Properties

Label 1710.2.l.m.1261.1
Level $1710$
Weight $2$
Character 1710.1261
Analytic conductor $13.654$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,2,Mod(1261,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.1261"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.l (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,-2,2,0,10,4,0,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1261.1
Root \(-0.780776 - 1.35234i\) of defining polynomial
Character \(\chi\) \(=\) 1710.1261
Dual form 1710.2.l.m.1531.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{5} +0.438447 q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{10} -1.00000 q^{11} +(1.00000 - 1.73205i) q^{13} +(-0.219224 - 0.379706i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(2.56155 + 4.43674i) q^{17} +(-2.50000 + 3.57071i) q^{19} -1.00000 q^{20} +(0.500000 + 0.866025i) q^{22} +(-2.34233 + 4.05703i) q^{23} +(-0.500000 + 0.866025i) q^{25} -2.00000 q^{26} +(-0.219224 + 0.379706i) q^{28} +(1.00000 - 1.73205i) q^{29} +10.2462 q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.56155 - 4.43674i) q^{34} +(0.219224 + 0.379706i) q^{35} -4.68466 q^{37} +(4.34233 + 0.379706i) q^{38} +(0.500000 + 0.866025i) q^{40} +(-3.06155 - 5.30277i) q^{41} +(-1.56155 - 2.70469i) q^{43} +(0.500000 - 0.866025i) q^{44} +4.68466 q^{46} +(1.43845 - 2.49146i) q^{47} -6.80776 q^{49} +1.00000 q^{50} +(1.00000 + 1.73205i) q^{52} +(-3.78078 + 6.54850i) q^{53} +(-0.500000 - 0.866025i) q^{55} +0.438447 q^{56} -2.00000 q^{58} +(7.28078 + 12.6107i) q^{59} +(-2.56155 + 4.43674i) q^{61} +(-5.12311 - 8.87348i) q^{62} +1.00000 q^{64} +2.00000 q^{65} +(-4.71922 + 8.17394i) q^{67} -5.12311 q^{68} +(0.219224 - 0.379706i) q^{70} +(8.12311 + 14.0696i) q^{71} +(0.842329 + 1.45896i) q^{73} +(2.34233 + 4.05703i) q^{74} +(-1.84233 - 3.95042i) q^{76} -0.438447 q^{77} +(5.56155 + 9.63289i) q^{79} +(0.500000 - 0.866025i) q^{80} +(-3.06155 + 5.30277i) q^{82} +10.8078 q^{83} +(-2.56155 + 4.43674i) q^{85} +(-1.56155 + 2.70469i) q^{86} -1.00000 q^{88} +(-1.34233 + 2.32498i) q^{89} +(0.438447 - 0.759413i) q^{91} +(-2.34233 - 4.05703i) q^{92} -2.87689 q^{94} +(-4.34233 - 0.379706i) q^{95} +(-0.842329 - 1.45896i) q^{97} +(3.40388 + 5.89570i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + 2 q^{5} + 10 q^{7} + 4 q^{8} + 2 q^{10} - 4 q^{11} + 4 q^{13} - 5 q^{14} - 2 q^{16} + 2 q^{17} - 10 q^{19} - 4 q^{20} + 2 q^{22} + 3 q^{23} - 2 q^{25} - 8 q^{26} - 5 q^{28} + 4 q^{29}+ \cdots - 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0.438447 0.165717 0.0828587 0.996561i \(-0.473595\pi\)
0.0828587 + 0.996561i \(0.473595\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) 1.00000 1.73205i 0.277350 0.480384i −0.693375 0.720577i \(-0.743877\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) −0.219224 0.379706i −0.0585900 0.101481i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.56155 + 4.43674i 0.621268 + 1.07607i 0.989250 + 0.146235i \(0.0467154\pi\)
−0.367982 + 0.929833i \(0.619951\pi\)
\(18\) 0 0
\(19\) −2.50000 + 3.57071i −0.573539 + 0.819178i
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 0.500000 + 0.866025i 0.106600 + 0.184637i
\(23\) −2.34233 + 4.05703i −0.488409 + 0.845950i −0.999911 0.0133324i \(-0.995756\pi\)
0.511502 + 0.859282i \(0.329089\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) −0.219224 + 0.379706i −0.0414294 + 0.0717578i
\(29\) 1.00000 1.73205i 0.185695 0.321634i −0.758115 0.652121i \(-0.773880\pi\)
0.943811 + 0.330487i \(0.107213\pi\)
\(30\) 0 0
\(31\) 10.2462 1.84027 0.920137 0.391597i \(-0.128077\pi\)
0.920137 + 0.391597i \(0.128077\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 2.56155 4.43674i 0.439303 0.760895i
\(35\) 0.219224 + 0.379706i 0.0370556 + 0.0641821i
\(36\) 0 0
\(37\) −4.68466 −0.770153 −0.385077 0.922885i \(-0.625825\pi\)
−0.385077 + 0.922885i \(0.625825\pi\)
\(38\) 4.34233 + 0.379706i 0.704419 + 0.0615965i
\(39\) 0 0
\(40\) 0.500000 + 0.866025i 0.0790569 + 0.136931i
\(41\) −3.06155 5.30277i −0.478134 0.828153i 0.521552 0.853220i \(-0.325353\pi\)
−0.999686 + 0.0250670i \(0.992020\pi\)
\(42\) 0 0
\(43\) −1.56155 2.70469i −0.238135 0.412461i 0.722044 0.691847i \(-0.243203\pi\)
−0.960179 + 0.279385i \(0.909869\pi\)
\(44\) 0.500000 0.866025i 0.0753778 0.130558i
\(45\) 0 0
\(46\) 4.68466 0.690715
\(47\) 1.43845 2.49146i 0.209819 0.363417i −0.741838 0.670579i \(-0.766046\pi\)
0.951657 + 0.307161i \(0.0993792\pi\)
\(48\) 0 0
\(49\) −6.80776 −0.972538
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 1.00000 + 1.73205i 0.138675 + 0.240192i
\(53\) −3.78078 + 6.54850i −0.519330 + 0.899505i 0.480418 + 0.877040i \(0.340485\pi\)
−0.999748 + 0.0224656i \(0.992848\pi\)
\(54\) 0 0
\(55\) −0.500000 0.866025i −0.0674200 0.116775i
\(56\) 0.438447 0.0585900
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) 7.28078 + 12.6107i 0.947876 + 1.64177i 0.749887 + 0.661566i \(0.230108\pi\)
0.197989 + 0.980204i \(0.436559\pi\)
\(60\) 0 0
\(61\) −2.56155 + 4.43674i −0.327973 + 0.568066i −0.982110 0.188310i \(-0.939699\pi\)
0.654136 + 0.756377i \(0.273032\pi\)
\(62\) −5.12311 8.87348i −0.650635 1.12693i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −4.71922 + 8.17394i −0.576545 + 0.998605i 0.419327 + 0.907835i \(0.362266\pi\)
−0.995872 + 0.0907698i \(0.971067\pi\)
\(68\) −5.12311 −0.621268
\(69\) 0 0
\(70\) 0.219224 0.379706i 0.0262022 0.0453836i
\(71\) 8.12311 + 14.0696i 0.964035 + 1.66976i 0.712185 + 0.701992i \(0.247706\pi\)
0.251850 + 0.967766i \(0.418961\pi\)
\(72\) 0 0
\(73\) 0.842329 + 1.45896i 0.0985872 + 0.170758i 0.911100 0.412185i \(-0.135234\pi\)
−0.812513 + 0.582943i \(0.801901\pi\)
\(74\) 2.34233 + 4.05703i 0.272290 + 0.471621i
\(75\) 0 0
\(76\) −1.84233 3.95042i −0.211330 0.453144i
\(77\) −0.438447 −0.0499657
\(78\) 0 0
\(79\) 5.56155 + 9.63289i 0.625724 + 1.08379i 0.988400 + 0.151870i \(0.0485295\pi\)
−0.362677 + 0.931915i \(0.618137\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) 0 0
\(82\) −3.06155 + 5.30277i −0.338092 + 0.585592i
\(83\) 10.8078 1.18631 0.593153 0.805090i \(-0.297883\pi\)
0.593153 + 0.805090i \(0.297883\pi\)
\(84\) 0 0
\(85\) −2.56155 + 4.43674i −0.277839 + 0.481232i
\(86\) −1.56155 + 2.70469i −0.168387 + 0.291654i
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −1.34233 + 2.32498i −0.142287 + 0.246448i −0.928357 0.371689i \(-0.878779\pi\)
0.786071 + 0.618137i \(0.212112\pi\)
\(90\) 0 0
\(91\) 0.438447 0.759413i 0.0459618 0.0796081i
\(92\) −2.34233 4.05703i −0.244205 0.422975i
\(93\) 0 0
\(94\) −2.87689 −0.296729
\(95\) −4.34233 0.379706i −0.445514 0.0389571i
\(96\) 0 0
\(97\) −0.842329 1.45896i −0.0855256 0.148135i 0.820089 0.572235i \(-0.193924\pi\)
−0.905615 + 0.424101i \(0.860590\pi\)
\(98\) 3.40388 + 5.89570i 0.343844 + 0.595555i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 5.00000 8.66025i 0.497519 0.861727i −0.502477 0.864590i \(-0.667578\pi\)
0.999996 + 0.00286291i \(0.000911295\pi\)
\(102\) 0 0
\(103\) −5.80776 −0.572256 −0.286128 0.958191i \(-0.592368\pi\)
−0.286128 + 0.958191i \(0.592368\pi\)
\(104\) 1.00000 1.73205i 0.0980581 0.169842i
\(105\) 0 0
\(106\) 7.56155 0.734443
\(107\) −2.24621 −0.217149 −0.108575 0.994088i \(-0.534629\pi\)
−0.108575 + 0.994088i \(0.534629\pi\)
\(108\) 0 0
\(109\) 7.12311 + 12.3376i 0.682270 + 1.18173i 0.974286 + 0.225313i \(0.0723404\pi\)
−0.292017 + 0.956413i \(0.594326\pi\)
\(110\) −0.500000 + 0.866025i −0.0476731 + 0.0825723i
\(111\) 0 0
\(112\) −0.219224 0.379706i −0.0207147 0.0358789i
\(113\) 16.8078 1.58114 0.790571 0.612371i \(-0.209784\pi\)
0.790571 + 0.612371i \(0.209784\pi\)
\(114\) 0 0
\(115\) −4.68466 −0.436847
\(116\) 1.00000 + 1.73205i 0.0928477 + 0.160817i
\(117\) 0 0
\(118\) 7.28078 12.6107i 0.670250 1.16091i
\(119\) 1.12311 + 1.94528i 0.102955 + 0.178323i
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 5.12311 0.463824
\(123\) 0 0
\(124\) −5.12311 + 8.87348i −0.460068 + 0.796862i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 7.78078 13.4767i 0.690432 1.19586i −0.281264 0.959630i \(-0.590754\pi\)
0.971696 0.236233i \(-0.0759130\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.00000 1.73205i −0.0877058 0.151911i
\(131\) −8.06155 13.9630i −0.704341 1.21995i −0.966929 0.255046i \(-0.917909\pi\)
0.262588 0.964908i \(-0.415424\pi\)
\(132\) 0 0
\(133\) −1.09612 + 1.56557i −0.0950455 + 0.135752i
\(134\) 9.43845 0.815358
\(135\) 0 0
\(136\) 2.56155 + 4.43674i 0.219651 + 0.380447i
\(137\) −2.71922 + 4.70983i −0.232319 + 0.402388i −0.958490 0.285126i \(-0.907965\pi\)
0.726171 + 0.687514i \(0.241298\pi\)
\(138\) 0 0
\(139\) −4.40388 + 7.62775i −0.373532 + 0.646977i −0.990106 0.140320i \(-0.955187\pi\)
0.616574 + 0.787297i \(0.288520\pi\)
\(140\) −0.438447 −0.0370556
\(141\) 0 0
\(142\) 8.12311 14.0696i 0.681676 1.18070i
\(143\) −1.00000 + 1.73205i −0.0836242 + 0.144841i
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0.842329 1.45896i 0.0697117 0.120744i
\(147\) 0 0
\(148\) 2.34233 4.05703i 0.192538 0.333486i
\(149\) 8.00000 + 13.8564i 0.655386 + 1.13516i 0.981797 + 0.189933i \(0.0608272\pi\)
−0.326411 + 0.945228i \(0.605840\pi\)
\(150\) 0 0
\(151\) 20.4924 1.66765 0.833825 0.552029i \(-0.186146\pi\)
0.833825 + 0.552029i \(0.186146\pi\)
\(152\) −2.50000 + 3.57071i −0.202777 + 0.289623i
\(153\) 0 0
\(154\) 0.219224 + 0.379706i 0.0176655 + 0.0305976i
\(155\) 5.12311 + 8.87348i 0.411498 + 0.712735i
\(156\) 0 0
\(157\) −1.21922 2.11176i −0.0973046 0.168537i 0.813263 0.581896i \(-0.197689\pi\)
−0.910568 + 0.413359i \(0.864355\pi\)
\(158\) 5.56155 9.63289i 0.442453 0.766352i
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) −1.02699 + 1.77879i −0.0809380 + 0.140189i
\(162\) 0 0
\(163\) 17.0540 1.33577 0.667885 0.744264i \(-0.267200\pi\)
0.667885 + 0.744264i \(0.267200\pi\)
\(164\) 6.12311 0.478134
\(165\) 0 0
\(166\) −5.40388 9.35980i −0.419423 0.726461i
\(167\) 0.342329 0.592932i 0.0264902 0.0458824i −0.852476 0.522766i \(-0.824900\pi\)
0.878967 + 0.476883i \(0.158234\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 5.12311 0.392924
\(171\) 0 0
\(172\) 3.12311 0.238135
\(173\) −2.90388 5.02967i −0.220778 0.382399i 0.734266 0.678861i \(-0.237526\pi\)
−0.955044 + 0.296463i \(0.904193\pi\)
\(174\) 0 0
\(175\) −0.219224 + 0.379706i −0.0165717 + 0.0287031i
\(176\) 0.500000 + 0.866025i 0.0376889 + 0.0652791i
\(177\) 0 0
\(178\) 2.68466 0.201224
\(179\) −11.4924 −0.858984 −0.429492 0.903071i \(-0.641307\pi\)
−0.429492 + 0.903071i \(0.641307\pi\)
\(180\) 0 0
\(181\) −10.6847 + 18.5064i −0.794184 + 1.37557i 0.129171 + 0.991622i \(0.458768\pi\)
−0.923356 + 0.383945i \(0.874565\pi\)
\(182\) −0.876894 −0.0649997
\(183\) 0 0
\(184\) −2.34233 + 4.05703i −0.172679 + 0.299088i
\(185\) −2.34233 4.05703i −0.172211 0.298279i
\(186\) 0 0
\(187\) −2.56155 4.43674i −0.187319 0.324447i
\(188\) 1.43845 + 2.49146i 0.104910 + 0.181709i
\(189\) 0 0
\(190\) 1.84233 + 3.95042i 0.133657 + 0.286594i
\(191\) 5.36932 0.388510 0.194255 0.980951i \(-0.437771\pi\)
0.194255 + 0.980951i \(0.437771\pi\)
\(192\) 0 0
\(193\) −12.8078 22.1837i −0.921923 1.59682i −0.796436 0.604722i \(-0.793284\pi\)
−0.125487 0.992095i \(-0.540049\pi\)
\(194\) −0.842329 + 1.45896i −0.0604757 + 0.104747i
\(195\) 0 0
\(196\) 3.40388 5.89570i 0.243134 0.421121i
\(197\) −14.4384 −1.02870 −0.514348 0.857581i \(-0.671966\pi\)
−0.514348 + 0.857581i \(0.671966\pi\)
\(198\) 0 0
\(199\) 1.43845 2.49146i 0.101969 0.176615i −0.810527 0.585701i \(-0.800819\pi\)
0.912496 + 0.409086i \(0.134152\pi\)
\(200\) −0.500000 + 0.866025i −0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −10.0000 −0.703598
\(203\) 0.438447 0.759413i 0.0307730 0.0533003i
\(204\) 0 0
\(205\) 3.06155 5.30277i 0.213828 0.370361i
\(206\) 2.90388 + 5.02967i 0.202323 + 0.350434i
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 2.50000 3.57071i 0.172929 0.246991i
\(210\) 0 0
\(211\) 1.65767 + 2.87117i 0.114119 + 0.197659i 0.917427 0.397904i \(-0.130262\pi\)
−0.803308 + 0.595563i \(0.796929\pi\)
\(212\) −3.78078 6.54850i −0.259665 0.449753i
\(213\) 0 0
\(214\) 1.12311 + 1.94528i 0.0767739 + 0.132976i
\(215\) 1.56155 2.70469i 0.106497 0.184458i
\(216\) 0 0
\(217\) 4.49242 0.304966
\(218\) 7.12311 12.3376i 0.482438 0.835606i
\(219\) 0 0
\(220\) 1.00000 0.0674200
\(221\) 10.2462 0.689235
\(222\) 0 0
\(223\) −5.65767 9.79937i −0.378866 0.656215i 0.612032 0.790833i \(-0.290352\pi\)
−0.990897 + 0.134619i \(0.957019\pi\)
\(224\) −0.219224 + 0.379706i −0.0146475 + 0.0253702i
\(225\) 0 0
\(226\) −8.40388 14.5560i −0.559018 0.968247i
\(227\) −19.9309 −1.32286 −0.661429 0.750008i \(-0.730050\pi\)
−0.661429 + 0.750008i \(0.730050\pi\)
\(228\) 0 0
\(229\) 12.8769 0.850929 0.425465 0.904975i \(-0.360111\pi\)
0.425465 + 0.904975i \(0.360111\pi\)
\(230\) 2.34233 + 4.05703i 0.154449 + 0.267513i
\(231\) 0 0
\(232\) 1.00000 1.73205i 0.0656532 0.113715i
\(233\) 1.15767 + 2.00514i 0.0758415 + 0.131361i 0.901452 0.432879i \(-0.142502\pi\)
−0.825610 + 0.564241i \(0.809169\pi\)
\(234\) 0 0
\(235\) 2.87689 0.187668
\(236\) −14.5616 −0.947876
\(237\) 0 0
\(238\) 1.12311 1.94528i 0.0728001 0.126094i
\(239\) −18.2462 −1.18025 −0.590125 0.807312i \(-0.700921\pi\)
−0.590125 + 0.807312i \(0.700921\pi\)
\(240\) 0 0
\(241\) 4.28078 7.41452i 0.275749 0.477611i −0.694575 0.719421i \(-0.744407\pi\)
0.970324 + 0.241809i \(0.0777408\pi\)
\(242\) 5.00000 + 8.66025i 0.321412 + 0.556702i
\(243\) 0 0
\(244\) −2.56155 4.43674i −0.163987 0.284033i
\(245\) −3.40388 5.89570i −0.217466 0.376662i
\(246\) 0 0
\(247\) 3.68466 + 7.90084i 0.234449 + 0.502718i
\(248\) 10.2462 0.650635
\(249\) 0 0
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) 12.9654 22.4568i 0.818371 1.41746i −0.0885109 0.996075i \(-0.528211\pi\)
0.906882 0.421385i \(-0.138456\pi\)
\(252\) 0 0
\(253\) 2.34233 4.05703i 0.147261 0.255063i
\(254\) −15.5616 −0.976419
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.52699 11.3051i 0.407142 0.705191i −0.587426 0.809278i \(-0.699859\pi\)
0.994568 + 0.104087i \(0.0331920\pi\)
\(258\) 0 0
\(259\) −2.05398 −0.127628
\(260\) −1.00000 + 1.73205i −0.0620174 + 0.107417i
\(261\) 0 0
\(262\) −8.06155 + 13.9630i −0.498044 + 0.862638i
\(263\) −1.09612 1.89853i −0.0675895 0.117068i 0.830250 0.557391i \(-0.188197\pi\)
−0.897840 + 0.440322i \(0.854864\pi\)
\(264\) 0 0
\(265\) −7.56155 −0.464502
\(266\) 1.90388 + 0.166481i 0.116734 + 0.0102076i
\(267\) 0 0
\(268\) −4.71922 8.17394i −0.288272 0.499303i
\(269\) 2.00000 + 3.46410i 0.121942 + 0.211210i 0.920534 0.390664i \(-0.127754\pi\)
−0.798591 + 0.601874i \(0.794421\pi\)
\(270\) 0 0
\(271\) 4.12311 + 7.14143i 0.250461 + 0.433811i 0.963653 0.267158i \(-0.0860845\pi\)
−0.713192 + 0.700969i \(0.752751\pi\)
\(272\) 2.56155 4.43674i 0.155317 0.269017i
\(273\) 0 0
\(274\) 5.43845 0.328549
\(275\) 0.500000 0.866025i 0.0301511 0.0522233i
\(276\) 0 0
\(277\) 4.24621 0.255130 0.127565 0.991830i \(-0.459284\pi\)
0.127565 + 0.991830i \(0.459284\pi\)
\(278\) 8.80776 0.528255
\(279\) 0 0
\(280\) 0.219224 + 0.379706i 0.0131011 + 0.0226918i
\(281\) 4.18466 7.24804i 0.249636 0.432382i −0.713789 0.700361i \(-0.753022\pi\)
0.963425 + 0.267979i \(0.0863558\pi\)
\(282\) 0 0
\(283\) 9.71922 + 16.8342i 0.577748 + 1.00069i 0.995737 + 0.0922367i \(0.0294016\pi\)
−0.417989 + 0.908452i \(0.637265\pi\)
\(284\) −16.2462 −0.964035
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) −1.34233 2.32498i −0.0792352 0.137239i
\(288\) 0 0
\(289\) −4.62311 + 8.00745i −0.271947 + 0.471027i
\(290\) −1.00000 1.73205i −0.0587220 0.101710i
\(291\) 0 0
\(292\) −1.68466 −0.0985872
\(293\) −23.5616 −1.37648 −0.688240 0.725483i \(-0.741617\pi\)
−0.688240 + 0.725483i \(0.741617\pi\)
\(294\) 0 0
\(295\) −7.28078 + 12.6107i −0.423903 + 0.734222i
\(296\) −4.68466 −0.272290
\(297\) 0 0
\(298\) 8.00000 13.8564i 0.463428 0.802680i
\(299\) 4.68466 + 8.11407i 0.270921 + 0.469249i
\(300\) 0 0
\(301\) −0.684658 1.18586i −0.0394631 0.0683520i
\(302\) −10.2462 17.7470i −0.589603 1.02122i
\(303\) 0 0
\(304\) 4.34233 + 0.379706i 0.249050 + 0.0217777i
\(305\) −5.12311 −0.293348
\(306\) 0 0
\(307\) 11.9654 + 20.7247i 0.682903 + 1.18282i 0.974091 + 0.226157i \(0.0726164\pi\)
−0.291187 + 0.956666i \(0.594050\pi\)
\(308\) 0.219224 0.379706i 0.0124914 0.0216358i
\(309\) 0 0
\(310\) 5.12311 8.87348i 0.290973 0.503980i
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 0 0
\(313\) −2.15767 + 3.73720i −0.121959 + 0.211239i −0.920540 0.390648i \(-0.872251\pi\)
0.798581 + 0.601887i \(0.205584\pi\)
\(314\) −1.21922 + 2.11176i −0.0688048 + 0.119173i
\(315\) 0 0
\(316\) −11.1231 −0.625724
\(317\) 9.34233 16.1814i 0.524717 0.908837i −0.474868 0.880057i \(-0.657504\pi\)
0.999586 0.0287805i \(-0.00916237\pi\)
\(318\) 0 0
\(319\) −1.00000 + 1.73205i −0.0559893 + 0.0969762i
\(320\) 0.500000 + 0.866025i 0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) 2.05398 0.114464
\(323\) −22.2462 1.94528i −1.23781 0.108238i
\(324\) 0 0
\(325\) 1.00000 + 1.73205i 0.0554700 + 0.0960769i
\(326\) −8.52699 14.7692i −0.472266 0.817989i
\(327\) 0 0
\(328\) −3.06155 5.30277i −0.169046 0.292796i
\(329\) 0.630683 1.09238i 0.0347707 0.0602246i
\(330\) 0 0
\(331\) 23.4924 1.29126 0.645630 0.763650i \(-0.276595\pi\)
0.645630 + 0.763650i \(0.276595\pi\)
\(332\) −5.40388 + 9.35980i −0.296577 + 0.513686i
\(333\) 0 0
\(334\) −0.684658 −0.0374628
\(335\) −9.43845 −0.515677
\(336\) 0 0
\(337\) −10.5270 18.2333i −0.573442 0.993230i −0.996209 0.0869917i \(-0.972275\pi\)
0.422767 0.906238i \(-0.361059\pi\)
\(338\) 4.50000 7.79423i 0.244768 0.423950i
\(339\) 0 0
\(340\) −2.56155 4.43674i −0.138920 0.240616i
\(341\) −10.2462 −0.554863
\(342\) 0 0
\(343\) −6.05398 −0.326884
\(344\) −1.56155 2.70469i −0.0841933 0.145827i
\(345\) 0 0
\(346\) −2.90388 + 5.02967i −0.156114 + 0.270397i
\(347\) 0.842329 + 1.45896i 0.0452186 + 0.0783209i 0.887749 0.460328i \(-0.152268\pi\)
−0.842530 + 0.538649i \(0.818935\pi\)
\(348\) 0 0
\(349\) −14.2462 −0.762582 −0.381291 0.924455i \(-0.624520\pi\)
−0.381291 + 0.924455i \(0.624520\pi\)
\(350\) 0.438447 0.0234360
\(351\) 0 0
\(352\) 0.500000 0.866025i 0.0266501 0.0461593i
\(353\) −24.1771 −1.28682 −0.643408 0.765523i \(-0.722480\pi\)
−0.643408 + 0.765523i \(0.722480\pi\)
\(354\) 0 0
\(355\) −8.12311 + 14.0696i −0.431130 + 0.746739i
\(356\) −1.34233 2.32498i −0.0711433 0.123224i
\(357\) 0 0
\(358\) 5.74621 + 9.95273i 0.303697 + 0.526018i
\(359\) 7.56155 + 13.0970i 0.399083 + 0.691233i 0.993613 0.112841i \(-0.0359950\pi\)
−0.594530 + 0.804074i \(0.702662\pi\)
\(360\) 0 0
\(361\) −6.50000 17.8536i −0.342105 0.939662i
\(362\) 21.3693 1.12315
\(363\) 0 0
\(364\) 0.438447 + 0.759413i 0.0229809 + 0.0398040i
\(365\) −0.842329 + 1.45896i −0.0440895 + 0.0763653i
\(366\) 0 0
\(367\) 8.87689 15.3752i 0.463370 0.802581i −0.535756 0.844373i \(-0.679973\pi\)
0.999126 + 0.0417921i \(0.0133067\pi\)
\(368\) 4.68466 0.244205
\(369\) 0 0
\(370\) −2.34233 + 4.05703i −0.121772 + 0.210915i
\(371\) −1.65767 + 2.87117i −0.0860620 + 0.149064i
\(372\) 0 0
\(373\) −35.8078 −1.85406 −0.927028 0.374992i \(-0.877645\pi\)
−0.927028 + 0.374992i \(0.877645\pi\)
\(374\) −2.56155 + 4.43674i −0.132455 + 0.229418i
\(375\) 0 0
\(376\) 1.43845 2.49146i 0.0741822 0.128487i
\(377\) −2.00000 3.46410i −0.103005 0.178410i
\(378\) 0 0
\(379\) −0.492423 −0.0252940 −0.0126470 0.999920i \(-0.504026\pi\)
−0.0126470 + 0.999920i \(0.504026\pi\)
\(380\) 2.50000 3.57071i 0.128247 0.183174i
\(381\) 0 0
\(382\) −2.68466 4.64996i −0.137359 0.237913i
\(383\) 2.56155 + 4.43674i 0.130889 + 0.226707i 0.924020 0.382345i \(-0.124883\pi\)
−0.793130 + 0.609052i \(0.791550\pi\)
\(384\) 0 0
\(385\) −0.219224 0.379706i −0.0111727 0.0193516i
\(386\) −12.8078 + 22.1837i −0.651898 + 1.12912i
\(387\) 0 0
\(388\) 1.68466 0.0855256
\(389\) −9.56155 + 16.5611i −0.484790 + 0.839681i −0.999847 0.0174749i \(-0.994437\pi\)
0.515057 + 0.857156i \(0.327771\pi\)
\(390\) 0 0
\(391\) −24.0000 −1.21373
\(392\) −6.80776 −0.343844
\(393\) 0 0
\(394\) 7.21922 + 12.5041i 0.363699 + 0.629946i
\(395\) −5.56155 + 9.63289i −0.279832 + 0.484683i
\(396\) 0 0
\(397\) −14.1501 24.5087i −0.710173 1.23006i −0.964792 0.263014i \(-0.915283\pi\)
0.254619 0.967041i \(-0.418050\pi\)
\(398\) −2.87689 −0.144206
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 13.9654 + 24.1888i 0.697401 + 1.20793i 0.969365 + 0.245626i \(0.0789934\pi\)
−0.271964 + 0.962307i \(0.587673\pi\)
\(402\) 0 0
\(403\) 10.2462 17.7470i 0.510400 0.884039i
\(404\) 5.00000 + 8.66025i 0.248759 + 0.430864i
\(405\) 0 0
\(406\) −0.876894 −0.0435195
\(407\) 4.68466 0.232210
\(408\) 0 0
\(409\) −10.5000 + 18.1865i −0.519192 + 0.899266i 0.480560 + 0.876962i \(0.340434\pi\)
−0.999751 + 0.0223042i \(0.992900\pi\)
\(410\) −6.12311 −0.302399
\(411\) 0 0
\(412\) 2.90388 5.02967i 0.143064 0.247794i
\(413\) 3.19224 + 5.52911i 0.157080 + 0.272070i
\(414\) 0 0
\(415\) 5.40388 + 9.35980i 0.265266 + 0.459454i
\(416\) 1.00000 + 1.73205i 0.0490290 + 0.0849208i
\(417\) 0 0
\(418\) −4.34233 0.379706i −0.212390 0.0185720i
\(419\) 17.5616 0.857938 0.428969 0.903319i \(-0.358877\pi\)
0.428969 + 0.903319i \(0.358877\pi\)
\(420\) 0 0
\(421\) −16.2462 28.1393i −0.791792 1.37142i −0.924856 0.380316i \(-0.875815\pi\)
0.133065 0.991107i \(-0.457518\pi\)
\(422\) 1.65767 2.87117i 0.0806942 0.139766i
\(423\) 0 0
\(424\) −3.78078 + 6.54850i −0.183611 + 0.318023i
\(425\) −5.12311 −0.248507
\(426\) 0 0
\(427\) −1.12311 + 1.94528i −0.0543509 + 0.0941385i
\(428\) 1.12311 1.94528i 0.0542874 0.0940285i
\(429\) 0 0
\(430\) −3.12311 −0.150610
\(431\) −3.68466 + 6.38202i −0.177484 + 0.307411i −0.941018 0.338356i \(-0.890129\pi\)
0.763534 + 0.645767i \(0.223462\pi\)
\(432\) 0 0
\(433\) 18.3693 31.8166i 0.882773 1.52901i 0.0345280 0.999404i \(-0.489007\pi\)
0.848245 0.529604i \(-0.177659\pi\)
\(434\) −2.24621 3.89055i −0.107822 0.186752i
\(435\) 0 0
\(436\) −14.2462 −0.682270
\(437\) −8.63068 18.5064i −0.412862 0.885280i
\(438\) 0 0
\(439\) 8.24621 + 14.2829i 0.393570 + 0.681684i 0.992918 0.118806i \(-0.0379065\pi\)
−0.599347 + 0.800489i \(0.704573\pi\)
\(440\) −0.500000 0.866025i −0.0238366 0.0412861i
\(441\) 0 0
\(442\) −5.12311 8.87348i −0.243681 0.422068i
\(443\) 16.9654 29.3850i 0.806052 1.39612i −0.109526 0.993984i \(-0.534933\pi\)
0.915578 0.402139i \(-0.131733\pi\)
\(444\) 0 0
\(445\) −2.68466 −0.127265
\(446\) −5.65767 + 9.79937i −0.267898 + 0.464014i
\(447\) 0 0
\(448\) 0.438447 0.0207147
\(449\) −29.0000 −1.36859 −0.684297 0.729203i \(-0.739891\pi\)
−0.684297 + 0.729203i \(0.739891\pi\)
\(450\) 0 0
\(451\) 3.06155 + 5.30277i 0.144163 + 0.249697i
\(452\) −8.40388 + 14.5560i −0.395285 + 0.684654i
\(453\) 0 0
\(454\) 9.96543 + 17.2606i 0.467701 + 0.810082i
\(455\) 0.876894 0.0411094
\(456\) 0 0
\(457\) 7.05398 0.329971 0.164986 0.986296i \(-0.447242\pi\)
0.164986 + 0.986296i \(0.447242\pi\)
\(458\) −6.43845 11.1517i −0.300849 0.521086i
\(459\) 0 0
\(460\) 2.34233 4.05703i 0.109212 0.189160i
\(461\) −19.4924 33.7619i −0.907853 1.57245i −0.817042 0.576579i \(-0.804387\pi\)
−0.0908110 0.995868i \(-0.528946\pi\)
\(462\) 0 0
\(463\) −19.5616 −0.909102 −0.454551 0.890721i \(-0.650200\pi\)
−0.454551 + 0.890721i \(0.650200\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) 1.15767 2.00514i 0.0536281 0.0928865i
\(467\) −16.5616 −0.766377 −0.383189 0.923670i \(-0.625174\pi\)
−0.383189 + 0.923670i \(0.625174\pi\)
\(468\) 0 0
\(469\) −2.06913 + 3.58384i −0.0955436 + 0.165486i
\(470\) −1.43845 2.49146i −0.0663506 0.114923i
\(471\) 0 0
\(472\) 7.28078 + 12.6107i 0.335125 + 0.580453i
\(473\) 1.56155 + 2.70469i 0.0718003 + 0.124362i
\(474\) 0 0
\(475\) −1.84233 3.95042i −0.0845319 0.181258i
\(476\) −2.24621 −0.102955
\(477\) 0 0
\(478\) 9.12311 + 15.8017i 0.417281 + 0.722752i
\(479\) 14.6847 25.4346i 0.670959 1.16214i −0.306673 0.951815i \(-0.599216\pi\)
0.977632 0.210321i \(-0.0674508\pi\)
\(480\) 0 0
\(481\) −4.68466 + 8.11407i −0.213602 + 0.369970i
\(482\) −8.56155 −0.389968
\(483\) 0 0
\(484\) 5.00000 8.66025i 0.227273 0.393648i
\(485\) 0.842329 1.45896i 0.0382482 0.0662478i
\(486\) 0 0
\(487\) −6.93087 −0.314068 −0.157034 0.987593i \(-0.550193\pi\)
−0.157034 + 0.987593i \(0.550193\pi\)
\(488\) −2.56155 + 4.43674i −0.115956 + 0.200842i
\(489\) 0 0
\(490\) −3.40388 + 5.89570i −0.153772 + 0.266340i
\(491\) −4.58854 7.94759i −0.207078 0.358670i 0.743715 0.668497i \(-0.233062\pi\)
−0.950793 + 0.309827i \(0.899729\pi\)
\(492\) 0 0
\(493\) 10.2462 0.461466
\(494\) 5.00000 7.14143i 0.224961 0.321308i
\(495\) 0 0
\(496\) −5.12311 8.87348i −0.230034 0.398431i
\(497\) 3.56155 + 6.16879i 0.159757 + 0.276708i
\(498\) 0 0
\(499\) −14.5000 25.1147i −0.649109 1.12429i −0.983336 0.181797i \(-0.941809\pi\)
0.334227 0.942493i \(-0.391525\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) 0 0
\(502\) −25.9309 −1.15735
\(503\) 13.7116 23.7493i 0.611372 1.05893i −0.379637 0.925135i \(-0.623951\pi\)
0.991009 0.133792i \(-0.0427154\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) −4.68466 −0.208258
\(507\) 0 0
\(508\) 7.78078 + 13.4767i 0.345216 + 0.597932i
\(509\) −0.438447 + 0.759413i −0.0194338 + 0.0336604i −0.875579 0.483075i \(-0.839520\pi\)
0.856145 + 0.516736i \(0.172853\pi\)
\(510\) 0 0
\(511\) 0.369317 + 0.639676i 0.0163376 + 0.0282976i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −13.0540 −0.575786
\(515\) −2.90388 5.02967i −0.127960 0.221634i
\(516\) 0 0
\(517\) −1.43845 + 2.49146i −0.0632628 + 0.109574i
\(518\) 1.02699 + 1.77879i 0.0451232 + 0.0781558i
\(519\) 0 0
\(520\) 2.00000 0.0877058
\(521\) 22.8078 0.999226 0.499613 0.866249i \(-0.333476\pi\)
0.499613 + 0.866249i \(0.333476\pi\)
\(522\) 0 0
\(523\) −7.31534 + 12.6705i −0.319878 + 0.554044i −0.980462 0.196707i \(-0.936975\pi\)
0.660585 + 0.750752i \(0.270308\pi\)
\(524\) 16.1231 0.704341
\(525\) 0 0
\(526\) −1.09612 + 1.89853i −0.0477930 + 0.0827799i
\(527\) 26.2462 + 45.4598i 1.14330 + 1.98026i
\(528\) 0 0
\(529\) 0.526988 + 0.912769i 0.0229125 + 0.0396856i
\(530\) 3.78078 + 6.54850i 0.164226 + 0.284449i
\(531\) 0 0
\(532\) −0.807764 1.73205i −0.0350210 0.0750939i
\(533\) −12.2462 −0.530442
\(534\) 0 0
\(535\) −1.12311 1.94528i −0.0485561 0.0841016i
\(536\) −4.71922 + 8.17394i −0.203839 + 0.353060i
\(537\) 0 0
\(538\) 2.00000 3.46410i 0.0862261 0.149348i
\(539\) 6.80776 0.293231
\(540\) 0 0
\(541\) 14.2462 24.6752i 0.612492 1.06087i −0.378326 0.925672i \(-0.623500\pi\)
0.990819 0.135196i \(-0.0431664\pi\)
\(542\) 4.12311 7.14143i 0.177103 0.306751i
\(543\) 0 0
\(544\) −5.12311 −0.219651
\(545\) −7.12311 + 12.3376i −0.305120 + 0.528484i
\(546\) 0 0
\(547\) 2.43845 4.22351i 0.104260 0.180584i −0.809175 0.587567i \(-0.800086\pi\)
0.913436 + 0.406983i \(0.133419\pi\)
\(548\) −2.71922 4.70983i −0.116159 0.201194i
\(549\) 0 0
\(550\) −1.00000 −0.0426401
\(551\) 3.68466 + 7.90084i 0.156972 + 0.336587i
\(552\) 0 0
\(553\) 2.43845 + 4.22351i 0.103693 + 0.179602i
\(554\) −2.12311 3.67733i −0.0902021 0.156235i
\(555\) 0 0
\(556\) −4.40388 7.62775i −0.186766 0.323489i
\(557\) 20.8348 36.0868i 0.882797 1.52905i 0.0345785 0.999402i \(-0.488991\pi\)
0.848218 0.529647i \(-0.177676\pi\)
\(558\) 0 0
\(559\) −6.24621 −0.264187
\(560\) 0.219224 0.379706i 0.00926389 0.0160455i
\(561\) 0 0
\(562\) −8.36932 −0.353038
\(563\) −21.3002 −0.897696 −0.448848 0.893608i \(-0.648166\pi\)
−0.448848 + 0.893608i \(0.648166\pi\)
\(564\) 0 0
\(565\) 8.40388 + 14.5560i 0.353554 + 0.612373i
\(566\) 9.71922 16.8342i 0.408529 0.707594i
\(567\) 0 0
\(568\) 8.12311 + 14.0696i 0.340838 + 0.590349i
\(569\) 11.1771 0.468568 0.234284 0.972168i \(-0.424726\pi\)
0.234284 + 0.972168i \(0.424726\pi\)
\(570\) 0 0
\(571\) −4.80776 −0.201199 −0.100599 0.994927i \(-0.532076\pi\)
−0.100599 + 0.994927i \(0.532076\pi\)
\(572\) −1.00000 1.73205i −0.0418121 0.0724207i
\(573\) 0 0
\(574\) −1.34233 + 2.32498i −0.0560277 + 0.0970429i
\(575\) −2.34233 4.05703i −0.0976819 0.169190i
\(576\) 0 0
\(577\) −16.3153 −0.679217 −0.339608 0.940567i \(-0.610295\pi\)
−0.339608 + 0.940567i \(0.610295\pi\)
\(578\) 9.24621 0.384592
\(579\) 0 0
\(580\) −1.00000 + 1.73205i −0.0415227 + 0.0719195i
\(581\) 4.73863 0.196592
\(582\) 0 0
\(583\) 3.78078 6.54850i 0.156584 0.271211i
\(584\) 0.842329 + 1.45896i 0.0348558 + 0.0603721i
\(585\) 0 0
\(586\) 11.7808 + 20.4049i 0.486659 + 0.842919i
\(587\) 13.3693 + 23.1563i 0.551811 + 0.955764i 0.998144 + 0.0608975i \(0.0193963\pi\)
−0.446333 + 0.894867i \(0.647270\pi\)
\(588\) 0 0
\(589\) −25.6155 + 36.5863i −1.05547 + 1.50751i
\(590\) 14.5616 0.599490
\(591\) 0 0
\(592\) 2.34233 + 4.05703i 0.0962691 + 0.166743i
\(593\) 12.7732 22.1238i 0.524532 0.908517i −0.475060 0.879954i \(-0.657573\pi\)
0.999592 0.0285632i \(-0.00909317\pi\)
\(594\) 0 0
\(595\) −1.12311 + 1.94528i −0.0460428 + 0.0797485i
\(596\) −16.0000 −0.655386
\(597\) 0 0
\(598\) 4.68466 8.11407i 0.191570 0.331809i
\(599\) −16.2462 + 28.1393i −0.663802 + 1.14974i 0.315806 + 0.948824i \(0.397725\pi\)
−0.979609 + 0.200915i \(0.935608\pi\)
\(600\) 0 0
\(601\) −11.6307 −0.474425 −0.237213 0.971458i \(-0.576234\pi\)
−0.237213 + 0.971458i \(0.576234\pi\)
\(602\) −0.684658 + 1.18586i −0.0279046 + 0.0483322i
\(603\) 0 0
\(604\) −10.2462 + 17.7470i −0.416912 + 0.722113i
\(605\) −5.00000 8.66025i −0.203279 0.352089i
\(606\) 0 0
\(607\) 10.1922 0.413690 0.206845 0.978374i \(-0.433680\pi\)
0.206845 + 0.978374i \(0.433680\pi\)
\(608\) −1.84233 3.95042i −0.0747163 0.160211i
\(609\) 0 0
\(610\) 2.56155 + 4.43674i 0.103714 + 0.179638i
\(611\) −2.87689 4.98293i −0.116387 0.201588i
\(612\) 0 0
\(613\) −15.3423 26.5737i −0.619671 1.07330i −0.989546 0.144220i \(-0.953933\pi\)
0.369875 0.929082i \(-0.379401\pi\)
\(614\) 11.9654 20.7247i 0.482886 0.836382i
\(615\) 0 0
\(616\) −0.438447 −0.0176655
\(617\) 3.59612 6.22866i 0.144774 0.250756i −0.784514 0.620111i \(-0.787088\pi\)
0.929289 + 0.369354i \(0.120421\pi\)
\(618\) 0 0
\(619\) 26.0540 1.04720 0.523599 0.851965i \(-0.324589\pi\)
0.523599 + 0.851965i \(0.324589\pi\)
\(620\) −10.2462 −0.411498
\(621\) 0 0
\(622\) 2.00000 + 3.46410i 0.0801927 + 0.138898i
\(623\) −0.588540 + 1.01938i −0.0235794 + 0.0408407i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 4.31534 0.172476
\(627\) 0 0
\(628\) 2.43845 0.0973046
\(629\) −12.0000 20.7846i −0.478471 0.828737i
\(630\) 0 0
\(631\) −2.12311 + 3.67733i −0.0845195 + 0.146392i −0.905186 0.425015i \(-0.860269\pi\)
0.820667 + 0.571407i \(0.193602\pi\)
\(632\) 5.56155 + 9.63289i 0.221227 + 0.383176i
\(633\) 0 0
\(634\) −18.6847 −0.742063
\(635\) 15.5616 0.617541
\(636\) 0 0
\(637\) −6.80776 + 11.7914i −0.269733 + 0.467192i
\(638\) 2.00000 0.0791808
\(639\) 0 0
\(640\) 0.500000 0.866025i 0.0197642 0.0342327i
\(641\) 3.71922 + 6.44188i 0.146900 + 0.254439i 0.930080 0.367356i \(-0.119737\pi\)
−0.783180 + 0.621795i \(0.786404\pi\)
\(642\) 0 0
\(643\) 11.2808 + 19.5389i 0.444870 + 0.770538i 0.998043 0.0625284i \(-0.0199164\pi\)
−0.553173 + 0.833067i \(0.686583\pi\)
\(644\) −1.02699 1.77879i −0.0404690 0.0700943i
\(645\) 0 0
\(646\) 9.43845 + 20.2384i 0.371351 + 0.796270i
\(647\) −3.17708 −0.124904 −0.0624520 0.998048i \(-0.519892\pi\)
−0.0624520 + 0.998048i \(0.519892\pi\)
\(648\) 0 0
\(649\) −7.28078 12.6107i −0.285795 0.495012i
\(650\) 1.00000 1.73205i 0.0392232 0.0679366i
\(651\) 0 0
\(652\) −8.52699 + 14.7692i −0.333943 + 0.578406i
\(653\) 5.06913 0.198370 0.0991852 0.995069i \(-0.468376\pi\)
0.0991852 + 0.995069i \(0.468376\pi\)
\(654\) 0 0
\(655\) 8.06155 13.9630i 0.314991 0.545580i
\(656\) −3.06155 + 5.30277i −0.119534 + 0.207038i
\(657\) 0 0
\(658\) −1.26137 −0.0491732
\(659\) 9.46543 16.3946i 0.368721 0.638643i −0.620645 0.784092i \(-0.713129\pi\)
0.989366 + 0.145448i \(0.0464624\pi\)
\(660\) 0 0
\(661\) 19.9309 34.5213i 0.775221 1.34272i −0.159449 0.987206i \(-0.550972\pi\)
0.934670 0.355516i \(-0.115695\pi\)
\(662\) −11.7462 20.3450i −0.456529 0.790732i
\(663\) 0 0
\(664\) 10.8078 0.419423
\(665\) −1.90388 0.166481i −0.0738294 0.00645586i
\(666\) 0 0
\(667\) 4.68466 + 8.11407i 0.181391 + 0.314178i
\(668\) 0.342329 + 0.592932i 0.0132451 + 0.0229412i
\(669\) 0 0
\(670\) 4.71922 + 8.17394i 0.182320 + 0.315787i
\(671\) 2.56155 4.43674i 0.0988876 0.171278i
\(672\) 0 0
\(673\) 46.1080 1.77733 0.888665 0.458556i \(-0.151633\pi\)
0.888665 + 0.458556i \(0.151633\pi\)
\(674\) −10.5270 + 18.2333i −0.405484 + 0.702320i
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 23.1771 0.890768 0.445384 0.895340i \(-0.353067\pi\)
0.445384 + 0.895340i \(0.353067\pi\)
\(678\) 0 0
\(679\) −0.369317 0.639676i −0.0141731 0.0245485i
\(680\) −2.56155 + 4.43674i −0.0982311 + 0.170141i
\(681\) 0 0
\(682\) 5.12311 + 8.87348i 0.196174 + 0.339783i
\(683\) −28.0000 −1.07139 −0.535695 0.844411i \(-0.679950\pi\)
−0.535695 + 0.844411i \(0.679950\pi\)
\(684\) 0 0
\(685\) −5.43845 −0.207792
\(686\) 3.02699 + 5.24290i 0.115571 + 0.200175i
\(687\) 0 0
\(688\) −1.56155 + 2.70469i −0.0595336 + 0.103115i
\(689\) 7.56155 + 13.0970i 0.288072 + 0.498956i
\(690\) 0 0
\(691\) −21.0691 −0.801507 −0.400754 0.916186i \(-0.631252\pi\)
−0.400754 + 0.916186i \(0.631252\pi\)
\(692\) 5.80776 0.220778
\(693\) 0 0
\(694\) 0.842329 1.45896i 0.0319744 0.0553813i
\(695\) −8.80776 −0.334098
\(696\) 0 0
\(697\) 15.6847 27.1666i 0.594099 1.02901i
\(698\) 7.12311 + 12.3376i 0.269614 + 0.466984i
\(699\) 0 0
\(700\) −0.219224 0.379706i −0.00828587 0.0143516i
\(701\) 3.24621 + 5.62260i 0.122608 + 0.212363i 0.920795 0.390046i \(-0.127541\pi\)
−0.798188 + 0.602409i \(0.794208\pi\)
\(702\) 0 0
\(703\) 11.7116 16.7276i 0.441713 0.630892i
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) 12.0885 + 20.9380i 0.454958 + 0.788011i
\(707\) 2.19224 3.79706i 0.0824475 0.142803i
\(708\) 0 0
\(709\) 20.0000 34.6410i 0.751116 1.30097i −0.196167 0.980571i \(-0.562849\pi\)
0.947282 0.320400i \(-0.103817\pi\)
\(710\) 16.2462 0.609709
\(711\) 0 0
\(712\) −1.34233 + 2.32498i −0.0503059 + 0.0871324i
\(713\) −24.0000 + 41.5692i −0.898807 + 1.55678i
\(714\) 0 0
\(715\) −2.00000 −0.0747958
\(716\) 5.74621 9.95273i 0.214746 0.371951i
\(717\) 0 0
\(718\) 7.56155 13.0970i 0.282195 0.488775i
\(719\) 7.43845 + 12.8838i 0.277407 + 0.480483i 0.970740 0.240134i \(-0.0771915\pi\)
−0.693332 + 0.720618i \(0.743858\pi\)
\(720\) 0 0
\(721\) −2.54640 −0.0948328
\(722\) −12.2116 + 14.5560i −0.454470 + 0.541716i
\(723\) 0 0
\(724\) −10.6847 18.5064i −0.397092 0.687784i
\(725\) 1.00000 + 1.73205i 0.0371391 + 0.0643268i
\(726\) 0 0
\(727\) 4.00000 + 6.92820i 0.148352 + 0.256953i 0.930618 0.365991i \(-0.119270\pi\)
−0.782267 + 0.622944i \(0.785937\pi\)
\(728\) 0.438447 0.759413i 0.0162499 0.0281457i
\(729\) 0 0
\(730\) 1.68466 0.0623520
\(731\) 8.00000 13.8564i 0.295891 0.512498i
\(732\) 0 0
\(733\) −26.9309 −0.994714 −0.497357 0.867546i \(-0.665696\pi\)
−0.497357 + 0.867546i \(0.665696\pi\)
\(734\) −17.7538 −0.655304
\(735\) 0 0
\(736\) −2.34233 4.05703i −0.0863394 0.149544i
\(737\) 4.71922 8.17394i 0.173835 0.301091i
\(738\) 0 0
\(739\) −9.37689 16.2413i −0.344935 0.597444i 0.640407 0.768036i \(-0.278766\pi\)
−0.985342 + 0.170591i \(0.945432\pi\)
\(740\) 4.68466 0.172211
\(741\) 0 0
\(742\) 3.31534 0.121710
\(743\) −9.21922 15.9682i −0.338221 0.585815i 0.645878 0.763441i \(-0.276492\pi\)
−0.984098 + 0.177626i \(0.943158\pi\)
\(744\) 0 0
\(745\) −8.00000 + 13.8564i −0.293097 + 0.507659i
\(746\) 17.9039 + 31.0104i 0.655508 + 1.13537i
\(747\) 0 0
\(748\) 5.12311 0.187319
\(749\) −0.984845 −0.0359855
\(750\) 0 0
\(751\) 17.4384 30.2043i 0.636338 1.10217i −0.349892 0.936790i \(-0.613782\pi\)
0.986230 0.165380i \(-0.0528849\pi\)
\(752\) −2.87689 −0.104910
\(753\) 0 0
\(754\) −2.00000 + 3.46410i −0.0728357 + 0.126155i
\(755\) 10.2462 + 17.7470i 0.372898 + 0.645878i
\(756\) 0 0
\(757\) 9.78078 + 16.9408i 0.355488 + 0.615724i 0.987201 0.159478i \(-0.0509812\pi\)
−0.631713 + 0.775202i \(0.717648\pi\)
\(758\) 0.246211 + 0.426450i 0.00894280 + 0.0154894i
\(759\) 0 0
\(760\) −4.34233 0.379706i −0.157513 0.0137734i
\(761\) 51.9848 1.88445 0.942225 0.334982i \(-0.108730\pi\)
0.942225 + 0.334982i \(0.108730\pi\)
\(762\) 0 0
\(763\) 3.12311 + 5.40938i 0.113064 + 0.195833i
\(764\) −2.68466 + 4.64996i −0.0971275 + 0.168230i
\(765\) 0 0
\(766\) 2.56155 4.43674i 0.0925527 0.160306i
\(767\) 29.1231 1.05157
\(768\) 0 0
\(769\) −13.2462 + 22.9431i −0.477671 + 0.827350i −0.999672 0.0255946i \(-0.991852\pi\)
0.522002 + 0.852944i \(0.325185\pi\)
\(770\) −0.219224 + 0.379706i −0.00790027 + 0.0136837i
\(771\) 0 0
\(772\) 25.6155 0.921923
\(773\) −7.15009 + 12.3843i −0.257171 + 0.445433i −0.965483 0.260466i \(-0.916124\pi\)
0.708312 + 0.705900i \(0.249457\pi\)
\(774\) 0 0
\(775\) −5.12311 + 8.87348i −0.184027 + 0.318745i
\(776\) −0.842329 1.45896i −0.0302379 0.0523735i
\(777\) 0 0
\(778\) 19.1231 0.685597
\(779\) 26.5885 + 2.32498i 0.952633 + 0.0833011i
\(780\) 0 0
\(781\) −8.12311 14.0696i −0.290668 0.503451i
\(782\) 12.0000 + 20.7846i 0.429119 + 0.743256i
\(783\) 0 0
\(784\) 3.40388 + 5.89570i 0.121567 + 0.210561i
\(785\) 1.21922 2.11176i 0.0435160 0.0753718i
\(786\) 0 0
\(787\) 8.56155 0.305186 0.152593 0.988289i \(-0.451238\pi\)
0.152593 + 0.988289i \(0.451238\pi\)
\(788\) 7.21922 12.5041i 0.257174 0.445439i
\(789\) 0 0
\(790\) 11.1231 0.395742
\(791\) 7.36932 0.262023
\(792\) 0 0
\(793\) 5.12311 + 8.87348i 0.181927 + 0.315106i
\(794\) −14.1501 + 24.5087i −0.502168 + 0.869781i
\(795\) 0 0
\(796\) 1.43845 + 2.49146i 0.0509844 + 0.0883076i
\(797\) 4.19224 0.148497 0.0742483 0.997240i \(-0.476344\pi\)
0.0742483 + 0.997240i \(0.476344\pi\)
\(798\) 0 0
\(799\) 14.7386 0.521415
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) 0 0
\(802\) 13.9654 24.1888i 0.493137 0.854138i
\(803\) −0.842329 1.45896i −0.0297252 0.0514855i
\(804\) 0 0
\(805\) −2.05398 −0.0723931
\(806\) −20.4924 −0.721815
\(807\) 0 0
\(808\) 5.00000 8.66025i 0.175899 0.304667i
\(809\) −23.4384 −0.824052 −0.412026 0.911172i \(-0.635179\pi\)
−0.412026 + 0.911172i \(0.635179\pi\)
\(810\) 0 0
\(811\) 4.58854 7.94759i 0.161125 0.279077i −0.774147 0.633006i \(-0.781821\pi\)
0.935273 + 0.353928i \(0.115154\pi\)
\(812\) 0.438447 + 0.759413i 0.0153865 + 0.0266502i
\(813\) 0 0
\(814\) −2.34233 4.05703i −0.0820986 0.142199i
\(815\) 8.52699 + 14.7692i 0.298687 + 0.517342i
\(816\) 0 0
\(817\) 13.5616 + 1.18586i 0.474459 + 0.0414881i
\(818\) 21.0000 0.734248
\(819\) 0 0
\(820\) 3.06155 + 5.30277i 0.106914 + 0.185181i
\(821\) −7.00000 + 12.1244i −0.244302 + 0.423143i −0.961935 0.273278i \(-0.911892\pi\)
0.717633 + 0.696421i \(0.245225\pi\)
\(822\) 0 0
\(823\) 13.5885 23.5360i 0.473667 0.820415i −0.525879 0.850560i \(-0.676263\pi\)
0.999546 + 0.0301446i \(0.00959679\pi\)
\(824\) −5.80776 −0.202323
\(825\) 0 0
\(826\) 3.19224 5.52911i 0.111072 0.192383i
\(827\) −15.9654 + 27.6529i −0.555173 + 0.961587i 0.442718 + 0.896661i \(0.354014\pi\)
−0.997890 + 0.0649260i \(0.979319\pi\)
\(828\) 0 0
\(829\) 26.7386 0.928671 0.464336 0.885659i \(-0.346293\pi\)
0.464336 + 0.885659i \(0.346293\pi\)
\(830\) 5.40388 9.35980i 0.187571 0.324883i
\(831\) 0 0
\(832\) 1.00000 1.73205i 0.0346688 0.0600481i
\(833\) −17.4384 30.2043i −0.604206 1.04652i
\(834\) 0 0
\(835\) 0.684658 0.0236936
\(836\) 1.84233 + 3.95042i 0.0637183 + 0.136628i
\(837\) 0 0
\(838\) −8.78078 15.2088i −0.303327 0.525378i
\(839\) 1.24621 + 2.15850i 0.0430240 + 0.0745197i 0.886735 0.462277i \(-0.152967\pi\)
−0.843712 + 0.536797i \(0.819634\pi\)
\(840\) 0 0
\(841\) 12.5000 + 21.6506i 0.431034 + 0.746574i
\(842\) −16.2462 + 28.1393i −0.559881 + 0.969743i
\(843\) 0 0
\(844\) −3.31534 −0.114119
\(845\) −4.50000 + 7.79423i −0.154805 + 0.268130i
\(846\) 0 0
\(847\) −4.38447 −0.150652
\(848\) 7.56155 0.259665
\(849\) 0 0
\(850\) 2.56155 + 4.43674i 0.0878605 + 0.152179i
\(851\) 10.9730 19.0058i 0.376150 0.651511i
\(852\) 0 0
\(853\) −0.369317 0.639676i −0.0126452 0.0219021i 0.859634 0.510911i \(-0.170692\pi\)
−0.872279 + 0.489009i \(0.837359\pi\)
\(854\) 2.24621 0.0768638
\(855\) 0 0
\(856\) −2.24621 −0.0767739
\(857\) 14.8963 + 25.8012i 0.508848 + 0.881351i 0.999947 + 0.0102472i \(0.00326184\pi\)
−0.491099 + 0.871104i \(0.663405\pi\)
\(858\) 0 0
\(859\) −23.7462 + 41.1296i −0.810210 + 1.40333i 0.102506 + 0.994732i \(0.467314\pi\)
−0.912717 + 0.408593i \(0.866020\pi\)
\(860\) 1.56155 + 2.70469i 0.0532485 + 0.0922291i
\(861\) 0 0
\(862\) 7.36932 0.251000
\(863\) −52.3002 −1.78032 −0.890160 0.455649i \(-0.849407\pi\)
−0.890160 + 0.455649i \(0.849407\pi\)
\(864\) 0 0
\(865\) 2.90388 5.02967i 0.0987350 0.171014i
\(866\) −36.7386 −1.24843
\(867\) 0 0
\(868\) −2.24621 + 3.89055i −0.0762414 + 0.132054i
\(869\) −5.56155 9.63289i −0.188663 0.326773i
\(870\) 0 0
\(871\) 9.43845 + 16.3479i 0.319810 + 0.553926i
\(872\) 7.12311 + 12.3376i 0.241219 + 0.417803i
\(873\) 0 0
\(874\) −11.7116 + 16.7276i −0.396152 + 0.565819i
\(875\) −0.438447 −0.0148222
\(876\) 0 0
\(877\) −8.90388 15.4220i −0.300663 0.520763i 0.675623 0.737247i \(-0.263875\pi\)
−0.976286 + 0.216484i \(0.930541\pi\)
\(878\) 8.24621 14.2829i 0.278296 0.482023i
\(879\) 0 0
\(880\) −0.500000 + 0.866025i −0.0168550 + 0.0291937i
\(881\) 24.1231 0.812728 0.406364 0.913711i \(-0.366796\pi\)
0.406364 + 0.913711i \(0.366796\pi\)
\(882\) 0 0
\(883\) 4.40388 7.62775i 0.148202 0.256694i −0.782361 0.622826i \(-0.785985\pi\)
0.930563 + 0.366131i \(0.119318\pi\)
\(884\) −5.12311 + 8.87348i −0.172309 + 0.298447i
\(885\) 0 0
\(886\) −33.9309 −1.13993
\(887\) −13.1231 + 22.7299i −0.440631 + 0.763195i −0.997736 0.0672468i \(-0.978579\pi\)
0.557106 + 0.830442i \(0.311912\pi\)
\(888\) 0 0
\(889\) 3.41146 5.90882i 0.114417 0.198176i
\(890\) 1.34233 + 2.32498i 0.0449950 + 0.0779336i
\(891\) 0 0
\(892\) 11.3153 0.378866
\(893\) 5.30019 + 11.3649i 0.177364 + 0.380313i
\(894\) 0 0
\(895\) −5.74621 9.95273i −0.192075 0.332683i
\(896\) −0.219224 0.379706i −0.00732375 0.0126851i
\(897\) 0 0
\(898\) 14.5000 + 25.1147i 0.483871 + 0.838090i
\(899\) 10.2462 17.7470i 0.341730 0.591894i
\(900\) 0 0
\(901\) −38.7386 −1.29057
\(902\) 3.06155 5.30277i 0.101939 0.176563i
\(903\) 0 0
\(904\) 16.8078 0.559018
\(905\) −21.3693 −0.710340
\(906\) 0 0
\(907\) 25.0885 + 43.4546i 0.833051 + 1.44289i 0.895607 + 0.444846i \(0.146741\pi\)
−0.0625559 + 0.998041i \(0.519925\pi\)
\(908\) 9.96543 17.2606i 0.330715 0.572814i
\(909\) 0 0
\(910\) −0.438447 0.759413i −0.0145344 0.0251743i
\(911\) −12.3845 −0.410316 −0.205158 0.978729i \(-0.565771\pi\)
−0.205158 + 0.978729i \(0.565771\pi\)
\(912\) 0 0
\(913\) −10.8078 −0.357685
\(914\) −3.52699 6.10892i −0.116662 0.202065i
\(915\) 0 0
\(916\) −6.43845 + 11.1517i −0.212732 + 0.368463i
\(917\) −3.53457 6.12205i −0.116722 0.202168i
\(918\) 0 0
\(919\) 20.2462 0.667861 0.333930 0.942598i \(-0.391625\pi\)
0.333930 + 0.942598i \(0.391625\pi\)
\(920\) −4.68466 −0.154449
\(921\) 0 0
\(922\) −19.4924 + 33.7619i −0.641949 + 1.11189i
\(923\) 32.4924 1.06950
\(924\) 0 0
\(925\) 2.34233 4.05703i 0.0770153 0.133394i
\(926\) 9.78078 + 16.9408i 0.321416 + 0.556709i
\(927\) 0 0
\(928\) 1.00000 + 1.73205i 0.0328266 + 0.0568574i
\(929\) −17.9924 31.1638i −0.590312 1.02245i −0.994190 0.107638i \(-0.965671\pi\)
0.403878 0.914813i \(-0.367662\pi\)
\(930\) 0 0
\(931\) 17.0194 24.3086i 0.557789 0.796682i
\(932\) −2.31534 −0.0758415
\(933\) 0 0
\(934\) 8.28078 + 14.3427i 0.270955 + 0.469308i
\(935\) 2.56155 4.43674i 0.0837717 0.145097i
\(936\) 0 0
\(937\) 25.0885 43.4546i 0.819607 1.41960i −0.0863653 0.996264i \(-0.527525\pi\)
0.905972 0.423337i \(-0.139141\pi\)
\(938\) 4.13826 0.135119
\(939\) 0 0
\(940\) −1.43845 + 2.49146i −0.0469170 + 0.0812626i
\(941\) −8.12311 + 14.0696i −0.264806 + 0.458657i −0.967513 0.252822i \(-0.918641\pi\)
0.702707 + 0.711479i \(0.251974\pi\)
\(942\) 0 0
\(943\) 28.6847 0.934101
\(944\) 7.28078 12.6107i 0.236969 0.410442i
\(945\) 0 0
\(946\) 1.56155 2.70469i 0.0507705 0.0879370i
\(947\) 28.2462 + 48.9239i 0.917879 + 1.58981i 0.802631 + 0.596475i \(0.203433\pi\)
0.115247 + 0.993337i \(0.463234\pi\)
\(948\) 0 0
\(949\) 3.36932 0.109373
\(950\) −2.50000 + 3.57071i −0.0811107 + 0.115849i
\(951\) 0 0
\(952\) 1.12311 + 1.94528i 0.0364001 + 0.0630468i
\(953\) −7.84233 13.5833i −0.254038 0.440007i 0.710596 0.703600i \(-0.248425\pi\)
−0.964634 + 0.263594i \(0.915092\pi\)
\(954\) 0 0
\(955\) 2.68466 + 4.64996i 0.0868735 + 0.150469i
\(956\) 9.12311 15.8017i 0.295062 0.511063i
\(957\) 0 0
\(958\) −29.3693 −0.948880
\(959\) −1.19224 + 2.06501i −0.0384993 + 0.0666828i
\(960\) 0 0
\(961\) 73.9848 2.38661
\(962\) 9.36932 0.302079
\(963\) 0 0
\(964\) 4.28078 + 7.41452i 0.137875 + 0.238806i
\(965\) 12.8078 22.1837i 0.412297 0.714119i
\(966\) 0 0
\(967\) −14.5616 25.2213i −0.468268 0.811064i 0.531074 0.847325i \(-0.321788\pi\)
−0.999342 + 0.0362613i \(0.988455\pi\)
\(968\) −10.0000 −0.321412
\(969\) 0 0
\(970\) −1.68466 −0.0540911
\(971\) 8.96543 + 15.5286i 0.287714 + 0.498336i 0.973264 0.229690i \(-0.0737712\pi\)
−0.685549 + 0.728026i \(0.740438\pi\)
\(972\) 0 0
\(973\) −1.93087 + 3.34436i −0.0619008 + 0.107215i
\(974\) 3.46543 + 6.00231i 0.111040 + 0.192326i
\(975\) 0 0
\(976\) 5.12311 0.163987
\(977\) 30.3153 0.969874 0.484937 0.874549i \(-0.338843\pi\)
0.484937 + 0.874549i \(0.338843\pi\)
\(978\) 0 0
\(979\) 1.34233 2.32498i 0.0429010 0.0743068i
\(980\) 6.80776 0.217466
\(981\) 0 0
\(982\) −4.58854 + 7.94759i −0.146426 + 0.253618i
\(983\) 20.7808 + 35.9934i 0.662804 + 1.14801i 0.979876 + 0.199608i \(0.0639670\pi\)
−0.317072 + 0.948401i \(0.602700\pi\)
\(984\) 0 0
\(985\) −7.21922 12.5041i −0.230024 0.398413i
\(986\) −5.12311 8.87348i −0.163153 0.282589i
\(987\) 0 0
\(988\) −8.68466 0.759413i −0.276296 0.0241601i
\(989\) 14.6307 0.465229
\(990\) 0 0
\(991\) 4.19224 + 7.26117i 0.133171 + 0.230659i 0.924897 0.380217i \(-0.124151\pi\)
−0.791726 + 0.610876i \(0.790817\pi\)
\(992\) −5.12311 + 8.87348i −0.162659 + 0.281733i
\(993\) 0 0
\(994\) 3.56155 6.16879i 0.112966 0.195662i
\(995\) 2.87689 0.0912037
\(996\) 0 0
\(997\) 1.34233 2.32498i 0.0425120 0.0736329i −0.843986 0.536364i \(-0.819797\pi\)
0.886498 + 0.462732i \(0.153131\pi\)
\(998\) −14.5000 + 25.1147i −0.458989 + 0.794993i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.l.m.1261.1 4
3.2 odd 2 190.2.e.c.121.2 yes 4
12.11 even 2 1520.2.q.h.881.1 4
15.2 even 4 950.2.j.f.349.2 8
15.8 even 4 950.2.j.f.349.3 8
15.14 odd 2 950.2.e.h.501.1 4
19.11 even 3 inner 1710.2.l.m.1531.1 4
57.11 odd 6 190.2.e.c.11.2 4
57.26 odd 6 3610.2.a.k.1.1 2
57.50 even 6 3610.2.a.u.1.2 2
228.11 even 6 1520.2.q.h.961.1 4
285.68 even 12 950.2.j.f.49.2 8
285.182 even 12 950.2.j.f.49.3 8
285.239 odd 6 950.2.e.h.201.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
190.2.e.c.11.2 4 57.11 odd 6
190.2.e.c.121.2 yes 4 3.2 odd 2
950.2.e.h.201.1 4 285.239 odd 6
950.2.e.h.501.1 4 15.14 odd 2
950.2.j.f.49.2 8 285.68 even 12
950.2.j.f.49.3 8 285.182 even 12
950.2.j.f.349.2 8 15.2 even 4
950.2.j.f.349.3 8 15.8 even 4
1520.2.q.h.881.1 4 12.11 even 2
1520.2.q.h.961.1 4 228.11 even 6
1710.2.l.m.1261.1 4 1.1 even 1 trivial
1710.2.l.m.1531.1 4 19.11 even 3 inner
3610.2.a.k.1.1 2 57.26 odd 6
3610.2.a.u.1.2 2 57.50 even 6