Properties

Label 1710.4.p
Level $1710$
Weight $4$
Character orbit 1710.p
Rep. character $\chi_{1710}(37,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $300$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.p (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(i)\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1710, [\chi])\).

Total New Old
Modular forms 2192 300 1892
Cusp forms 2128 300 1828
Eisenstein series 64 0 64

Trace form

\( 300 q + 16 q^{5} + 8 q^{7} - 56 q^{11} - 4800 q^{16} - 64 q^{17} + 172 q^{23} + 368 q^{25} - 304 q^{26} + 32 q^{28} + 760 q^{35} - 200 q^{38} - 1912 q^{43} + 1320 q^{47} - 2048 q^{55} + 3456 q^{61} + 32 q^{62}+ \cdots + 1460 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1710, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1710, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1710, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(570, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(855, [\chi])\)\(^{\oplus 2}\)