Properties

Label 1728.3.e.s.1025.2
Level $1728$
Weight $3$
Character 1728.1025
Analytic conductor $47.085$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,3,Mod(1025,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.1025"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,12,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1025.2
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1728.1025
Dual form 1728.3.e.s.1025.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.171573i q^{5} -5.48528 q^{7} -3.34315i q^{11} -14.9706 q^{13} +17.3137i q^{17} +24.9706 q^{19} +40.2843i q^{23} +24.9706 q^{25} -42.0000i q^{29} -7.48528 q^{31} +0.941125i q^{35} +19.0294 q^{37} -38.9117i q^{41} -30.9706 q^{43} +8.05887i q^{47} -18.9117 q^{49} -99.0833i q^{53} -0.573593 q^{55} -97.1960i q^{59} +15.8823 q^{61} +2.56854i q^{65} -74.9706 q^{67} -46.2843i q^{71} -121.912 q^{73} +18.3381i q^{77} +107.941 q^{79} +29.4020i q^{83} +2.97056 q^{85} -73.0294i q^{89} +82.1177 q^{91} -4.28427i q^{95} +78.8823 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{7} + 8 q^{13} + 32 q^{19} + 32 q^{25} + 4 q^{31} + 144 q^{37} - 56 q^{43} + 128 q^{49} - 172 q^{55} - 208 q^{61} - 232 q^{67} - 284 q^{73} + 296 q^{79} - 56 q^{85} + 600 q^{91} + 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 0.171573i − 0.0343146i −0.999853 0.0171573i \(-0.994538\pi\)
0.999853 0.0171573i \(-0.00546160\pi\)
\(6\) 0 0
\(7\) −5.48528 −0.783612 −0.391806 0.920048i \(-0.628149\pi\)
−0.391806 + 0.920048i \(0.628149\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.34315i − 0.303922i −0.988386 0.151961i \(-0.951441\pi\)
0.988386 0.151961i \(-0.0485589\pi\)
\(12\) 0 0
\(13\) −14.9706 −1.15158 −0.575791 0.817597i \(-0.695306\pi\)
−0.575791 + 0.817597i \(0.695306\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 17.3137i 1.01845i 0.860632 + 0.509227i \(0.170069\pi\)
−0.860632 + 0.509227i \(0.829931\pi\)
\(18\) 0 0
\(19\) 24.9706 1.31424 0.657120 0.753786i \(-0.271774\pi\)
0.657120 + 0.753786i \(0.271774\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 40.2843i 1.75149i 0.482774 + 0.875745i \(0.339629\pi\)
−0.482774 + 0.875745i \(0.660371\pi\)
\(24\) 0 0
\(25\) 24.9706 0.998823
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 42.0000i − 1.44828i −0.689655 0.724138i \(-0.742238\pi\)
0.689655 0.724138i \(-0.257762\pi\)
\(30\) 0 0
\(31\) −7.48528 −0.241461 −0.120730 0.992685i \(-0.538524\pi\)
−0.120730 + 0.992685i \(0.538524\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.941125i 0.0268893i
\(36\) 0 0
\(37\) 19.0294 0.514309 0.257155 0.966370i \(-0.417215\pi\)
0.257155 + 0.966370i \(0.417215\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 38.9117i − 0.949066i −0.880238 0.474533i \(-0.842617\pi\)
0.880238 0.474533i \(-0.157383\pi\)
\(42\) 0 0
\(43\) −30.9706 −0.720246 −0.360123 0.932905i \(-0.617265\pi\)
−0.360123 + 0.932905i \(0.617265\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.05887i 0.171465i 0.996318 + 0.0857327i \(0.0273231\pi\)
−0.996318 + 0.0857327i \(0.972677\pi\)
\(48\) 0 0
\(49\) −18.9117 −0.385953
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 99.0833i − 1.86950i −0.355312 0.934748i \(-0.615625\pi\)
0.355312 0.934748i \(-0.384375\pi\)
\(54\) 0 0
\(55\) −0.573593 −0.0104290
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 97.1960i − 1.64739i −0.567034 0.823695i \(-0.691909\pi\)
0.567034 0.823695i \(-0.308091\pi\)
\(60\) 0 0
\(61\) 15.8823 0.260365 0.130182 0.991490i \(-0.458444\pi\)
0.130182 + 0.991490i \(0.458444\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.56854i 0.0395160i
\(66\) 0 0
\(67\) −74.9706 −1.11896 −0.559482 0.828843i \(-0.689000\pi\)
−0.559482 + 0.828843i \(0.689000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 46.2843i − 0.651891i −0.945389 0.325946i \(-0.894317\pi\)
0.945389 0.325946i \(-0.105683\pi\)
\(72\) 0 0
\(73\) −121.912 −1.67002 −0.835012 0.550232i \(-0.814539\pi\)
−0.835012 + 0.550232i \(0.814539\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 18.3381i 0.238157i
\(78\) 0 0
\(79\) 107.941 1.36634 0.683172 0.730258i \(-0.260600\pi\)
0.683172 + 0.730258i \(0.260600\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 29.4020i 0.354241i 0.984189 + 0.177121i \(0.0566783\pi\)
−0.984189 + 0.177121i \(0.943322\pi\)
\(84\) 0 0
\(85\) 2.97056 0.0349478
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 73.0294i − 0.820555i −0.911961 0.410278i \(-0.865432\pi\)
0.911961 0.410278i \(-0.134568\pi\)
\(90\) 0 0
\(91\) 82.1177 0.902393
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 4.28427i − 0.0450976i
\(96\) 0 0
\(97\) 78.8823 0.813219 0.406610 0.913602i \(-0.366711\pi\)
0.406610 + 0.913602i \(0.366711\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 52.4558i − 0.519365i −0.965694 0.259682i \(-0.916382\pi\)
0.965694 0.259682i \(-0.0836179\pi\)
\(102\) 0 0
\(103\) −0.0588745 −0.000571597 0 −0.000285799 1.00000i \(-0.500091\pi\)
−0.000285799 1.00000i \(0.500091\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 70.8823i 0.662451i 0.943552 + 0.331225i \(0.107462\pi\)
−0.943552 + 0.331225i \(0.892538\pi\)
\(108\) 0 0
\(109\) 84.9706 0.779546 0.389773 0.920911i \(-0.372553\pi\)
0.389773 + 0.920911i \(0.372553\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 175.029i − 1.54893i −0.632615 0.774467i \(-0.718018\pi\)
0.632615 0.774467i \(-0.281982\pi\)
\(114\) 0 0
\(115\) 6.91169 0.0601016
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 94.9706i − 0.798072i
\(120\) 0 0
\(121\) 109.823 0.907631
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 8.57359i − 0.0685887i
\(126\) 0 0
\(127\) −190.161 −1.49733 −0.748667 0.662946i \(-0.769306\pi\)
−0.748667 + 0.662946i \(0.769306\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 140.314i 1.07110i 0.844504 + 0.535549i \(0.179895\pi\)
−0.844504 + 0.535549i \(0.820105\pi\)
\(132\) 0 0
\(133\) −136.971 −1.02985
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 256.794i − 1.87441i −0.348781 0.937204i \(-0.613404\pi\)
0.348781 0.937204i \(-0.386596\pi\)
\(138\) 0 0
\(139\) −40.1177 −0.288617 −0.144308 0.989533i \(-0.546096\pi\)
−0.144308 + 0.989533i \(0.546096\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 50.0488i 0.349991i
\(144\) 0 0
\(145\) −7.20606 −0.0496970
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 223.534i − 1.50023i −0.661308 0.750114i \(-0.729998\pi\)
0.661308 0.750114i \(-0.270002\pi\)
\(150\) 0 0
\(151\) 7.60303 0.0503512 0.0251756 0.999683i \(-0.491986\pi\)
0.0251756 + 0.999683i \(0.491986\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.28427i 0.00828562i
\(156\) 0 0
\(157\) −177.823 −1.13263 −0.566316 0.824188i \(-0.691632\pi\)
−0.566316 + 0.824188i \(0.691632\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 220.971i − 1.37249i
\(162\) 0 0
\(163\) 203.823 1.25045 0.625225 0.780444i \(-0.285007\pi\)
0.625225 + 0.780444i \(0.285007\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 195.941i − 1.17330i −0.809841 0.586650i \(-0.800446\pi\)
0.809841 0.586650i \(-0.199554\pi\)
\(168\) 0 0
\(169\) 55.1177 0.326141
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 58.4558i − 0.337895i −0.985625 0.168948i \(-0.945963\pi\)
0.985625 0.168948i \(-0.0540368\pi\)
\(174\) 0 0
\(175\) −136.971 −0.782689
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 34.8823i − 0.194873i −0.995242 0.0974365i \(-0.968936\pi\)
0.995242 0.0974365i \(-0.0310643\pi\)
\(180\) 0 0
\(181\) 62.0589 0.342867 0.171433 0.985196i \(-0.445160\pi\)
0.171433 + 0.985196i \(0.445160\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 3.26494i − 0.0176483i
\(186\) 0 0
\(187\) 57.8823 0.309531
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 186.853i 0.978287i 0.872203 + 0.489143i \(0.162691\pi\)
−0.872203 + 0.489143i \(0.837309\pi\)
\(192\) 0 0
\(193\) −85.8528 −0.444833 −0.222417 0.974952i \(-0.571395\pi\)
−0.222417 + 0.974952i \(0.571395\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 84.1615i 0.427216i 0.976920 + 0.213608i \(0.0685215\pi\)
−0.976920 + 0.213608i \(0.931479\pi\)
\(198\) 0 0
\(199\) 204.103 1.02564 0.512821 0.858496i \(-0.328601\pi\)
0.512821 + 0.858496i \(0.328601\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 230.382i 1.13489i
\(204\) 0 0
\(205\) −6.67619 −0.0325668
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 83.4802i − 0.399427i
\(210\) 0 0
\(211\) −276.971 −1.31266 −0.656328 0.754475i \(-0.727891\pi\)
−0.656328 + 0.754475i \(0.727891\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.31371i 0.0247149i
\(216\) 0 0
\(217\) 41.0589 0.189211
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 259.196i − 1.17283i
\(222\) 0 0
\(223\) 209.765 0.940648 0.470324 0.882494i \(-0.344137\pi\)
0.470324 + 0.882494i \(0.344137\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 56.0589i 0.246955i 0.992347 + 0.123478i \(0.0394047\pi\)
−0.992347 + 0.123478i \(0.960595\pi\)
\(228\) 0 0
\(229\) 273.529 1.19445 0.597225 0.802074i \(-0.296270\pi\)
0.597225 + 0.802074i \(0.296270\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 138.167i − 0.592989i −0.955035 0.296495i \(-0.904182\pi\)
0.955035 0.296495i \(-0.0958177\pi\)
\(234\) 0 0
\(235\) 1.38268 0.00588376
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 143.833i 0.601814i 0.953654 + 0.300907i \(0.0972893\pi\)
−0.953654 + 0.300907i \(0.902711\pi\)
\(240\) 0 0
\(241\) −207.588 −0.861360 −0.430680 0.902505i \(-0.641726\pi\)
−0.430680 + 0.902505i \(0.641726\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.24473i 0.0132438i
\(246\) 0 0
\(247\) −373.823 −1.51345
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 452.039i − 1.80095i −0.434907 0.900475i \(-0.643219\pi\)
0.434907 0.900475i \(-0.356781\pi\)
\(252\) 0 0
\(253\) 134.676 0.532317
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 314.902i 1.22530i 0.790355 + 0.612649i \(0.209896\pi\)
−0.790355 + 0.612649i \(0.790104\pi\)
\(258\) 0 0
\(259\) −104.382 −0.403019
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 45.7746i − 0.174048i −0.996206 0.0870240i \(-0.972264\pi\)
0.996206 0.0870240i \(-0.0277357\pi\)
\(264\) 0 0
\(265\) −17.0000 −0.0641509
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 352.960i − 1.31212i −0.754708 0.656060i \(-0.772222\pi\)
0.754708 0.656060i \(-0.227778\pi\)
\(270\) 0 0
\(271\) 480.397 1.77268 0.886341 0.463033i \(-0.153239\pi\)
0.886341 + 0.463033i \(0.153239\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 83.4802i − 0.303564i
\(276\) 0 0
\(277\) −33.8234 −0.122106 −0.0610530 0.998135i \(-0.519446\pi\)
−0.0610530 + 0.998135i \(0.519446\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 236.725i 0.842438i 0.906959 + 0.421219i \(0.138398\pi\)
−0.906959 + 0.421219i \(0.861602\pi\)
\(282\) 0 0
\(283\) −442.676 −1.56423 −0.782113 0.623136i \(-0.785858\pi\)
−0.782113 + 0.623136i \(0.785858\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 213.442i 0.743699i
\(288\) 0 0
\(289\) −10.7645 −0.0372474
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 27.9411i 0.0953622i 0.998863 + 0.0476811i \(0.0151831\pi\)
−0.998863 + 0.0476811i \(0.984817\pi\)
\(294\) 0 0
\(295\) −16.6762 −0.0565295
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 603.078i − 2.01698i
\(300\) 0 0
\(301\) 169.882 0.564393
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 2.72496i − 0.00893431i
\(306\) 0 0
\(307\) 387.235 1.26135 0.630675 0.776047i \(-0.282778\pi\)
0.630675 + 0.776047i \(0.282778\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 292.617i − 0.940892i −0.882429 0.470446i \(-0.844093\pi\)
0.882429 0.470446i \(-0.155907\pi\)
\(312\) 0 0
\(313\) −269.558 −0.861209 −0.430605 0.902541i \(-0.641700\pi\)
−0.430605 + 0.902541i \(0.641700\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 129.250i − 0.407728i −0.978999 0.203864i \(-0.934650\pi\)
0.978999 0.203864i \(-0.0653500\pi\)
\(318\) 0 0
\(319\) −140.412 −0.440163
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 432.333i 1.33849i
\(324\) 0 0
\(325\) −373.823 −1.15023
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 44.2052i − 0.134362i
\(330\) 0 0
\(331\) 482.500 1.45770 0.728851 0.684672i \(-0.240055\pi\)
0.728851 + 0.684672i \(0.240055\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 12.8629i 0.0383968i
\(336\) 0 0
\(337\) 447.235 1.32711 0.663553 0.748129i \(-0.269048\pi\)
0.663553 + 0.748129i \(0.269048\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 25.0244i 0.0733853i
\(342\) 0 0
\(343\) 372.515 1.08605
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 573.500i − 1.65274i −0.563130 0.826368i \(-0.690403\pi\)
0.563130 0.826368i \(-0.309597\pi\)
\(348\) 0 0
\(349\) 74.9117 0.214647 0.107323 0.994224i \(-0.465772\pi\)
0.107323 + 0.994224i \(0.465772\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 195.245i − 0.553101i −0.960999 0.276551i \(-0.910809\pi\)
0.960999 0.276551i \(-0.0891913\pi\)
\(354\) 0 0
\(355\) −7.94113 −0.0223694
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.9411i 0.0444042i 0.999754 + 0.0222021i \(0.00706774\pi\)
−0.999754 + 0.0222021i \(0.992932\pi\)
\(360\) 0 0
\(361\) 262.529 0.727227
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 20.9167i 0.0573061i
\(366\) 0 0
\(367\) −511.250 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 543.500i 1.46496i
\(372\) 0 0
\(373\) −214.382 −0.574750 −0.287375 0.957818i \(-0.592783\pi\)
−0.287375 + 0.957818i \(0.592783\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 628.764i 1.66781i
\(378\) 0 0
\(379\) −160.000 −0.422164 −0.211082 0.977468i \(-0.567699\pi\)
−0.211082 + 0.977468i \(0.567699\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 620.205i 1.61933i 0.586889 + 0.809667i \(0.300352\pi\)
−0.586889 + 0.809667i \(0.699648\pi\)
\(384\) 0 0
\(385\) 3.14632 0.00817226
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 258.848i − 0.665418i −0.943029 0.332709i \(-0.892037\pi\)
0.943029 0.332709i \(-0.107963\pi\)
\(390\) 0 0
\(391\) −697.470 −1.78381
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 18.5198i − 0.0468855i
\(396\) 0 0
\(397\) −592.558 −1.49259 −0.746295 0.665615i \(-0.768169\pi\)
−0.746295 + 0.665615i \(0.768169\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 343.529i − 0.856681i −0.903617 0.428340i \(-0.859098\pi\)
0.903617 0.428340i \(-0.140902\pi\)
\(402\) 0 0
\(403\) 112.059 0.278062
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 63.6182i − 0.156310i
\(408\) 0 0
\(409\) −570.765 −1.39551 −0.697756 0.716335i \(-0.745818\pi\)
−0.697756 + 0.716335i \(0.745818\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 533.147i 1.29091i
\(414\) 0 0
\(415\) 5.04459 0.0121556
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 249.765i 0.596097i 0.954551 + 0.298048i \(0.0963357\pi\)
−0.954551 + 0.298048i \(0.903664\pi\)
\(420\) 0 0
\(421\) 177.823 0.422383 0.211192 0.977445i \(-0.432266\pi\)
0.211192 + 0.977445i \(0.432266\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 432.333i 1.01725i
\(426\) 0 0
\(427\) −87.1186 −0.204025
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 252.843i − 0.586642i −0.956014 0.293321i \(-0.905240\pi\)
0.956014 0.293321i \(-0.0947605\pi\)
\(432\) 0 0
\(433\) 469.177 1.08355 0.541774 0.840524i \(-0.317753\pi\)
0.541774 + 0.840524i \(0.317753\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1005.92i 2.30188i
\(438\) 0 0
\(439\) 400.103 0.911395 0.455698 0.890135i \(-0.349390\pi\)
0.455698 + 0.890135i \(0.349390\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 406.431i 0.917451i 0.888578 + 0.458725i \(0.151694\pi\)
−0.888578 + 0.458725i \(0.848306\pi\)
\(444\) 0 0
\(445\) −12.5299 −0.0281570
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 531.245i 1.18317i 0.806241 + 0.591587i \(0.201498\pi\)
−0.806241 + 0.591587i \(0.798502\pi\)
\(450\) 0 0
\(451\) −130.087 −0.288442
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 14.0892i − 0.0309652i
\(456\) 0 0
\(457\) 727.705 1.59235 0.796176 0.605065i \(-0.206853\pi\)
0.796176 + 0.605065i \(0.206853\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 735.416i 1.59526i 0.603145 + 0.797632i \(0.293914\pi\)
−0.603145 + 0.797632i \(0.706086\pi\)
\(462\) 0 0
\(463\) −567.721 −1.22618 −0.613089 0.790014i \(-0.710073\pi\)
−0.613089 + 0.790014i \(0.710073\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 472.029i 1.01077i 0.862894 + 0.505385i \(0.168649\pi\)
−0.862894 + 0.505385i \(0.831351\pi\)
\(468\) 0 0
\(469\) 411.235 0.876833
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 103.539i 0.218899i
\(474\) 0 0
\(475\) 623.529 1.31269
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 213.098i 0.444882i 0.974946 + 0.222441i \(0.0714025\pi\)
−0.974946 + 0.222441i \(0.928598\pi\)
\(480\) 0 0
\(481\) −284.881 −0.592269
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 13.5341i − 0.0279053i
\(486\) 0 0
\(487\) 726.118 1.49100 0.745501 0.666505i \(-0.232210\pi\)
0.745501 + 0.666505i \(0.232210\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 366.235i − 0.745895i −0.927852 0.372948i \(-0.878347\pi\)
0.927852 0.372948i \(-0.121653\pi\)
\(492\) 0 0
\(493\) 727.176 1.47500
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 253.882i 0.510829i
\(498\) 0 0
\(499\) −634.617 −1.27178 −0.635889 0.771780i \(-0.719366\pi\)
−0.635889 + 0.771780i \(0.719366\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 932.735i − 1.85434i −0.374636 0.927172i \(-0.622232\pi\)
0.374636 0.927172i \(-0.377768\pi\)
\(504\) 0 0
\(505\) −9.00000 −0.0178218
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 578.543i 1.13663i 0.822812 + 0.568314i \(0.192404\pi\)
−0.822812 + 0.568314i \(0.807596\pi\)
\(510\) 0 0
\(511\) 668.720 1.30865
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.0101013i 0 1.96141e-5i
\(516\) 0 0
\(517\) 26.9420 0.0521122
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 585.744i − 1.12427i −0.827046 0.562135i \(-0.809980\pi\)
0.827046 0.562135i \(-0.190020\pi\)
\(522\) 0 0
\(523\) −197.411 −0.377459 −0.188730 0.982029i \(-0.560437\pi\)
−0.188730 + 0.982029i \(0.560437\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 129.598i − 0.245916i
\(528\) 0 0
\(529\) −1093.82 −2.06772
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 582.530i 1.09293i
\(534\) 0 0
\(535\) 12.1615 0.0227317
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 63.2245i 0.117300i
\(540\) 0 0
\(541\) −587.294 −1.08557 −0.542785 0.839872i \(-0.682630\pi\)
−0.542785 + 0.839872i \(0.682630\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 14.5786i − 0.0267498i
\(546\) 0 0
\(547\) 394.235 0.720723 0.360362 0.932813i \(-0.382653\pi\)
0.360362 + 0.932813i \(0.382653\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1048.76i − 1.90338i
\(552\) 0 0
\(553\) −592.087 −1.07068
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.5349i 0.0332763i 0.999862 + 0.0166382i \(0.00529634\pi\)
−0.999862 + 0.0166382i \(0.994704\pi\)
\(558\) 0 0
\(559\) 463.647 0.829422
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 622.892i 1.10638i 0.833055 + 0.553190i \(0.186590\pi\)
−0.833055 + 0.553190i \(0.813410\pi\)
\(564\) 0 0
\(565\) −30.0303 −0.0531510
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 157.393i 0.276613i 0.990389 + 0.138306i \(0.0441659\pi\)
−0.990389 + 0.138306i \(0.955834\pi\)
\(570\) 0 0
\(571\) −500.705 −0.876891 −0.438445 0.898758i \(-0.644471\pi\)
−0.438445 + 0.898758i \(0.644471\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1005.92i 1.74943i
\(576\) 0 0
\(577\) −223.588 −0.387501 −0.193750 0.981051i \(-0.562065\pi\)
−0.193750 + 0.981051i \(0.562065\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 161.278i − 0.277588i
\(582\) 0 0
\(583\) −331.250 −0.568181
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 451.254i − 0.768746i −0.923178 0.384373i \(-0.874418\pi\)
0.923178 0.384373i \(-0.125582\pi\)
\(588\) 0 0
\(589\) −186.912 −0.317337
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 369.245i 0.622672i 0.950300 + 0.311336i \(0.100777\pi\)
−0.950300 + 0.311336i \(0.899223\pi\)
\(594\) 0 0
\(595\) −16.2944 −0.0273855
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 264.530i 0.441619i 0.975317 + 0.220810i \(0.0708699\pi\)
−0.975317 + 0.220810i \(0.929130\pi\)
\(600\) 0 0
\(601\) 461.971 0.768670 0.384335 0.923194i \(-0.374431\pi\)
0.384335 + 0.923194i \(0.374431\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 18.8427i − 0.0311450i
\(606\) 0 0
\(607\) −314.000 −0.517298 −0.258649 0.965971i \(-0.583277\pi\)
−0.258649 + 0.965971i \(0.583277\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 120.646i − 0.197456i
\(612\) 0 0
\(613\) 617.882 1.00796 0.503982 0.863714i \(-0.331868\pi\)
0.503982 + 0.863714i \(0.331868\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 171.618i 0.278149i 0.990282 + 0.139075i \(0.0444128\pi\)
−0.990282 + 0.139075i \(0.955587\pi\)
\(618\) 0 0
\(619\) −847.117 −1.36852 −0.684262 0.729236i \(-0.739876\pi\)
−0.684262 + 0.729236i \(0.739876\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 400.587i 0.642997i
\(624\) 0 0
\(625\) 622.793 0.996469
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 329.470i 0.523800i
\(630\) 0 0
\(631\) −281.368 −0.445907 −0.222954 0.974829i \(-0.571570\pi\)
−0.222954 + 0.974829i \(0.571570\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 32.6266i 0.0513804i
\(636\) 0 0
\(637\) 283.119 0.444456
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 635.127i 0.990838i 0.868654 + 0.495419i \(0.164985\pi\)
−0.868654 + 0.495419i \(0.835015\pi\)
\(642\) 0 0
\(643\) −498.177 −0.774769 −0.387385 0.921918i \(-0.626621\pi\)
−0.387385 + 0.921918i \(0.626621\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 904.784i − 1.39843i −0.714912 0.699215i \(-0.753533\pi\)
0.714912 0.699215i \(-0.246467\pi\)
\(648\) 0 0
\(649\) −324.940 −0.500678
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 302.897i 0.463854i 0.972733 + 0.231927i \(0.0745030\pi\)
−0.972733 + 0.231927i \(0.925497\pi\)
\(654\) 0 0
\(655\) 24.0740 0.0367542
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17.2355i 0.0261540i 0.999914 + 0.0130770i \(0.00416266\pi\)
−0.999914 + 0.0130770i \(0.995837\pi\)
\(660\) 0 0
\(661\) 152.971 0.231423 0.115711 0.993283i \(-0.463085\pi\)
0.115711 + 0.993283i \(0.463085\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 23.5004i 0.0353390i
\(666\) 0 0
\(667\) 1691.94 2.53664
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 53.0967i − 0.0791307i
\(672\) 0 0
\(673\) 578.176 0.859102 0.429551 0.903043i \(-0.358672\pi\)
0.429551 + 0.903043i \(0.358672\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 658.431i 0.972571i 0.873800 + 0.486286i \(0.161649\pi\)
−0.873800 + 0.486286i \(0.838351\pi\)
\(678\) 0 0
\(679\) −432.691 −0.637248
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 1011.25i − 1.48061i −0.672273 0.740304i \(-0.734682\pi\)
0.672273 0.740304i \(-0.265318\pi\)
\(684\) 0 0
\(685\) −44.0589 −0.0643195
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1483.33i 2.15288i
\(690\) 0 0
\(691\) 414.940 0.600492 0.300246 0.953862i \(-0.402931\pi\)
0.300246 + 0.953862i \(0.402931\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.88312i 0.00990377i
\(696\) 0 0
\(697\) 673.706 0.966579
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 641.955i 0.915770i 0.889012 + 0.457885i \(0.151393\pi\)
−0.889012 + 0.457885i \(0.848607\pi\)
\(702\) 0 0
\(703\) 475.176 0.675926
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 287.735i 0.406980i
\(708\) 0 0
\(709\) −1275.18 −1.79856 −0.899278 0.437378i \(-0.855907\pi\)
−0.899278 + 0.437378i \(0.855907\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 301.539i − 0.422916i
\(714\) 0 0
\(715\) 8.58701 0.0120098
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1020.67i 1.41956i 0.704422 + 0.709782i \(0.251206\pi\)
−0.704422 + 0.709782i \(0.748794\pi\)
\(720\) 0 0
\(721\) 0.322943 0.000447910 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 1048.76i − 1.44657i
\(726\) 0 0
\(727\) −210.484 −0.289525 −0.144762 0.989466i \(-0.546242\pi\)
−0.144762 + 0.989466i \(0.546242\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 536.215i − 0.733537i
\(732\) 0 0
\(733\) 230.794 0.314862 0.157431 0.987530i \(-0.449679\pi\)
0.157431 + 0.987530i \(0.449679\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 250.638i 0.340078i
\(738\) 0 0
\(739\) 638.353 0.863807 0.431903 0.901920i \(-0.357842\pi\)
0.431903 + 0.901920i \(0.357842\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1393.01i − 1.87484i −0.348195 0.937422i \(-0.613205\pi\)
0.348195 0.937422i \(-0.386795\pi\)
\(744\) 0 0
\(745\) −38.3524 −0.0514797
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 388.809i − 0.519104i
\(750\) 0 0
\(751\) −574.072 −0.764411 −0.382205 0.924077i \(-0.624835\pi\)
−0.382205 + 0.924077i \(0.624835\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 1.30447i − 0.00172778i
\(756\) 0 0
\(757\) −770.999 −1.01849 −0.509246 0.860621i \(-0.670076\pi\)
−0.509246 + 0.860621i \(0.670076\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 600.666i 0.789312i 0.918829 + 0.394656i \(0.129136\pi\)
−0.918829 + 0.394656i \(0.870864\pi\)
\(762\) 0 0
\(763\) −466.087 −0.610862
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1455.08i 1.89710i
\(768\) 0 0
\(769\) 691.029 0.898607 0.449303 0.893379i \(-0.351672\pi\)
0.449303 + 0.893379i \(0.351672\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 394.118i 0.509855i 0.966960 + 0.254927i \(0.0820516\pi\)
−0.966960 + 0.254927i \(0.917948\pi\)
\(774\) 0 0
\(775\) −186.912 −0.241176
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 971.647i − 1.24730i
\(780\) 0 0
\(781\) −154.735 −0.198124
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 30.5097i 0.0388658i
\(786\) 0 0
\(787\) 343.411 0.436355 0.218177 0.975909i \(-0.429989\pi\)
0.218177 + 0.975909i \(0.429989\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 960.086i 1.21376i
\(792\) 0 0
\(793\) −237.766 −0.299831
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 537.729i − 0.674692i −0.941381 0.337346i \(-0.890471\pi\)
0.941381 0.337346i \(-0.109529\pi\)
\(798\) 0 0
\(799\) −139.529 −0.174630
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 407.569i 0.507557i
\(804\) 0 0
\(805\) −37.9126 −0.0470963
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1172.23i 1.44898i 0.689285 + 0.724490i \(0.257925\pi\)
−0.689285 + 0.724490i \(0.742075\pi\)
\(810\) 0 0
\(811\) 31.2649 0.0385511 0.0192755 0.999814i \(-0.493864\pi\)
0.0192755 + 0.999814i \(0.493864\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 34.9706i − 0.0429087i
\(816\) 0 0
\(817\) −773.352 −0.946576
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 969.765i − 1.18120i −0.806965 0.590600i \(-0.798891\pi\)
0.806965 0.590600i \(-0.201109\pi\)
\(822\) 0 0
\(823\) 275.014 0.334161 0.167080 0.985943i \(-0.446566\pi\)
0.167080 + 0.985943i \(0.446566\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38.9016i 0.0470394i 0.999723 + 0.0235197i \(0.00748724\pi\)
−0.999723 + 0.0235197i \(0.992513\pi\)
\(828\) 0 0
\(829\) 1197.53 1.44455 0.722273 0.691608i \(-0.243097\pi\)
0.722273 + 0.691608i \(0.243097\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 327.431i − 0.393075i
\(834\) 0 0
\(835\) −33.6182 −0.0402613
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 753.558i 0.898162i 0.893491 + 0.449081i \(0.148248\pi\)
−0.893491 + 0.449081i \(0.851752\pi\)
\(840\) 0 0
\(841\) −923.000 −1.09750
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 9.45671i − 0.0111914i
\(846\) 0 0
\(847\) −602.412 −0.711230
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 766.587i 0.900807i
\(852\) 0 0
\(853\) −912.940 −1.07027 −0.535135 0.844767i \(-0.679739\pi\)
−0.535135 + 0.844767i \(0.679739\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 756.469i − 0.882695i −0.897336 0.441347i \(-0.854501\pi\)
0.897336 0.441347i \(-0.145499\pi\)
\(858\) 0 0
\(859\) −1177.65 −1.37095 −0.685474 0.728097i \(-0.740405\pi\)
−0.685474 + 0.728097i \(0.740405\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 397.373i 0.460455i 0.973137 + 0.230227i \(0.0739470\pi\)
−0.973137 + 0.230227i \(0.926053\pi\)
\(864\) 0 0
\(865\) −10.0294 −0.0115947
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 360.863i − 0.415262i
\(870\) 0 0
\(871\) 1122.35 1.28858
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 47.0286i 0.0537469i
\(876\) 0 0
\(877\) −1052.41 −1.20001 −0.600007 0.799995i \(-0.704836\pi\)
−0.600007 + 0.799995i \(0.704836\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 1467.92i − 1.66620i −0.553123 0.833099i \(-0.686564\pi\)
0.553123 0.833099i \(-0.313436\pi\)
\(882\) 0 0
\(883\) 207.736 0.235262 0.117631 0.993057i \(-0.462470\pi\)
0.117631 + 0.993057i \(0.462470\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 297.951i 0.335909i 0.985795 + 0.167954i \(0.0537162\pi\)
−0.985795 + 0.167954i \(0.946284\pi\)
\(888\) 0 0
\(889\) 1043.09 1.17333
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 201.235i 0.225347i
\(894\) 0 0
\(895\) −5.98485 −0.00668698
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 314.382i 0.349702i
\(900\) 0 0
\(901\) 1715.50 1.90399
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 10.6476i − 0.0117653i
\(906\) 0 0
\(907\) −279.675 −0.308352 −0.154176 0.988043i \(-0.549272\pi\)
−0.154176 + 0.988043i \(0.549272\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1395.21i − 1.53152i −0.643127 0.765760i \(-0.722363\pi\)
0.643127 0.765760i \(-0.277637\pi\)
\(912\) 0 0
\(913\) 98.2952 0.107662
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 769.660i − 0.839324i
\(918\) 0 0
\(919\) −619.219 −0.673797 −0.336899 0.941541i \(-0.609378\pi\)
−0.336899 + 0.941541i \(0.609378\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 692.902i 0.750706i
\(924\) 0 0
\(925\) 475.176 0.513704
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 339.431i 0.365373i 0.983171 + 0.182686i \(0.0584793\pi\)
−0.983171 + 0.182686i \(0.941521\pi\)
\(930\) 0 0
\(931\) −472.235 −0.507235
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 9.93102i − 0.0106214i
\(936\) 0 0
\(937\) −782.647 −0.835269 −0.417634 0.908615i \(-0.637141\pi\)
−0.417634 + 0.908615i \(0.637141\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 135.103i 0.143574i 0.997420 + 0.0717872i \(0.0228702\pi\)
−0.997420 + 0.0717872i \(0.977130\pi\)
\(942\) 0 0
\(943\) 1567.53 1.66228
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 86.8234i 0.0916826i 0.998949 + 0.0458413i \(0.0145968\pi\)
−0.998949 + 0.0458413i \(0.985403\pi\)
\(948\) 0 0
\(949\) 1825.09 1.92317
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 965.823i − 1.01346i −0.862106 0.506728i \(-0.830855\pi\)
0.862106 0.506728i \(-0.169145\pi\)
\(954\) 0 0
\(955\) 32.0589 0.0335695
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1408.59i 1.46881i
\(960\) 0 0
\(961\) −904.971 −0.941697
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14.7300i 0.0152643i
\(966\) 0 0
\(967\) 1274.07 1.31755 0.658776 0.752339i \(-0.271075\pi\)
0.658776 + 0.752339i \(0.271075\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 764.087i − 0.786907i −0.919345 0.393453i \(-0.871280\pi\)
0.919345 0.393453i \(-0.128720\pi\)
\(972\) 0 0
\(973\) 220.057 0.226164
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 713.087i − 0.729874i −0.931032 0.364937i \(-0.881091\pi\)
0.931032 0.364937i \(-0.118909\pi\)
\(978\) 0 0
\(979\) −244.148 −0.249385
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 788.412i − 0.802047i −0.916068 0.401023i \(-0.868655\pi\)
0.916068 0.401023i \(-0.131345\pi\)
\(984\) 0 0
\(985\) 14.4398 0.0146597
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1247.63i − 1.26150i
\(990\) 0 0
\(991\) −118.868 −0.119947 −0.0599737 0.998200i \(-0.519102\pi\)
−0.0599737 + 0.998200i \(0.519102\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 35.0185i − 0.0351944i
\(996\) 0 0
\(997\) −319.795 −0.320757 −0.160379 0.987056i \(-0.551271\pi\)
−0.160379 + 0.987056i \(0.551271\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.3.e.s.1025.2 4
3.2 odd 2 inner 1728.3.e.s.1025.3 4
4.3 odd 2 1728.3.e.p.1025.2 4
8.3 odd 2 216.3.e.c.161.3 yes 4
8.5 even 2 432.3.e.h.161.3 4
12.11 even 2 1728.3.e.p.1025.3 4
24.5 odd 2 432.3.e.h.161.2 4
24.11 even 2 216.3.e.c.161.2 4
72.5 odd 6 1296.3.q.l.593.2 8
72.11 even 6 648.3.m.f.377.3 8
72.13 even 6 1296.3.q.l.593.3 8
72.29 odd 6 1296.3.q.l.1025.3 8
72.43 odd 6 648.3.m.f.377.2 8
72.59 even 6 648.3.m.f.593.2 8
72.61 even 6 1296.3.q.l.1025.2 8
72.67 odd 6 648.3.m.f.593.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.3.e.c.161.2 4 24.11 even 2
216.3.e.c.161.3 yes 4 8.3 odd 2
432.3.e.h.161.2 4 24.5 odd 2
432.3.e.h.161.3 4 8.5 even 2
648.3.m.f.377.2 8 72.43 odd 6
648.3.m.f.377.3 8 72.11 even 6
648.3.m.f.593.2 8 72.59 even 6
648.3.m.f.593.3 8 72.67 odd 6
1296.3.q.l.593.2 8 72.5 odd 6
1296.3.q.l.593.3 8 72.13 even 6
1296.3.q.l.1025.2 8 72.61 even 6
1296.3.q.l.1025.3 8 72.29 odd 6
1728.3.e.p.1025.2 4 4.3 odd 2
1728.3.e.p.1025.3 4 12.11 even 2
1728.3.e.s.1025.2 4 1.1 even 1 trivial
1728.3.e.s.1025.3 4 3.2 odd 2 inner