Properties

Label 1710.4.cj
Level $1710$
Weight $4$
Character orbit 1710.cj
Rep. character $\chi_{1710}(217,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $600$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.cj (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1710, [\chi])\).

Total New Old
Modular forms 4384 600 3784
Cusp forms 4256 600 3656
Eisenstein series 128 0 128

Trace form

\( 600 q - 16 q^{5} + 16 q^{7} + 56 q^{11} + 4800 q^{16} - 224 q^{17} - 432 q^{22} + 44 q^{23} - 152 q^{25} - 608 q^{26} - 32 q^{28} + 896 q^{35} + 200 q^{38} - 444 q^{41} + 208 q^{43} - 2352 q^{47} + 1872 q^{53}+ \cdots + 528 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1710, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1710, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1710, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(570, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(855, [\chi])\)\(^{\oplus 2}\)