0 | ||||||||
| \(408\) | 0 | 0 | ||||||||
| \(409\) | 143.000 | 0.349633 | 0.174817 | − | 0.984601i | \(-0.444067\pi\) | ||||
| 0.174817 | + | 0.984601i | \(0.444067\pi\) | |||||||
| \(410\) | 0 | 0 | ||||||||
| \(411\) | 0 | 0 | ||||||||
| \(412\) | 0 | 0 | ||||||||
| \(413\) | 0 | 0 | ||||||||
| \(414\) | 0 | 0 | ||||||||
| \(415\) | 0 | 0 | ||||||||
| \(416\) | 0 | 0 | ||||||||
| \(417\) | 0 | 0 | ||||||||
| \(418\) | 0 | 0 | ||||||||
| \(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(420\) | 0 | 0 | ||||||||
| \(421\) | − 691.088i | − 1.64154i | −0.571259 | − | 0.820770i | \(-0.693545\pi\) | ||||
| 0.571259 | − | 0.820770i | \(-0.306455\pi\) | |||||||
| \(422\) | 0 | 0 | ||||||||
| \(423\) | 0 | 0 | ||||||||
| \(424\) | 0 | 0 | ||||||||
| \(425\) | 0 | 0 | ||||||||
| \(426\) | 0 | 0 | ||||||||
| \(427\) | 81.0000i | 0.189696i | ||||||||
| \(428\) | 0 | 0 | ||||||||
| \(429\) | 0 | 0 | ||||||||
| \(430\) | 0 | 0 | ||||||||
| \(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(432\) | 0 | 0 | ||||||||
| \(433\) | 862.000 | 1.99076 | 0.995381 | − | 0.0960028i | \(-0.0306058\pi\) | ||||
| 0.995381 | + | 0.0960028i | \(0.0306058\pi\) | |||||||
| \(434\) | 0 | 0 | ||||||||
| \(435\) | 0 | 0 | ||||||||
| \(436\) | 0 | 0 | ||||||||
| \(437\) | 0 | 0 | ||||||||
| \(438\) | 0 | 0 | ||||||||
| \(439\) | −872.954 | −1.98850 | −0.994252 | − | 0.107062i | \(-0.965856\pi\) | ||||
| −0.994252 | + | 0.107062i | \(0.965856\pi\) | |||||||
| \(440\) | 0 | 0 | ||||||||
| \(441\) | 0 | 0 | ||||||||
| \(442\) | 0 | 0 | ||||||||
| \(443\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(444\) | 0 | 0 | ||||||||
| \(445\) | 0 | 0 | ||||||||
| \(446\) | 0 | 0 | ||||||||
| \(447\) | 0 | 0 | ||||||||
| \(448\) | 0 | 0 | ||||||||
| \(449\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(450\) | 0 | 0 | ||||||||
| \(451\) | 0 | 0 | ||||||||
| \(452\) | 0 | 0 | ||||||||
| \(453\) | 0 | 0 | ||||||||
| \(454\) | 0 | 0 | ||||||||
| \(455\) | 0 | 0 | ||||||||
| \(456\) | 0 | 0 | ||||||||
| \(457\) | −814.000 | −1.78118 | −0.890591 | − | 0.454805i | \(-0.849709\pi\) | ||||
| −0.890591 | + | 0.454805i | \(0.849709\pi\) | |||||||
| \(458\) | 0 | 0 | ||||||||
| \(459\) | 0 | 0 | ||||||||
| \(460\) | 0 | 0 | ||||||||
| \(461\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(462\) | 0 | 0 | ||||||||
| \(463\) | −836.581 | −1.80687 | −0.903435 | − | 0.428726i | \(-0.858963\pi\) | ||||
| −0.903435 | + | 0.428726i | \(0.858963\pi\) | |||||||
| \(464\) | 0 | 0 | ||||||||
| \(465\) | 0 | 0 | ||||||||
| \(466\) | 0 | 0 | ||||||||
| \(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(468\) | 0 | 0 | ||||||||
| \(469\) | − 566.381i | − 1.20763i | ||||||||
| \(470\) | 0 | 0 | ||||||||
| \(471\) | 0 | 0 | ||||||||
| \(472\) | 0 | 0 | ||||||||
| \(473\) | 0 | 0 | ||||||||
| \(474\) | 0 | 0 | ||||||||
| \(475\) | − 275.000i | − 0.578947i | ||||||||
| \(476\) | 0 | 0 | ||||||||
| \(477\) | 0 | 0 | ||||||||
| \(478\) | 0 | 0 | ||||||||
| \(479\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(480\) | 0 | 0 | ||||||||
| \(481\) | 1485.00 | 3.08732 | ||||||||
| \(482\) | 0 | 0 | ||||||||
| \(483\) | 0 | 0 | ||||||||
| \(484\) | 0 | 0 | ||||||||
| \(485\) | 0 | 0 | ||||||||
| \(486\) | 0 | 0 | ||||||||
| \(487\) | 909.327 | 1.86720 | 0.933600 | − | 0.358316i | \(-0.116649\pi\) | ||||
| 0.933600 | + | 0.358316i | \(0.116649\pi\) | |||||||
| \(488\) | 0 | 0 | ||||||||
| \(489\) | 0 | 0 | ||||||||
| \(490\) | 0 | 0 | ||||||||
| \(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(492\) | 0 | 0 | ||||||||
| \(493\) | 0 | 0 | ||||||||
| \(494\) | 0 | 0 | ||||||||
| \(495\) | 0 | 0 | ||||||||
| \(496\) | 0 | 0 | ||||||||
| \(497\) | 0 | 0 | ||||||||
| \(498\) | 0 | 0 | ||||||||
| \(499\) | − 26.0000i | − 0.0521042i | −0.999661 | − | 0.0260521i | \(-0.991706\pi\) | ||||
| 0.999661 | − | 0.0260521i | \(-0.00829358\pi\) | |||||||
| \(500\) | 0 | 0 | ||||||||
| \(501\) | 0 | 0 | ||||||||
| \(502\) | 0 | 0 | ||||||||
| \(503\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(504\) | 0 | 0 | ||||||||
| \(505\) | 0 | 0 | ||||||||
| \(506\) | 0 | 0 | ||||||||
| \(507\) | 0 | 0 | ||||||||
| \(508\) | 0 | 0 | ||||||||
| \(509\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(510\) | 0 | 0 | ||||||||
| \(511\) | 504.027 | 0.986354 | ||||||||
| \(512\) | 0 | 0 | ||||||||
| \(513\) | 0 | 0 | ||||||||
| \(514\) | 0 | 0 | ||||||||
| \(515\) | 0 | 0 | ||||||||
| \(516\) | 0 | 0 | ||||||||
| \(517\) | 0 | 0 | ||||||||
| \(518\) | 0 | 0 | ||||||||
| \(519\) | 0 | 0 | ||||||||
| \(520\) | 0 | 0 | ||||||||
| \(521\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(522\) | 0 | 0 | ||||||||
| \(523\) | − 803.000i | − 1.53537i | −0.640826 | − | 0.767686i | \(-0.721408\pi\) | ||||
| 0.640826 | − | 0.767686i | \(-0.278592\pi\) | |||||||
| \(524\) | 0 | 0 | ||||||||
| \(525\) | 0 | 0 | ||||||||
| \(526\) | 0 | 0 | ||||||||
| \(527\) | 0 | 0 | ||||||||
| \(528\) | 0 | 0 | ||||||||
| \(529\) | 529.000 | 1.00000 | ||||||||
| \(530\) | 0 | 0 | ||||||||
| \(531\) | 0 | 0 | ||||||||
| \(532\) | 0 | 0 | ||||||||
| \(533\) | 0 | 0 | ||||||||
| \(534\) | 0 | 0 | ||||||||
| \(535\) | 0 | 0 | ||||||||
| \(536\) | 0 | 0 | ||||||||
| \(537\) | 0 | 0 | ||||||||
| \(538\) | 0 | 0 | ||||||||
| \(539\) | 0 | 0 | ||||||||
| \(540\) | 0 | 0 | ||||||||
| \(541\) | 1054.82i | 1.94976i | 0.222736 | + | 0.974879i | \(0.428501\pi\) | ||||
| −0.222736 | + | 0.974879i | \(0.571499\pi\) | |||||||
| \(542\) | 0 | 0 | ||||||||
| \(543\) | 0 | 0 | ||||||||
| \(544\) | 0 | 0 | ||||||||
| \(545\) | 0 | 0 | ||||||||
| \(546\) | 0 | 0 | ||||||||
| \(547\) | − 1093.00i | − 1.99817i | −0.0427471 | − | 0.999086i | \(-0.513611\pi\) | ||||
| 0.0427471 | − | 0.999086i | \(-0.486389\pi\) | |||||||
| \(548\) | 0 | 0 | ||||||||
| \(549\) | 0 | 0 | ||||||||
| \(550\) | 0 | 0 | ||||||||
| \(551\) | 0 | 0 | ||||||||
| \(552\) | 0 | 0 | ||||||||
| \(553\) | 459.000 | 0.830018 | ||||||||
| \(554\) | 0 | 0 | ||||||||
| \(555\) | 0 | 0 | ||||||||
| \(556\) | 0 | 0 | ||||||||
| \(557\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(558\) | 0 | 0 | ||||||||
| \(559\) | 571.577 | 1.02250 | ||||||||
| \(560\) | 0 | 0 | ||||||||
| \(561\) | 0 | 0 | ||||||||
| \(562\) | 0 | 0 | ||||||||
| \(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(564\) | 0 | 0 | ||||||||
| \(565\) | 0 | 0 | ||||||||
| \(566\) | 0 | 0 | ||||||||
| \(567\) | 0 | 0 | ||||||||
| \(568\) | 0 | 0 | ||||||||
| \(569\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(570\) | 0 | 0 | ||||||||
| \(571\) | − 181.000i | − 0.316988i | −0.987360 | − | 0.158494i | \(-0.949336\pi\) | ||||
| 0.987360 | − | 0.158494i | \(-0.0506638\pi\) | |||||||
| \(572\) | 0 | 0 | ||||||||
| \(573\) | 0 | 0 | ||||||||
| \(574\) | 0 | 0 | ||||||||
| \(575\) | 0 | 0 | ||||||||
| \(576\) | 0 | 0 | ||||||||
| \(577\) | 1033.00 | 1.79029 | 0.895147 | − | 0.445770i | \(-0.147070\pi\) | ||||
| 0.895147 | + | 0.445770i | \(0.147070\pi\) | |||||||
| \(578\) | 0 | 0 | ||||||||
| \(579\) | 0 | 0 | ||||||||
| \(580\) | 0 | 0 | ||||||||
| \(581\) | 0 | 0 | ||||||||
| \(582\) | 0 | 0 | ||||||||
| \(583\) | 0 | 0 | ||||||||
| \(584\) | 0 | 0 | ||||||||
| \(585\) | 0 | 0 | ||||||||
| \(586\) | 0 | 0 | ||||||||
| \(587\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(588\) | 0 | 0 | ||||||||
| \(589\) | 457.261i | 0.776335i | ||||||||
| \(590\) | 0 | 0 | ||||||||
| \(591\) | 0 | 0 | ||||||||
| \(592\) | 0 | 0 | ||||||||
| \(593\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(594\) | 0 | 0 | ||||||||
| \(595\) | 0 | 0 | ||||||||
| \(596\) | 0 | 0 | ||||||||
| \(597\) | 0 | 0 | ||||||||
| \(598\) | 0 | 0 | ||||||||
| \(599\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(600\) | 0 | 0 | ||||||||
| \(601\) | −526.000 | −0.875208 | −0.437604 | − | 0.899168i | \(-0.644173\pi\) | ||||
| −0.437604 | + | 0.899168i | \(0.644173\pi\) | |||||||
| \(602\) | 0 | 0 | ||||||||
| \(603\) | 0 | 0 | ||||||||
| \(604\) | 0 | 0 | ||||||||
| \(605\) | 0 | 0 | ||||||||
| \(606\) | 0 | 0 | ||||||||
| \(607\) | −254.611 | −0.419459 | −0.209729 | − | 0.977759i | \(-0.567258\pi\) | ||||
| −0.209729 | + | 0.977759i | \(0.567258\pi\) | |||||||
| \(608\) | 0 | 0 | ||||||||
| \(609\) | 0 | 0 | ||||||||
| \(610\) | 0 | 0 | ||||||||
| \(611\) | 0 | 0 | ||||||||
| \(612\) | 0 | 0 | ||||||||
| \(613\) | 732.657i | 1.19520i | 0.801794 | + | 0.597600i | \(0.203879\pi\) | ||||
| −0.801794 | + | 0.597600i | \(0.796121\pi\) | |||||||
| \(614\) | 0 | 0 | ||||||||
| \(615\) | 0 | 0 | ||||||||
| \(616\) | 0 | 0 | ||||||||
| \(617\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(618\) | 0 | 0 | ||||||||
| \(619\) | − 949.000i | − 1.53312i | −0.642174 | − | 0.766559i | \(-0.721967\pi\) | ||||
| 0.642174 | − | 0.766559i | \(-0.278033\pi\) | |||||||
| \(620\) | 0 | 0 | ||||||||
| \(621\) | 0 | 0 | ||||||||
| \(622\) | 0 | 0 | ||||||||
| \(623\) | 0 | 0 | ||||||||
| \(624\) | 0 | 0 | ||||||||
| \(625\) | 625.000 | 1.00000 | ||||||||
| \(626\) | 0 | 0 | ||||||||
| \(627\) | 0 | 0 | ||||||||
| \(628\) | 0 | 0 | ||||||||
| \(629\) | 0 | 0 | ||||||||
| \(630\) | 0 | 0 | ||||||||
| \(631\) | −1117.17 | −1.77048 | −0.885240 | − | 0.465135i | \(-0.846006\pi\) | ||||
| −0.885240 | + | 0.465135i | \(0.846006\pi\) | |||||||
| \(632\) | 0 | 0 | ||||||||
| \(633\) | 0 | 0 | ||||||||
| \(634\) | 0 | 0 | ||||||||
| \(635\) | 0 | 0 | ||||||||
| \(636\) | 0 | 0 | ||||||||
| \(637\) | 571.577i | 0.897295i | ||||||||
| \(638\) | 0 | 0 | ||||||||
| \(639\) | 0 | 0 | ||||||||
| \(640\) | 0 | 0 | ||||||||
| \(641\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(642\) | 0 | 0 | ||||||||
| \(643\) | 314.000i | 0.488336i | 0.969733 | + | 0.244168i | \(0.0785148\pi\) | ||||
| −0.969733 | + | 0.244168i | \(0.921485\pi\) | |||||||
| \(644\) | 0 | 0 | ||||||||
| \(645\) | 0 | 0 | ||||||||
| \(646\) | 0 | 0 | ||||||||
| \(647\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(648\) | 0 | 0 | ||||||||
| \(649\) | 0 | 0 | ||||||||
| \(650\) | 0 | 0 | ||||||||
| \(651\) | 0 | 0 | ||||||||
| \(652\) | 0 | 0 | ||||||||
| \(653\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(654\) | 0 | 0 | ||||||||
| \(655\) | 0 | 0 | ||||||||
| \(656\) | 0 | 0 | ||||||||
| \(657\) | 0 | 0 | ||||||||
| \(658\) | 0 | 0 | ||||||||
| \(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(660\) | 0 | 0 | ||||||||
| \(661\) | − 763.834i | − 1.15557i | −0.816188 | − | 0.577787i | \(-0.803916\pi\) | ||||
| 0.816188 | − | 0.577787i | \(-0.196084\pi\) | |||||||
| \(662\) | 0 | 0 | ||||||||
| \(663\) | 0 | 0 | ||||||||
| \(664\) | 0 | 0 | ||||||||
| \(665\) | 0 | 0 | ||||||||
| \(666\) | 0 | 0 | ||||||||
| \(667\) | 0 | 0 | ||||||||
| \(668\) | 0 | 0 | ||||||||
| \(669\) | 0 | 0 | ||||||||
| \(670\) | 0 | 0 | ||||||||
| \(671\) | 0 | 0 | ||||||||
| \(672\) | 0 | 0 | ||||||||
| \(673\) | −23.0000 | −0.0341753 | −0.0170877 | − | 0.999854i | \(-0.505439\pi\) | ||||
| −0.0170877 | + | 0.999854i | \(0.505439\pi\) | |||||||
| \(674\) | 0 | 0 | ||||||||
| \(675\) | 0 | 0 | ||||||||
| \(676\) | 0 | 0 | ||||||||
| \(677\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(678\) | 0 | 0 | ||||||||
| \(679\) | 867.757 | 1.27799 | ||||||||
| \(680\) | 0 | 0 | ||||||||
| \(681\) | 0 | 0 | ||||||||
| \(682\) | 0 | 0 | ||||||||
| \(683\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(684\) | 0 | 0 | ||||||||
| \(685\) | 0 | 0 | ||||||||
| \(686\) | 0 | 0 | ||||||||
| \(687\) | 0 | 0 | ||||||||
| \(688\) | 0 | 0 | ||||||||
| \(689\) | 0 | 0 | ||||||||
| \(690\) | 0 | 0 | ||||||||
| \(691\) | − 1318.00i | − 1.90738i | −0.300790 | − | 0.953690i | \(-0.597250\pi\) | ||||
| 0.300790 | − | 0.953690i | \(-0.402750\pi\) | |||||||
| \(692\) | 0 | 0 | ||||||||
| \(693\) | 0 | 0 | ||||||||
| \(694\) | 0 | 0 | ||||||||
| \(695\) | 0 | 0 | ||||||||
| \(696\) | 0 | 0 | ||||||||
| \(697\) | 0 | 0 | ||||||||
| \(698\) | 0 | 0 | ||||||||
| \(699\) | 0 | 0 | ||||||||
| \(700\) | 0 | 0 | ||||||||
| \(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(702\) | 0 | 0 | ||||||||
| \(703\) | −628.734 | −0.894359 | ||||||||
| \(704\) | 0 | 0 | ||||||||
| \(705\) | 0 | 0 | ||||||||
| \(706\) | 0 | 0 | ||||||||
| \(707\) | 0 | 0 | ||||||||
| \(708\) | 0 | 0 | ||||||||
| \(709\) | − 275.396i | − 0.388429i | −0.980959 | − | 0.194214i | \(-0.937784\pi\) | ||||
| 0.980959 | − | 0.194214i | \(-0.0622158\pi\) | |||||||
| \(710\) | 0 | 0 | ||||||||
| \(711\) | 0 | 0 | ||||||||
| \(712\) | 0 | 0 | ||||||||
| \(713\) | 0 | 0 | ||||||||
| \(714\) | 0 | 0 | ||||||||
| \(715\) | 0 | 0 | ||||||||
| \(716\) | 0 | 0 | ||||||||
| \(717\) | 0 | 0 | ||||||||
| \(718\) | 0 | 0 | ||||||||
| \(719\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(720\) | 0 | 0 | ||||||||
| \(721\) | 1053.00 | 1.46047 | ||||||||
| \(722\) | 0 | 0 | ||||||||
| \(723\) | 0 | 0 | ||||||||
| \(724\) | 0 | 0 | ||||||||
| \(725\) | 0 | 0 | ||||||||
| \(726\) | 0 | 0 | ||||||||
| \(727\) | −1371.78 | −1.88691 | −0.943455 | − | 0.331499i | \(-0.892446\pi\) | ||||
| −0.943455 | + | 0.331499i | \(0.892446\pi\) | |||||||
| \(728\) | 0 | 0 | ||||||||
| \(729\) | 0 | 0 | ||||||||
| \(730\) | 0 | 0 | ||||||||
| \(731\) | 0 | 0 | ||||||||
| \(732\) | 0 | 0 | ||||||||
| \(733\) | − 1039.23i | − 1.41778i | −0.705321 | − | 0.708888i | \(-0.749197\pi\) | ||||
| 0.705321 | − | 0.708888i | \(-0.250803\pi\) | |||||||
| \(734\) | 0 | 0 | ||||||||
| \(735\) | 0 | 0 | ||||||||
| \(736\) | 0 | 0 | ||||||||
| \(737\) | 0 | 0 | ||||||||
| \(738\) | 0 | 0 | ||||||||
| \(739\) | 1222.00i | 1.65359i | 0.562506 | + | 0.826793i | \(0.309837\pi\) | ||||
| −0.562506 | + | 0.826793i | \(0.690163\pi\) | |||||||
| \(740\) | 0 | 0 | ||||||||
| \(741\) | 0 | 0 | ||||||||
| \(742\) | 0 | 0 | ||||||||
| \(743\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(744\) | 0 | 0 | ||||||||
| \(745\) | 0 | 0 | ||||||||
| \(746\) | 0 | 0 | ||||||||
| \(747\) | 0 | 0 | ||||||||
| \(748\) | 0 | 0 | ||||||||
| \(749\) | 0 | 0 | ||||||||
| \(750\) | 0 | 0 | ||||||||
| \(751\) | 1491.30 | 1.98575 | 0.992873 | − | 0.119174i | \(-0.0380248\pi\) | ||||
| 0.992873 | + | 0.119174i | \(0.0380248\pi\) | |||||||
| \(752\) | 0 | 0 | ||||||||
| \(753\) | 0 | 0 | ||||||||
| \(754\) | 0 | 0 | ||||||||
| \(755\) | 0 | 0 | ||||||||
| \(756\) | 0 | 0 | ||||||||
| \(757\) | − 1356.20i | − 1.79154i | −0.444518 | − | 0.895770i | \(-0.646625\pi\) | ||||
| 0.444518 | − | 0.895770i | \(-0.353375\pi\) | |||||||
| \(758\) | 0 | 0 | ||||||||
| \(759\) | 0 | 0 | ||||||||
| \(760\) | 0 | 0 | ||||||||
| \(761\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(762\) | 0 | 0 | ||||||||
| \(763\) | 216.000i | 0.283093i | ||||||||
| \(764\) | 0 | 0 | ||||||||
| \(765\) | 0 | 0 | ||||||||
| \(766\) | 0 | 0 | ||||||||
| \(767\) | 0 | 0 | ||||||||
| \(768\) | 0 | 0 | ||||||||
| \(769\) | 863.000 | 1.12224 | 0.561118 | − | 0.827736i | \(-0.310371\pi\) | ||||
| 0.561118 | + | 0.827736i | \(0.310371\pi\) | |||||||
| \(770\) | 0 | 0 | ||||||||
| \(771\) | 0 | 0 | ||||||||
| \(772\) | 0 | 0 | ||||||||
| \(773\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(774\) | 0 | 0 | ||||||||
| \(775\) | −1039.23 | −1.34094 | ||||||||
| \(776\) | 0 | 0 | ||||||||
| \(777\) | 0 | 0 | ||||||||
| \(778\) | 0 | 0 | ||||||||
| \(779\) | 0 | 0 | ||||||||
| \(780\) | 0 | 0 | ||||||||
| \(781\) | 0 | 0 | ||||||||
| \(782\) | 0 | 0 | ||||||||
| \(783\) | 0 | 0 | ||||||||
| \(784\) | 0 | 0 | ||||||||
| \(785\) | 0 | 0 | ||||||||
| \(786\) | 0 | 0 | ||||||||
| \(787\) | − 613.000i | − 0.778907i | −0.921046 | − | 0.389454i | \(-0.872664\pi\) | ||||
| 0.921046 | − | 0.389454i | \(-0.127336\pi\) | |||||||
| \(788\) | 0 | 0 | ||||||||
| \(789\) | 0 | 0 | ||||||||
| \(790\) | 0 | 0 | ||||||||
| \(791\) | 0 | 0 | ||||||||
| \(792\) | 0 | 0 | ||||||||
| \(793\) | −405.000 | −0.510719 | ||||||||
| \(794\) | 0 | 0 | ||||||||
| \(795\) | 0 | 0 | ||||||||
| \(796\) | 0 | 0 | ||||||||
| \(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(798\) | 0 | 0 | ||||||||
| \(799\) | 0 | 0 | ||||||||
| \(800\) | 0 | 0 | ||||||||
| \(801\) | 0 | 0 | ||||||||
| \(802\) | 0 | 0 | ||||||||
| \(803\) | 0 | 0 | ||||||||
| \(804\) | 0 | 0 | ||||||||
| \(805\) | 0 | 0 | ||||||||
| \(806\) | 0 | 0 | ||||||||
| \(807\) | 0 | 0 | ||||||||
| \(808\) | 0 | 0 | ||||||||
| \(809\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(810\) | 0 | 0 | ||||||||
| \(811\) | − 1514.00i | − 1.86683i | −0.358797 | − | 0.933416i | \(-0.616813\pi\) | ||||
| 0.358797 | − | 0.933416i | \(-0.383187\pi\) | |||||||
| \(812\) | 0 | 0 | ||||||||
| \(813\) | 0 | 0 | ||||||||
| \(814\) | 0 | 0 | ||||||||
| \(815\) | 0 | 0 | ||||||||
| \(816\) | 0 | 0 | ||||||||
| \(817\) | −242.000 | −0.296206 | ||||||||
| \(818\) | 0 | 0 | ||||||||
| \(819\) | 0 | 0 | ||||||||
| \(820\) | 0 | 0 | ||||||||
| \(821\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(822\) | 0 | 0 | ||||||||
| \(823\) | −285.788 | −0.347252 | −0.173626 | − | 0.984812i | \(-0.555548\pi\) | ||||
| −0.173626 | + | 0.984812i | \(0.555548\pi\) | |||||||
| \(824\) | 0 | 0 | ||||||||
| \(825\) | 0 | 0 | ||||||||
| \(826\) | 0 | 0 | ||||||||
| \(827\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(828\) | 0 | 0 | ||||||||
| \(829\) | 400.104i | 0.482634i | 0.970446 | + | 0.241317i | \(0.0775794\pi\) | ||||
| −0.970446 | + | 0.241317i | \(0.922421\pi\) | |||||||
| \(830\) | 0 | 0 | ||||||||
| \(831\) | 0 | 0 | ||||||||
| \(832\) | 0 | 0 | ||||||||
| \(833\) | 0 | 0 | ||||||||
| \(834\) | 0 | 0 | ||||||||
| \(835\) | 0 | 0 | ||||||||
| \(836\) | 0 | 0 | ||||||||
| \(837\) | 0 | 0 | ||||||||
| \(838\) | 0 | 0 | ||||||||
| \(839\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(840\) | 0 | 0 | ||||||||
| \(841\) | −841.000 | −1.00000 | ||||||||
| \(842\) | 0 | 0 | ||||||||
| \(843\) | 0 | 0 | ||||||||
| \(844\) | 0 | 0 | ||||||||
| \(845\) | 0 | 0 | ||||||||
| \(846\) | 0 | 0 | ||||||||
| \(847\) | 628.734 | 0.742307 | ||||||||
| \(848\) | 0 | 0 | ||||||||
| \(849\) | 0 | 0 | ||||||||
| \(850\) | 0 | 0 | ||||||||
| \(851\) | 0 | 0 | ||||||||
| \(852\) | 0 | 0 | ||||||||
| \(853\) | 1636.79i | 1.91886i | 0.281946 | + | 0.959430i | \(0.409020\pi\) | ||||
| −0.281946 | + | 0.959430i | \(0.590980\pi\) | |||||||
| \(854\) | 0 | 0 | ||||||||
| \(855\) | 0 | 0 | ||||||||
| \(856\) | 0 | 0 | ||||||||
| \(857\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(858\) | 0 | 0 | ||||||||
| \(859\) | 1549.00i | 1.80326i | 0.432509 | + | 0.901630i | \(0.357629\pi\) | ||||
| −0.432509 | + | 0.901630i | \(0.642371\pi\) | |||||||
| \(860\) | 0 | 0 | ||||||||
| \(861\) | 0 | 0 | ||||||||
| \(862\) | 0 | 0 | ||||||||
| \(863\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(864\) | 0 | 0 | ||||||||
| \(865\) | 0 | 0 | ||||||||
| \(866\) | 0 | 0 | ||||||||
| \(867\) | 0 | 0 | ||||||||
| \(868\) | 0 | 0 | ||||||||
| \(869\) | 0 | 0 | ||||||||
| \(870\) | 0 | 0 | ||||||||
| \(871\) | 2831.90 | 3.25132 | ||||||||
| \(872\) | 0 | 0 | ||||||||
| \(873\) | 0 | 0 | ||||||||
| \(874\) | 0 | 0 | ||||||||
| \(875\) | 0 | 0 | ||||||||
| \(876\) | 0 | 0 | ||||||||
| \(877\) | 306.573i | 0.349570i | 0.984607 | + | 0.174785i | \(0.0559231\pi\) | ||||
| −0.984607 | + | 0.174785i | \(0.944077\pi\) | |||||||
| \(878\) | 0 | 0 | ||||||||
| \(879\) | 0 | 0 | ||||||||
| \(880\) | 0 | 0 | ||||||||
| \(881\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(882\) | 0 | 0 | ||||||||
| \(883\) | 443.000i | 0.501699i | 0.968026 | + | 0.250849i | \(0.0807099\pi\) | ||||
| −0.968026 | + | 0.250849i | \(0.919290\pi\) | |||||||
| \(884\) | 0 | 0 | ||||||||
| \(885\) | 0 | 0 | ||||||||
| \(886\) | 0 | 0 | ||||||||
| \(887\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(888\) | 0 | 0 | ||||||||
| \(889\) | −1080.00 | −1.21485 | ||||||||
| \(890\) | 0 | 0 | ||||||||
| \(891\) | 0 | 0 | ||||||||
| \(892\) | 0 | 0 | ||||||||
| \(893\) | 0 | 0 | ||||||||
| \(894\) | 0 | 0 | ||||||||
| \(895\) | 0 | 0 | ||||||||
| \(896\) | 0 | 0 | ||||||||
| \(897\) | 0 | 0 | ||||||||
| \(898\) | 0 | 0 | ||||||||
| \(899\) | 0 | 0 | ||||||||
| \(900\) | 0 | 0 | ||||||||
| \(901\) | 0 | 0 | ||||||||
| \(902\) | 0 | 0 | ||||||||
| \(903\) | 0 | 0 | ||||||||
| \(904\) | 0 | 0 | ||||||||
| \(905\) | 0 | 0 | ||||||||
| \(906\) | 0 | 0 | ||||||||
| \(907\) | 1453.00i | 1.60198i | 0.598675 | + | 0.800992i | \(0.295694\pi\) | ||||
| −0.598675 | + | 0.800992i | \(0.704306\pi\) | |||||||
| \(908\) | 0 | 0 | ||||||||
| \(909\) | 0 | 0 | ||||||||
| \(910\) | 0 | 0 | ||||||||
| \(911\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(912\) | 0 | 0 | ||||||||
| \(913\) | 0 | 0 | ||||||||
| \(914\) | 0 | 0 | ||||||||
| \(915\) | 0 | 0 | ||||||||
| \(916\) | 0 | 0 | ||||||||
| \(917\) | 0 | 0 | ||||||||
| \(918\) | 0 | 0 | ||||||||
| \(919\) | 1621.20 | 1.76409 | 0.882045 | − | 0.471164i | \(-0.156166\pi\) | ||||
| 0.882045 | + | 0.471164i | \(0.156166\pi\) | |||||||
| \(920\) | 0 | 0 | ||||||||
| \(921\) | 0 | 0 | ||||||||
| \(922\) | 0 | 0 | ||||||||
| \(923\) | 0 | 0 | ||||||||
| \(924\) | 0 | 0 | ||||||||
| \(925\) | − 1428.94i | − 1.54480i | ||||||||
| \(926\) | 0 | 0 | ||||||||
| \(927\) | 0 | 0 | ||||||||
| \(928\) | 0 | 0 | ||||||||
| \(929\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(930\) | 0 | 0 | ||||||||
| \(931\) | − 242.000i | − 0.259936i | ||||||||
| \(932\) | 0 | 0 | ||||||||
| \(933\) | 0 | 0 | ||||||||
| \(934\) | 0 | 0 | ||||||||
| \(935\) | 0 | 0 | ||||||||
| \(936\) | 0 | 0 | ||||||||
| \(937\) | −1847.00 | −1.97118 | −0.985592 | − | 0.169138i | \(-0.945902\pi\) | ||||
| −0.985592 | + | 0.169138i | \(0.945902\pi\) | |||||||
| \(938\) | 0 | 0 | ||||||||
| \(939\) | 0 | 0 | ||||||||
| \(940\) | 0 | 0 | ||||||||
| \(941\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(942\) | 0 | 0 | ||||||||
| \(943\) | 0 | 0 | ||||||||
| \(944\) | 0 | 0 | ||||||||
| \(945\) | 0 | 0 | ||||||||
| \(946\) | 0 | 0 | ||||||||
| \(947\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(948\) | 0 | 0 | ||||||||
| \(949\) | 2520.13i | 2.65557i | ||||||||
| \(950\) | 0 | 0 | ||||||||
| \(951\) | 0 | 0 | ||||||||
| \(952\) | 0 | 0 | ||||||||
| \(953\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(954\) | 0 | 0 | ||||||||
| \(955\) | 0 | 0 | ||||||||
| \(956\) | 0 | 0 | ||||||||
| \(957\) | 0 | 0 | ||||||||
| \(958\) | 0 | 0 | ||||||||
| \(959\) | 0 | 0 | ||||||||
| \(960\) | 0 | 0 | ||||||||
| \(961\) | 767.000 | 0.798127 | ||||||||
| \(962\) | 0 | 0 | ||||||||
| \(963\) | 0 | 0 | ||||||||
| \(964\) | 0 | 0 | ||||||||
| \(965\) | 0 | 0 | ||||||||
| \(966\) | 0 | 0 | ||||||||
| \(967\) | −1917.38 | −1.98281 | −0.991407 | − | 0.130817i | \(-0.958240\pi\) | ||||
| −0.991407 | + | 0.130817i | \(0.958240\pi\) | |||||||
| \(968\) | 0 | 0 | ||||||||
| \(969\) | 0 | 0 | ||||||||
| \(970\) | 0 | 0 | ||||||||
| \(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(972\) | 0 | 0 | ||||||||
| \(973\) | − 1304.23i | − 1.34043i | ||||||||
| \(974\) | 0 | 0 | ||||||||
| \(975\) | 0 | 0 | ||||||||
| \(976\) | 0 | 0 | ||||||||
| \(977\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(978\) | 0 | 0 | ||||||||
| \(979\) | 0 | 0 | ||||||||
| \(980\) | 0 | 0 | ||||||||
| \(981\) | 0 | 0 | ||||||||
| \(982\) | 0 | 0 | ||||||||
| \(983\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(984\) | 0 | 0 | ||||||||
| \(985\) | 0 | 0 | ||||||||
| \(986\) | 0 | 0 | ||||||||
| \(987\) | 0 | 0 | ||||||||
| \(988\) | 0 | 0 | ||||||||
| \(989\) | 0 | 0 | ||||||||
| \(990\) | 0 | 0 | ||||||||
| \(991\) | −950.896 | −0.959532 | −0.479766 | − | 0.877397i | \(-0.659278\pi\) | ||||
| −0.479766 | + | 0.877397i | \(0.659278\pi\) | |||||||
| \(992\) | 0 | 0 | ||||||||
| \(993\) | 0 | 0 | ||||||||
| \(994\) | 0 | 0 | ||||||||
| \(995\) | 0 | 0 | ||||||||
| \(996\) | 0 | 0 | ||||||||
| \(997\) | − 623.538i | − 0.625415i | −0.949850 | − | 0.312707i | \(-0.898764\pi\) | ||||
| 0.949850 | − | 0.312707i | \(-0.101236\pi\) | |||||||
| \(998\) | 0 | 0 | ||||||||
| \(999\) | 0 | 0 | ||||||||
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
| By twisting character | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Type | Twist | Min | Dim | |
| 1.1 | even | 1 | trivial | 1728.3.h.c.161.1 | ✓ | 4 | |
| 3.2 | odd | 2 | CM | 1728.3.h.c.161.1 | ✓ | 4 | |
| 4.3 | odd | 2 | inner | 1728.3.h.c.161.3 | yes | 4 | |
| 8.3 | odd | 2 | inner | 1728.3.h.c.161.4 | yes | 4 | |
| 8.5 | even | 2 | inner | 1728.3.h.c.161.2 | yes | 4 | |
| 12.11 | even | 2 | inner | 1728.3.h.c.161.3 | yes | 4 | |
| 24.5 | odd | 2 | inner | 1728.3.h.c.161.2 | yes | 4 | |
| 24.11 | even | 2 | inner | 1728.3.h.c.161.4 | yes | 4 | |
| By twisted newform | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Type | |
| 1728.3.h.c.161.1 | ✓ | 4 | 1.1 | even | 1 | trivial | |
| 1728.3.h.c.161.1 | ✓ | 4 | 3.2 | odd | 2 | CM | |
| 1728.3.h.c.161.2 | yes | 4 | 8.5 | even | 2 | inner | |
| 1728.3.h.c.161.2 | yes | 4 | 24.5 | odd | 2 | inner | |
| 1728.3.h.c.161.3 | yes | 4 | 4.3 | odd | 2 | inner | |
| 1728.3.h.c.161.3 | yes | 4 | 12.11 | even | 2 | inner | |
| 1728.3.h.c.161.4 | yes | 4 | 8.3 | odd | 2 | inner | |
| 1728.3.h.c.161.4 | yes | 4 | 24.11 | even | 2 | inner | |