Properties

Label 1728.3.g.h.703.4
Level $1728$
Weight $3$
Character 1728.703
Analytic conductor $47.085$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,3,Mod(703,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.703"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 432)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.4
Root \(-0.309017 - 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 1728.703
Dual form 1728.3.g.h.703.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.70820 q^{5} +11.6190i q^{7} +15.5885i q^{11} +8.00000 q^{13} +26.8328 q^{17} +23.2379i q^{19} -31.1769i q^{23} +20.0000 q^{25} +13.4164 q^{29} -11.6190i q^{31} +77.9423i q^{35} -2.00000 q^{37} -40.2492 q^{41} +23.2379i q^{43} -31.1769i q^{47} -86.0000 q^{49} +20.1246 q^{53} +104.571i q^{55} +62.3538i q^{59} -104.000 q^{61} +53.6656 q^{65} -69.7137i q^{67} +62.3538i q^{71} +61.0000 q^{73} -181.122 q^{77} -92.9516i q^{79} +77.9423i q^{83} +180.000 q^{85} -147.580 q^{89} +92.9516i q^{91} +155.885i q^{95} +103.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{13} + 80 q^{25} - 8 q^{37} - 344 q^{49} - 416 q^{61} + 244 q^{73} + 720 q^{85} + 412 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.70820 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) 11.6190i 1.65985i 0.557875 + 0.829925i \(0.311617\pi\)
−0.557875 + 0.829925i \(0.688383\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 15.5885i 1.41713i 0.705644 + 0.708566i \(0.250658\pi\)
−0.705644 + 0.708566i \(0.749342\pi\)
\(12\) 0 0
\(13\) 8.00000 0.615385 0.307692 0.951486i \(-0.400443\pi\)
0.307692 + 0.951486i \(0.400443\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 26.8328 1.57840 0.789200 0.614136i \(-0.210495\pi\)
0.789200 + 0.614136i \(0.210495\pi\)
\(18\) 0 0
\(19\) 23.2379i 1.22305i 0.791226 + 0.611524i \(0.209443\pi\)
−0.791226 + 0.611524i \(0.790557\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 31.1769i − 1.35552i −0.735284 0.677759i \(-0.762951\pi\)
0.735284 0.677759i \(-0.237049\pi\)
\(24\) 0 0
\(25\) 20.0000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 13.4164 0.462635 0.231317 0.972878i \(-0.425696\pi\)
0.231317 + 0.972878i \(0.425696\pi\)
\(30\) 0 0
\(31\) − 11.6190i − 0.374805i −0.982283 0.187402i \(-0.939993\pi\)
0.982283 0.187402i \(-0.0600068\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 77.9423i 2.22692i
\(36\) 0 0
\(37\) −2.00000 −0.0540541 −0.0270270 0.999635i \(-0.508604\pi\)
−0.0270270 + 0.999635i \(0.508604\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −40.2492 −0.981688 −0.490844 0.871247i \(-0.663312\pi\)
−0.490844 + 0.871247i \(0.663312\pi\)
\(42\) 0 0
\(43\) 23.2379i 0.540416i 0.962802 + 0.270208i \(0.0870925\pi\)
−0.962802 + 0.270208i \(0.912907\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 31.1769i − 0.663339i −0.943396 0.331669i \(-0.892388\pi\)
0.943396 0.331669i \(-0.107612\pi\)
\(48\) 0 0
\(49\) −86.0000 −1.75510
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 20.1246 0.379710 0.189855 0.981812i \(-0.439198\pi\)
0.189855 + 0.981812i \(0.439198\pi\)
\(54\) 0 0
\(55\) 104.571i 1.90128i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 62.3538i 1.05684i 0.848982 + 0.528422i \(0.177216\pi\)
−0.848982 + 0.528422i \(0.822784\pi\)
\(60\) 0 0
\(61\) −104.000 −1.70492 −0.852459 0.522794i \(-0.824890\pi\)
−0.852459 + 0.522794i \(0.824890\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 53.6656 0.825625
\(66\) 0 0
\(67\) − 69.7137i − 1.04050i −0.854013 0.520251i \(-0.825838\pi\)
0.854013 0.520251i \(-0.174162\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 62.3538i 0.878223i 0.898433 + 0.439111i \(0.144707\pi\)
−0.898433 + 0.439111i \(0.855293\pi\)
\(72\) 0 0
\(73\) 61.0000 0.835616 0.417808 0.908535i \(-0.362798\pi\)
0.417808 + 0.908535i \(0.362798\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −181.122 −2.35223
\(78\) 0 0
\(79\) − 92.9516i − 1.17660i −0.808642 0.588301i \(-0.799797\pi\)
0.808642 0.588301i \(-0.200203\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 77.9423i 0.939064i 0.882916 + 0.469532i \(0.155577\pi\)
−0.882916 + 0.469532i \(0.844423\pi\)
\(84\) 0 0
\(85\) 180.000 2.11765
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −147.580 −1.65821 −0.829104 0.559095i \(-0.811149\pi\)
−0.829104 + 0.559095i \(0.811149\pi\)
\(90\) 0 0
\(91\) 92.9516i 1.02145i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 155.885i 1.64089i
\(96\) 0 0
\(97\) 103.000 1.06186 0.530928 0.847417i \(-0.321844\pi\)
0.530928 + 0.847417i \(0.321844\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 100.623 0.996268 0.498134 0.867100i \(-0.334019\pi\)
0.498134 + 0.867100i \(0.334019\pi\)
\(102\) 0 0
\(103\) − 139.427i − 1.35366i −0.736137 0.676832i \(-0.763352\pi\)
0.736137 0.676832i \(-0.236648\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 46.7654i − 0.437060i −0.975830 0.218530i \(-0.929874\pi\)
0.975830 0.218530i \(-0.0701261\pi\)
\(108\) 0 0
\(109\) 38.0000 0.348624 0.174312 0.984690i \(-0.444230\pi\)
0.174312 + 0.984690i \(0.444230\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −93.9149 −0.831105 −0.415552 0.909569i \(-0.636412\pi\)
−0.415552 + 0.909569i \(0.636412\pi\)
\(114\) 0 0
\(115\) − 209.141i − 1.81862i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 311.769i 2.61991i
\(120\) 0 0
\(121\) −122.000 −1.00826
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −33.5410 −0.268328
\(126\) 0 0
\(127\) − 151.046i − 1.18934i −0.803969 0.594671i \(-0.797282\pi\)
0.803969 0.594671i \(-0.202718\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.5885i 0.118996i 0.998228 + 0.0594979i \(0.0189500\pi\)
−0.998228 + 0.0594979i \(0.981050\pi\)
\(132\) 0 0
\(133\) −270.000 −2.03008
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 174.413 1.27309 0.636545 0.771240i \(-0.280363\pi\)
0.636545 + 0.771240i \(0.280363\pi\)
\(138\) 0 0
\(139\) − 46.4758i − 0.334358i −0.985927 0.167179i \(-0.946534\pi\)
0.985927 0.167179i \(-0.0534658\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 124.708i 0.872082i
\(144\) 0 0
\(145\) 90.0000 0.620690
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 114.039 0.765366 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(150\) 0 0
\(151\) 174.284i 1.15420i 0.816673 + 0.577100i \(0.195816\pi\)
−0.816673 + 0.577100i \(0.804184\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 77.9423i − 0.502853i
\(156\) 0 0
\(157\) 244.000 1.55414 0.777070 0.629414i \(-0.216705\pi\)
0.777070 + 0.629414i \(0.216705\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 362.243 2.24996
\(162\) 0 0
\(163\) − 185.903i − 1.14051i −0.821468 0.570255i \(-0.806844\pi\)
0.821468 0.570255i \(-0.193156\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 280.592i 1.68019i 0.542437 + 0.840096i \(0.317502\pi\)
−0.542437 + 0.840096i \(0.682498\pi\)
\(168\) 0 0
\(169\) −105.000 −0.621302
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 114.039 0.659188 0.329594 0.944123i \(-0.393088\pi\)
0.329594 + 0.944123i \(0.393088\pi\)
\(174\) 0 0
\(175\) 232.379i 1.32788i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 15.5885i − 0.0870864i −0.999052 0.0435432i \(-0.986135\pi\)
0.999052 0.0435432i \(-0.0138646\pi\)
\(180\) 0 0
\(181\) −16.0000 −0.0883978 −0.0441989 0.999023i \(-0.514074\pi\)
−0.0441989 + 0.999023i \(0.514074\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −13.4164 −0.0725211
\(186\) 0 0
\(187\) 418.282i 2.23680i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −91.0000 −0.471503 −0.235751 0.971813i \(-0.575755\pi\)
−0.235751 + 0.971813i \(0.575755\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 73.7902 0.374570 0.187285 0.982306i \(-0.440031\pi\)
0.187285 + 0.982306i \(0.440031\pi\)
\(198\) 0 0
\(199\) − 11.6190i − 0.0583867i −0.999574 0.0291933i \(-0.990706\pi\)
0.999574 0.0291933i \(-0.00929385\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 155.885i 0.767904i
\(204\) 0 0
\(205\) −270.000 −1.31707
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −362.243 −1.73322
\(210\) 0 0
\(211\) 395.044i 1.87225i 0.351670 + 0.936124i \(0.385614\pi\)
−0.351670 + 0.936124i \(0.614386\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 155.885i 0.725045i
\(216\) 0 0
\(217\) 135.000 0.622120
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 214.663 0.971324
\(222\) 0 0
\(223\) − 185.903i − 0.833647i −0.908988 0.416823i \(-0.863143\pi\)
0.908988 0.416823i \(-0.136857\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 436.477i 1.92281i 0.275145 + 0.961403i \(0.411274\pi\)
−0.275145 + 0.961403i \(0.588726\pi\)
\(228\) 0 0
\(229\) −154.000 −0.672489 −0.336245 0.941775i \(-0.609157\pi\)
−0.336245 + 0.941775i \(0.609157\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −67.0820 −0.287906 −0.143953 0.989585i \(-0.545981\pi\)
−0.143953 + 0.989585i \(0.545981\pi\)
\(234\) 0 0
\(235\) − 209.141i − 0.889962i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 93.5307i − 0.391342i −0.980670 0.195671i \(-0.937312\pi\)
0.980670 0.195671i \(-0.0626885\pi\)
\(240\) 0 0
\(241\) −194.000 −0.804979 −0.402490 0.915425i \(-0.631855\pi\)
−0.402490 + 0.915425i \(0.631855\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −576.906 −2.35472
\(246\) 0 0
\(247\) 185.903i 0.752645i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 249.415i 0.993687i 0.867840 + 0.496843i \(0.165508\pi\)
−0.867840 + 0.496843i \(0.834492\pi\)
\(252\) 0 0
\(253\) 486.000 1.92095
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 214.663 0.835263 0.417631 0.908617i \(-0.362860\pi\)
0.417631 + 0.908617i \(0.362860\pi\)
\(258\) 0 0
\(259\) − 23.2379i − 0.0897216i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 31.1769i − 0.118543i −0.998242 0.0592717i \(-0.981122\pi\)
0.998242 0.0592717i \(-0.0188778\pi\)
\(264\) 0 0
\(265\) 135.000 0.509434
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −93.9149 −0.349126 −0.174563 0.984646i \(-0.555851\pi\)
−0.174563 + 0.984646i \(0.555851\pi\)
\(270\) 0 0
\(271\) − 34.8569i − 0.128623i −0.997930 0.0643115i \(-0.979515\pi\)
0.997930 0.0643115i \(-0.0204851\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 311.769i 1.13371i
\(276\) 0 0
\(277\) 176.000 0.635379 0.317690 0.948195i \(-0.397093\pi\)
0.317690 + 0.948195i \(0.397093\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.8328 0.0954904 0.0477452 0.998860i \(-0.484796\pi\)
0.0477452 + 0.998860i \(0.484796\pi\)
\(282\) 0 0
\(283\) − 116.190i − 0.410564i −0.978703 0.205282i \(-0.934189\pi\)
0.978703 0.205282i \(-0.0658111\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 467.654i − 1.62946i
\(288\) 0 0
\(289\) 431.000 1.49135
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −335.410 −1.14474 −0.572372 0.819994i \(-0.693977\pi\)
−0.572372 + 0.819994i \(0.693977\pi\)
\(294\) 0 0
\(295\) 418.282i 1.41791i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 249.415i − 0.834165i
\(300\) 0 0
\(301\) −270.000 −0.897010
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −697.653 −2.28739
\(306\) 0 0
\(307\) 139.427i 0.454161i 0.973876 + 0.227080i \(0.0729180\pi\)
−0.973876 + 0.227080i \(0.927082\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 405.300i − 1.30322i −0.758556 0.651608i \(-0.774095\pi\)
0.758556 0.651608i \(-0.225905\pi\)
\(312\) 0 0
\(313\) −391.000 −1.24920 −0.624601 0.780944i \(-0.714738\pi\)
−0.624601 + 0.780944i \(0.714738\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 288.453 0.909946 0.454973 0.890505i \(-0.349649\pi\)
0.454973 + 0.890505i \(0.349649\pi\)
\(318\) 0 0
\(319\) 209.141i 0.655615i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 623.538i 1.93046i
\(324\) 0 0
\(325\) 160.000 0.492308
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 362.243 1.10104
\(330\) 0 0
\(331\) − 441.520i − 1.33390i −0.745104 0.666949i \(-0.767600\pi\)
0.745104 0.666949i \(-0.232400\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 467.654i − 1.39598i
\(336\) 0 0
\(337\) 514.000 1.52522 0.762611 0.646857i \(-0.223917\pi\)
0.762611 + 0.646857i \(0.223917\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 181.122 0.531148
\(342\) 0 0
\(343\) − 429.901i − 1.25336i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 389.711i − 1.12309i −0.827447 0.561544i \(-0.810208\pi\)
0.827447 0.561544i \(-0.189792\pi\)
\(348\) 0 0
\(349\) −158.000 −0.452722 −0.226361 0.974043i \(-0.572683\pi\)
−0.226361 + 0.974043i \(0.572683\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −281.745 −0.798143 −0.399072 0.916920i \(-0.630668\pi\)
−0.399072 + 0.916920i \(0.630668\pi\)
\(354\) 0 0
\(355\) 418.282i 1.17826i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 530.008i 1.47634i 0.674612 + 0.738172i \(0.264311\pi\)
−0.674612 + 0.738172i \(0.735689\pi\)
\(360\) 0 0
\(361\) −179.000 −0.495845
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 409.200 1.12110
\(366\) 0 0
\(367\) − 243.998i − 0.664845i −0.943131 0.332422i \(-0.892134\pi\)
0.943131 0.332422i \(-0.107866\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 233.827i 0.630261i
\(372\) 0 0
\(373\) −44.0000 −0.117962 −0.0589812 0.998259i \(-0.518785\pi\)
−0.0589812 + 0.998259i \(0.518785\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 107.331 0.284698
\(378\) 0 0
\(379\) 325.331i 0.858392i 0.903211 + 0.429196i \(0.141203\pi\)
−0.903211 + 0.429196i \(0.858797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 436.477i − 1.13963i −0.821774 0.569813i \(-0.807016\pi\)
0.821774 0.569813i \(-0.192984\pi\)
\(384\) 0 0
\(385\) −1215.00 −3.15584
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −422.617 −1.08642 −0.543209 0.839597i \(-0.682791\pi\)
−0.543209 + 0.839597i \(0.682791\pi\)
\(390\) 0 0
\(391\) − 836.564i − 2.13955i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 623.538i − 1.57858i
\(396\) 0 0
\(397\) 88.0000 0.221662 0.110831 0.993839i \(-0.464649\pi\)
0.110831 + 0.993839i \(0.464649\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 134.164 0.334574 0.167287 0.985908i \(-0.446499\pi\)
0.167287 + 0.985908i \(0.446499\pi\)
\(402\) 0 0
\(403\) − 92.9516i − 0.230649i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 31.1769i − 0.0766018i
\(408\) 0 0
\(409\) 739.000 1.80685 0.903423 0.428750i \(-0.141046\pi\)
0.903423 + 0.428750i \(0.141046\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −724.486 −1.75420
\(414\) 0 0
\(415\) 522.853i 1.25989i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 311.769i − 0.744079i −0.928217 0.372040i \(-0.878659\pi\)
0.928217 0.372040i \(-0.121341\pi\)
\(420\) 0 0
\(421\) −256.000 −0.608076 −0.304038 0.952660i \(-0.598335\pi\)
−0.304038 + 0.952660i \(0.598335\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 536.656 1.26272
\(426\) 0 0
\(427\) − 1208.37i − 2.82991i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 218.238i − 0.506354i −0.967420 0.253177i \(-0.918525\pi\)
0.967420 0.253177i \(-0.0814754\pi\)
\(432\) 0 0
\(433\) 173.000 0.399538 0.199769 0.979843i \(-0.435981\pi\)
0.199769 + 0.979843i \(0.435981\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 724.486 1.65786
\(438\) 0 0
\(439\) − 801.708i − 1.82621i −0.407721 0.913107i \(-0.633676\pi\)
0.407721 0.913107i \(-0.366324\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 436.477i − 0.985275i −0.870235 0.492637i \(-0.836033\pi\)
0.870235 0.492637i \(-0.163967\pi\)
\(444\) 0 0
\(445\) −990.000 −2.22472
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 845.234 1.88248 0.941240 0.337738i \(-0.109662\pi\)
0.941240 + 0.337738i \(0.109662\pi\)
\(450\) 0 0
\(451\) − 627.423i − 1.39118i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 623.538i 1.37041i
\(456\) 0 0
\(457\) −437.000 −0.956236 −0.478118 0.878296i \(-0.658681\pi\)
−0.478118 + 0.878296i \(0.658681\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 623.863 1.35328 0.676641 0.736313i \(-0.263435\pi\)
0.676641 + 0.736313i \(0.263435\pi\)
\(462\) 0 0
\(463\) 197.522i 0.426614i 0.976985 + 0.213307i \(0.0684234\pi\)
−0.976985 + 0.213307i \(0.931577\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 420.888i − 0.901260i −0.892711 0.450630i \(-0.851199\pi\)
0.892711 0.450630i \(-0.148801\pi\)
\(468\) 0 0
\(469\) 810.000 1.72708
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −362.243 −0.765841
\(474\) 0 0
\(475\) 464.758i 0.978438i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 467.654i 0.976313i 0.872756 + 0.488156i \(0.162330\pi\)
−0.872756 + 0.488156i \(0.837670\pi\)
\(480\) 0 0
\(481\) −16.0000 −0.0332640
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 690.945 1.42463
\(486\) 0 0
\(487\) 371.806i 0.763463i 0.924273 + 0.381731i \(0.124672\pi\)
−0.924273 + 0.381731i \(0.875328\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 701.481i − 1.42868i −0.699800 0.714339i \(-0.746728\pi\)
0.699800 0.714339i \(-0.253272\pi\)
\(492\) 0 0
\(493\) 360.000 0.730223
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −724.486 −1.45772
\(498\) 0 0
\(499\) − 69.7137i − 0.139707i −0.997557 0.0698534i \(-0.977747\pi\)
0.997557 0.0698534i \(-0.0222532\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 467.654i − 0.929729i −0.885382 0.464865i \(-0.846103\pi\)
0.885382 0.464865i \(-0.153897\pi\)
\(504\) 0 0
\(505\) 675.000 1.33663
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −60.3738 −0.118613 −0.0593063 0.998240i \(-0.518889\pi\)
−0.0593063 + 0.998240i \(0.518889\pi\)
\(510\) 0 0
\(511\) 708.756i 1.38700i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 935.307i − 1.81613i
\(516\) 0 0
\(517\) 486.000 0.940039
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 160.997 0.309015 0.154508 0.987992i \(-0.450621\pi\)
0.154508 + 0.987992i \(0.450621\pi\)
\(522\) 0 0
\(523\) 139.427i 0.266592i 0.991076 + 0.133296i \(0.0425560\pi\)
−0.991076 + 0.133296i \(0.957444\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 311.769i − 0.591592i
\(528\) 0 0
\(529\) −443.000 −0.837429
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −321.994 −0.604116
\(534\) 0 0
\(535\) − 313.712i − 0.586377i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 1340.61i − 2.48721i
\(540\) 0 0
\(541\) 524.000 0.968577 0.484288 0.874908i \(-0.339079\pi\)
0.484288 + 0.874908i \(0.339079\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 254.912 0.467728
\(546\) 0 0
\(547\) 418.282i 0.764684i 0.924021 + 0.382342i \(0.124882\pi\)
−0.924021 + 0.382342i \(0.875118\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 311.769i 0.565824i
\(552\) 0 0
\(553\) 1080.00 1.95298
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −127.456 −0.228826 −0.114413 0.993433i \(-0.536499\pi\)
−0.114413 + 0.993433i \(0.536499\pi\)
\(558\) 0 0
\(559\) 185.903i 0.332564i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 670.304i 1.19059i 0.803506 + 0.595296i \(0.202965\pi\)
−0.803506 + 0.595296i \(0.797035\pi\)
\(564\) 0 0
\(565\) −630.000 −1.11504
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26.8328 0.0471578 0.0235789 0.999722i \(-0.492494\pi\)
0.0235789 + 0.999722i \(0.492494\pi\)
\(570\) 0 0
\(571\) 743.613i 1.30230i 0.758949 + 0.651150i \(0.225713\pi\)
−0.758949 + 0.651150i \(0.774287\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 623.538i − 1.08441i
\(576\) 0 0
\(577\) 542.000 0.939341 0.469671 0.882842i \(-0.344373\pi\)
0.469671 + 0.882842i \(0.344373\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −905.608 −1.55870
\(582\) 0 0
\(583\) 313.712i 0.538099i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 233.827i − 0.398342i −0.979965 0.199171i \(-0.936175\pi\)
0.979965 0.199171i \(-0.0638249\pi\)
\(588\) 0 0
\(589\) 270.000 0.458404
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −228.079 −0.384619 −0.192309 0.981334i \(-0.561598\pi\)
−0.192309 + 0.981334i \(0.561598\pi\)
\(594\) 0 0
\(595\) 2091.41i 3.51498i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1091.19i 1.82169i 0.412749 + 0.910845i \(0.364569\pi\)
−0.412749 + 0.910845i \(0.635431\pi\)
\(600\) 0 0
\(601\) −841.000 −1.39933 −0.699667 0.714469i \(-0.746668\pi\)
−0.699667 + 0.714469i \(0.746668\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −818.401 −1.35273
\(606\) 0 0
\(607\) − 371.806i − 0.612531i −0.951946 0.306266i \(-0.900920\pi\)
0.951946 0.306266i \(-0.0990796\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 249.415i − 0.408208i
\(612\) 0 0
\(613\) −578.000 −0.942904 −0.471452 0.881892i \(-0.656270\pi\)
−0.471452 + 0.881892i \(0.656270\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1033.06 −1.67433 −0.837166 0.546948i \(-0.815789\pi\)
−0.837166 + 0.546948i \(0.815789\pi\)
\(618\) 0 0
\(619\) − 836.564i − 1.35148i −0.737141 0.675739i \(-0.763825\pi\)
0.737141 0.675739i \(-0.236175\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 1714.73i − 2.75238i
\(624\) 0 0
\(625\) −725.000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −53.6656 −0.0853190
\(630\) 0 0
\(631\) 197.522i 0.313030i 0.987676 + 0.156515i \(0.0500260\pi\)
−0.987676 + 0.156515i \(0.949974\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1013.25i − 1.59567i
\(636\) 0 0
\(637\) −688.000 −1.08006
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 818.401 1.27676 0.638378 0.769723i \(-0.279606\pi\)
0.638378 + 0.769723i \(0.279606\pi\)
\(642\) 0 0
\(643\) − 697.137i − 1.08419i −0.840316 0.542097i \(-0.817630\pi\)
0.840316 0.542097i \(-0.182370\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 124.708i 0.192748i 0.995345 + 0.0963738i \(0.0307244\pi\)
−0.995345 + 0.0963738i \(0.969276\pi\)
\(648\) 0 0
\(649\) −972.000 −1.49769
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1227.60 −1.87994 −0.939970 0.341256i \(-0.889148\pi\)
−0.939970 + 0.341256i \(0.889148\pi\)
\(654\) 0 0
\(655\) 104.571i 0.159650i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 77.9423i − 0.118274i −0.998250 0.0591368i \(-0.981165\pi\)
0.998250 0.0591368i \(-0.0188348\pi\)
\(660\) 0 0
\(661\) −494.000 −0.747352 −0.373676 0.927559i \(-0.621903\pi\)
−0.373676 + 0.927559i \(0.621903\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1811.22 −2.72363
\(666\) 0 0
\(667\) − 418.282i − 0.627110i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 1621.20i − 2.41609i
\(672\) 0 0
\(673\) 653.000 0.970282 0.485141 0.874436i \(-0.338768\pi\)
0.485141 + 0.874436i \(0.338768\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1328.22 1.96193 0.980963 0.194193i \(-0.0622088\pi\)
0.980963 + 0.194193i \(0.0622088\pi\)
\(678\) 0 0
\(679\) 1196.75i 1.76252i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 436.477i 0.639058i 0.947576 + 0.319529i \(0.103525\pi\)
−0.947576 + 0.319529i \(0.896475\pi\)
\(684\) 0 0
\(685\) 1170.00 1.70803
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 160.997 0.233667
\(690\) 0 0
\(691\) − 511.234i − 0.739846i −0.929062 0.369923i \(-0.879384\pi\)
0.929062 0.369923i \(-0.120616\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 311.769i − 0.448589i
\(696\) 0 0
\(697\) −1080.00 −1.54950
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 851.942 1.21532 0.607662 0.794196i \(-0.292108\pi\)
0.607662 + 0.794196i \(0.292108\pi\)
\(702\) 0 0
\(703\) − 46.4758i − 0.0661107i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1169.13i 1.65366i
\(708\) 0 0
\(709\) −4.00000 −0.00564175 −0.00282087 0.999996i \(-0.500898\pi\)
−0.00282087 + 0.999996i \(0.500898\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −362.243 −0.508055
\(714\) 0 0
\(715\) 836.564i 1.17002i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 62.3538i 0.0867230i 0.999059 + 0.0433615i \(0.0138067\pi\)
−0.999059 + 0.0433615i \(0.986193\pi\)
\(720\) 0 0
\(721\) 1620.00 2.24688
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 268.328 0.370108
\(726\) 0 0
\(727\) − 174.284i − 0.239731i −0.992790 0.119865i \(-0.961754\pi\)
0.992790 0.119865i \(-0.0382463\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 623.538i 0.852994i
\(732\) 0 0
\(733\) 278.000 0.379263 0.189632 0.981855i \(-0.439271\pi\)
0.189632 + 0.981855i \(0.439271\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1086.73 1.47453
\(738\) 0 0
\(739\) − 1068.94i − 1.44647i −0.690601 0.723236i \(-0.742654\pi\)
0.690601 0.723236i \(-0.257346\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 498.831i − 0.671374i −0.941974 0.335687i \(-0.891032\pi\)
0.941974 0.335687i \(-0.108968\pi\)
\(744\) 0 0
\(745\) 765.000 1.02685
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 543.365 0.725453
\(750\) 0 0
\(751\) − 429.901i − 0.572438i −0.958164 0.286219i \(-0.907601\pi\)
0.958164 0.286219i \(-0.0923985\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1169.13i 1.54852i
\(756\) 0 0
\(757\) −1078.00 −1.42404 −0.712021 0.702158i \(-0.752220\pi\)
−0.712021 + 0.702158i \(0.752220\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 697.653 0.916758 0.458379 0.888757i \(-0.348430\pi\)
0.458379 + 0.888757i \(0.348430\pi\)
\(762\) 0 0
\(763\) 441.520i 0.578663i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 498.831i 0.650366i
\(768\) 0 0
\(769\) −127.000 −0.165150 −0.0825748 0.996585i \(-0.526314\pi\)
−0.0825748 + 0.996585i \(0.526314\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −469.574 −0.607470 −0.303735 0.952757i \(-0.598234\pi\)
−0.303735 + 0.952757i \(0.598234\pi\)
\(774\) 0 0
\(775\) − 232.379i − 0.299844i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 935.307i − 1.20065i
\(780\) 0 0
\(781\) −972.000 −1.24456
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1636.80 2.08510
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 1091.19i − 1.37951i
\(792\) 0 0
\(793\) −832.000 −1.04918
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −690.945 −0.866932 −0.433466 0.901170i \(-0.642710\pi\)
−0.433466 + 0.901170i \(0.642710\pi\)
\(798\) 0 0
\(799\) − 836.564i − 1.04701i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 950.896i 1.18418i
\(804\) 0 0
\(805\) 2430.00 3.01863
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 898.899 1.11112 0.555562 0.831475i \(-0.312503\pi\)
0.555562 + 0.831475i \(0.312503\pi\)
\(810\) 0 0
\(811\) − 1092.18i − 1.34671i −0.739320 0.673355i \(-0.764853\pi\)
0.739320 0.673355i \(-0.235147\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 1247.08i − 1.53016i
\(816\) 0 0
\(817\) −540.000 −0.660955
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 550.073 0.670003 0.335002 0.942218i \(-0.391263\pi\)
0.335002 + 0.942218i \(0.391263\pi\)
\(822\) 0 0
\(823\) 639.042i 0.776479i 0.921559 + 0.388240i \(0.126917\pi\)
−0.921559 + 0.388240i \(0.873083\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 748.246i 0.904771i 0.891822 + 0.452386i \(0.149427\pi\)
−0.891822 + 0.452386i \(0.850573\pi\)
\(828\) 0 0
\(829\) 146.000 0.176116 0.0880579 0.996115i \(-0.471934\pi\)
0.0880579 + 0.996115i \(0.471934\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2307.62 −2.77025
\(834\) 0 0
\(835\) 1882.27i 2.25422i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 685.892i 0.817511i 0.912644 + 0.408756i \(0.134037\pi\)
−0.912644 + 0.408756i \(0.865963\pi\)
\(840\) 0 0
\(841\) −661.000 −0.785969
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −704.361 −0.833564
\(846\) 0 0
\(847\) − 1417.51i − 1.67357i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 62.3538i 0.0732712i
\(852\) 0 0
\(853\) −1058.00 −1.24033 −0.620164 0.784472i \(-0.712934\pi\)
−0.620164 + 0.784472i \(0.712934\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 939.149 1.09586 0.547928 0.836526i \(-0.315417\pi\)
0.547928 + 0.836526i \(0.315417\pi\)
\(858\) 0 0
\(859\) 929.516i 1.08209i 0.840993 + 0.541045i \(0.181971\pi\)
−0.840993 + 0.541045i \(0.818029\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 311.769i − 0.361262i −0.983551 0.180631i \(-0.942186\pi\)
0.983551 0.180631i \(-0.0578140\pi\)
\(864\) 0 0
\(865\) 765.000 0.884393
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1448.97 1.66740
\(870\) 0 0
\(871\) − 557.710i − 0.640310i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 389.711i − 0.445384i
\(876\) 0 0
\(877\) −62.0000 −0.0706956 −0.0353478 0.999375i \(-0.511254\pi\)
−0.0353478 + 0.999375i \(0.511254\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 160.997 0.182743 0.0913717 0.995817i \(-0.470875\pi\)
0.0913717 + 0.995817i \(0.470875\pi\)
\(882\) 0 0
\(883\) − 999.230i − 1.13163i −0.824532 0.565815i \(-0.808562\pi\)
0.824532 0.565815i \(-0.191438\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 124.708i − 0.140595i −0.997526 0.0702974i \(-0.977605\pi\)
0.997526 0.0702974i \(-0.0223948\pi\)
\(888\) 0 0
\(889\) 1755.00 1.97413
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 724.486 0.811295
\(894\) 0 0
\(895\) − 104.571i − 0.116839i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 155.885i − 0.173398i
\(900\) 0 0
\(901\) 540.000 0.599334
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −107.331 −0.118598
\(906\) 0 0
\(907\) − 813.327i − 0.896722i −0.893853 0.448361i \(-0.852008\pi\)
0.893853 0.448361i \(-0.147992\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1153.55i − 1.26624i −0.774053 0.633121i \(-0.781774\pi\)
0.774053 0.633121i \(-0.218226\pi\)
\(912\) 0 0
\(913\) −1215.00 −1.33078
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −181.122 −0.197515
\(918\) 0 0
\(919\) 34.8569i 0.0379291i 0.999820 + 0.0189646i \(0.00603697\pi\)
−0.999820 + 0.0189646i \(0.993963\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 498.831i 0.540445i
\(924\) 0 0
\(925\) −40.0000 −0.0432432
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1583.14 −1.70413 −0.852065 0.523437i \(-0.824650\pi\)
−0.852065 + 0.523437i \(0.824650\pi\)
\(930\) 0 0
\(931\) − 1998.46i − 2.14657i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2805.92i 3.00099i
\(936\) 0 0
\(937\) 1127.00 1.20277 0.601387 0.798958i \(-0.294615\pi\)
0.601387 + 0.798958i \(0.294615\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 758.027 0.805555 0.402777 0.915298i \(-0.368045\pi\)
0.402777 + 0.915298i \(0.368045\pi\)
\(942\) 0 0
\(943\) 1254.85i 1.33070i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 545.596i 0.576131i 0.957611 + 0.288065i \(0.0930121\pi\)
−0.957611 + 0.288065i \(0.906988\pi\)
\(948\) 0 0
\(949\) 488.000 0.514226
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 617.155 0.647592 0.323796 0.946127i \(-0.395041\pi\)
0.323796 + 0.946127i \(0.395041\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2026.50i 2.11314i
\(960\) 0 0
\(961\) 826.000 0.859521
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −610.447 −0.632587
\(966\) 0 0
\(967\) 104.571i 0.108139i 0.998537 + 0.0540696i \(0.0172193\pi\)
−0.998537 + 0.0540696i \(0.982781\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 607.950i − 0.626107i −0.949736 0.313053i \(-0.898648\pi\)
0.949736 0.313053i \(-0.101352\pi\)
\(972\) 0 0
\(973\) 540.000 0.554985
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1569.72 1.60667 0.803337 0.595525i \(-0.203056\pi\)
0.803337 + 0.595525i \(0.203056\pi\)
\(978\) 0 0
\(979\) − 2300.55i − 2.34990i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 904.131i − 0.919767i −0.887979 0.459883i \(-0.847891\pi\)
0.887979 0.459883i \(-0.152109\pi\)
\(984\) 0 0
\(985\) 495.000 0.502538
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 724.486 0.732544
\(990\) 0 0
\(991\) − 1707.99i − 1.72350i −0.507336 0.861749i \(-0.669370\pi\)
0.507336 0.861749i \(-0.330630\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 77.9423i − 0.0783340i
\(996\) 0 0
\(997\) −32.0000 −0.0320963 −0.0160481 0.999871i \(-0.505109\pi\)
−0.0160481 + 0.999871i \(0.505109\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.3.g.h.703.4 4
3.2 odd 2 inner 1728.3.g.h.703.2 4
4.3 odd 2 inner 1728.3.g.h.703.3 4
8.3 odd 2 432.3.g.e.271.1 4
8.5 even 2 432.3.g.e.271.2 yes 4
12.11 even 2 inner 1728.3.g.h.703.1 4
24.5 odd 2 432.3.g.e.271.4 yes 4
24.11 even 2 432.3.g.e.271.3 yes 4
72.5 odd 6 1296.3.o.x.703.1 4
72.11 even 6 1296.3.o.x.271.1 4
72.13 even 6 1296.3.o.y.703.2 4
72.29 odd 6 1296.3.o.y.271.1 4
72.43 odd 6 1296.3.o.y.271.2 4
72.59 even 6 1296.3.o.y.703.1 4
72.61 even 6 1296.3.o.x.271.2 4
72.67 odd 6 1296.3.o.x.703.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
432.3.g.e.271.1 4 8.3 odd 2
432.3.g.e.271.2 yes 4 8.5 even 2
432.3.g.e.271.3 yes 4 24.11 even 2
432.3.g.e.271.4 yes 4 24.5 odd 2
1296.3.o.x.271.1 4 72.11 even 6
1296.3.o.x.271.2 4 72.61 even 6
1296.3.o.x.703.1 4 72.5 odd 6
1296.3.o.x.703.2 4 72.67 odd 6
1296.3.o.y.271.1 4 72.29 odd 6
1296.3.o.y.271.2 4 72.43 odd 6
1296.3.o.y.703.1 4 72.59 even 6
1296.3.o.y.703.2 4 72.13 even 6
1728.3.g.h.703.1 4 12.11 even 2 inner
1728.3.g.h.703.2 4 3.2 odd 2 inner
1728.3.g.h.703.3 4 4.3 odd 2 inner
1728.3.g.h.703.4 4 1.1 even 1 trivial