Properties

Label 171.10.a.f.1.8
Level $171$
Weight $10$
Character 171.1
Self dual yes
Analytic conductor $88.071$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [171,10,Mod(1,171)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("171.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(171, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(88.0711279840\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 3356 x^{6} - 1330 x^{5} + 3186388 x^{4} - 1801192 x^{3} - 758043152 x^{2} + \cdots - 16080668672 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(45.0760\) of defining polynomial
Character \(\chi\) \(=\) 171.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+43.0760 q^{2} +1343.54 q^{4} -1106.01 q^{5} +1237.92 q^{7} +35819.6 q^{8} -47642.6 q^{10} -77454.8 q^{11} -166982. q^{13} +53324.8 q^{14} +855070. q^{16} -202288. q^{17} +130321. q^{19} -1.48598e6 q^{20} -3.33644e6 q^{22} -1.07984e6 q^{23} -729860. q^{25} -7.19293e6 q^{26} +1.66320e6 q^{28} -4.07412e6 q^{29} +5.94389e6 q^{31} +1.84934e7 q^{32} -8.71375e6 q^{34} -1.36916e6 q^{35} +6.26051e6 q^{37} +5.61371e6 q^{38} -3.96169e7 q^{40} +2.45995e7 q^{41} +2.97996e6 q^{43} -1.04064e8 q^{44} -4.65150e7 q^{46} -1.29594e7 q^{47} -3.88212e7 q^{49} -3.14395e7 q^{50} -2.24348e8 q^{52} +2.55151e7 q^{53} +8.56660e7 q^{55} +4.43419e7 q^{56} -1.75497e8 q^{58} -7.81216e7 q^{59} -4.14570e7 q^{61} +2.56039e8 q^{62} +3.58826e8 q^{64} +1.84685e8 q^{65} -6.16078e7 q^{67} -2.71782e8 q^{68} -5.89779e7 q^{70} -1.97167e8 q^{71} -9.45381e7 q^{73} +2.69678e8 q^{74} +1.75092e8 q^{76} -9.58832e7 q^{77} -3.53552e7 q^{79} -9.45718e8 q^{80} +1.05965e9 q^{82} -4.46185e7 q^{83} +2.23733e8 q^{85} +1.28365e8 q^{86} -2.77440e9 q^{88} +3.95259e8 q^{89} -2.06711e8 q^{91} -1.45081e9 q^{92} -5.58238e8 q^{94} -1.44137e8 q^{95} -1.73986e9 q^{97} -1.67226e9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 15 q^{2} + 2645 q^{4} - 3894 q^{5} - 7133 q^{7} - 10911 q^{8} + 113172 q^{10} - 172818 q^{11} + 109291 q^{13} - 250959 q^{14} + 1590377 q^{16} - 583575 q^{17} + 1042568 q^{19} - 3191676 q^{20} + 57234 q^{22}+ \cdots - 4178510532 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 43.0760 1.90371 0.951854 0.306550i \(-0.0991748\pi\)
0.951854 + 0.306550i \(0.0991748\pi\)
\(3\) 0 0
\(4\) 1343.54 2.62411
\(5\) −1106.01 −0.791398 −0.395699 0.918380i \(-0.629498\pi\)
−0.395699 + 0.918380i \(0.629498\pi\)
\(6\) 0 0
\(7\) 1237.92 0.194873 0.0974367 0.995242i \(-0.468936\pi\)
0.0974367 + 0.995242i \(0.468936\pi\)
\(8\) 35819.6 3.09183
\(9\) 0 0
\(10\) −47642.6 −1.50659
\(11\) −77454.8 −1.59508 −0.797538 0.603269i \(-0.793865\pi\)
−0.797538 + 0.603269i \(0.793865\pi\)
\(12\) 0 0
\(13\) −166982. −1.62153 −0.810766 0.585370i \(-0.800949\pi\)
−0.810766 + 0.585370i \(0.800949\pi\)
\(14\) 53324.8 0.370982
\(15\) 0 0
\(16\) 855070. 3.26183
\(17\) −202288. −0.587421 −0.293710 0.955894i \(-0.594890\pi\)
−0.293710 + 0.955894i \(0.594890\pi\)
\(18\) 0 0
\(19\) 130321. 0.229416
\(20\) −1.48598e6 −2.07671
\(21\) 0 0
\(22\) −3.33644e6 −3.03656
\(23\) −1.07984e6 −0.804604 −0.402302 0.915507i \(-0.631790\pi\)
−0.402302 + 0.915507i \(0.631790\pi\)
\(24\) 0 0
\(25\) −729860. −0.373689
\(26\) −7.19293e6 −3.08692
\(27\) 0 0
\(28\) 1.66320e6 0.511369
\(29\) −4.07412e6 −1.06965 −0.534826 0.844962i \(-0.679623\pi\)
−0.534826 + 0.844962i \(0.679623\pi\)
\(30\) 0 0
\(31\) 5.94389e6 1.15596 0.577981 0.816050i \(-0.303841\pi\)
0.577981 + 0.816050i \(0.303841\pi\)
\(32\) 1.84934e7 3.11775
\(33\) 0 0
\(34\) −8.71375e6 −1.11828
\(35\) −1.36916e6 −0.154223
\(36\) 0 0
\(37\) 6.26051e6 0.549163 0.274582 0.961564i \(-0.411461\pi\)
0.274582 + 0.961564i \(0.411461\pi\)
\(38\) 5.61371e6 0.436741
\(39\) 0 0
\(40\) −3.96169e7 −2.44687
\(41\) 2.45995e7 1.35956 0.679780 0.733416i \(-0.262075\pi\)
0.679780 + 0.733416i \(0.262075\pi\)
\(42\) 0 0
\(43\) 2.97996e6 0.132924 0.0664619 0.997789i \(-0.478829\pi\)
0.0664619 + 0.997789i \(0.478829\pi\)
\(44\) −1.04064e8 −4.18565
\(45\) 0 0
\(46\) −4.65150e7 −1.53173
\(47\) −1.29594e7 −0.387386 −0.193693 0.981062i \(-0.562047\pi\)
−0.193693 + 0.981062i \(0.562047\pi\)
\(48\) 0 0
\(49\) −3.88212e7 −0.962024
\(50\) −3.14395e7 −0.711394
\(51\) 0 0
\(52\) −2.24348e8 −4.25507
\(53\) 2.55151e7 0.444177 0.222089 0.975026i \(-0.428713\pi\)
0.222089 + 0.975026i \(0.428713\pi\)
\(54\) 0 0
\(55\) 8.56660e7 1.26234
\(56\) 4.43419e7 0.602515
\(57\) 0 0
\(58\) −1.75497e8 −2.03631
\(59\) −7.81216e7 −0.839338 −0.419669 0.907677i \(-0.637854\pi\)
−0.419669 + 0.907677i \(0.637854\pi\)
\(60\) 0 0
\(61\) −4.14570e7 −0.383366 −0.191683 0.981457i \(-0.561395\pi\)
−0.191683 + 0.981457i \(0.561395\pi\)
\(62\) 2.56039e8 2.20061
\(63\) 0 0
\(64\) 3.58826e8 2.67346
\(65\) 1.84685e8 1.28328
\(66\) 0 0
\(67\) −6.16078e7 −0.373507 −0.186754 0.982407i \(-0.559797\pi\)
−0.186754 + 0.982407i \(0.559797\pi\)
\(68\) −2.71782e8 −1.54146
\(69\) 0 0
\(70\) −5.89779e7 −0.293595
\(71\) −1.97167e8 −0.920815 −0.460407 0.887708i \(-0.652297\pi\)
−0.460407 + 0.887708i \(0.652297\pi\)
\(72\) 0 0
\(73\) −9.45381e7 −0.389632 −0.194816 0.980840i \(-0.562411\pi\)
−0.194816 + 0.980840i \(0.562411\pi\)
\(74\) 2.69678e8 1.04545
\(75\) 0 0
\(76\) 1.75092e8 0.602012
\(77\) −9.58832e7 −0.310838
\(78\) 0 0
\(79\) −3.53552e7 −0.102125 −0.0510625 0.998695i \(-0.516261\pi\)
−0.0510625 + 0.998695i \(0.516261\pi\)
\(80\) −9.45718e8 −2.58141
\(81\) 0 0
\(82\) 1.05965e9 2.58820
\(83\) −4.46185e7 −0.103196 −0.0515981 0.998668i \(-0.516431\pi\)
−0.0515981 + 0.998668i \(0.516431\pi\)
\(84\) 0 0
\(85\) 2.23733e8 0.464884
\(86\) 1.28365e8 0.253048
\(87\) 0 0
\(88\) −2.77440e9 −4.93170
\(89\) 3.95259e8 0.667770 0.333885 0.942614i \(-0.391640\pi\)
0.333885 + 0.942614i \(0.391640\pi\)
\(90\) 0 0
\(91\) −2.06711e8 −0.315994
\(92\) −1.45081e9 −2.11137
\(93\) 0 0
\(94\) −5.58238e8 −0.737470
\(95\) −1.44137e8 −0.181559
\(96\) 0 0
\(97\) −1.73986e9 −1.99546 −0.997728 0.0673747i \(-0.978538\pi\)
−0.997728 + 0.0673747i \(0.978538\pi\)
\(98\) −1.67226e9 −1.83141
\(99\) 0 0
\(100\) −9.80599e8 −0.980599
\(101\) 1.58117e9 1.51194 0.755968 0.654609i \(-0.227167\pi\)
0.755968 + 0.654609i \(0.227167\pi\)
\(102\) 0 0
\(103\) −2.48998e8 −0.217986 −0.108993 0.994043i \(-0.534763\pi\)
−0.108993 + 0.994043i \(0.534763\pi\)
\(104\) −5.98123e9 −5.01350
\(105\) 0 0
\(106\) 1.09909e9 0.845584
\(107\) 1.49426e9 1.10204 0.551022 0.834491i \(-0.314238\pi\)
0.551022 + 0.834491i \(0.314238\pi\)
\(108\) 0 0
\(109\) 1.24254e9 0.843123 0.421562 0.906800i \(-0.361482\pi\)
0.421562 + 0.906800i \(0.361482\pi\)
\(110\) 3.69015e9 2.40313
\(111\) 0 0
\(112\) 1.05851e9 0.635645
\(113\) 1.65242e8 0.0953383 0.0476692 0.998863i \(-0.484821\pi\)
0.0476692 + 0.998863i \(0.484821\pi\)
\(114\) 0 0
\(115\) 1.19431e9 0.636763
\(116\) −5.47375e9 −2.80688
\(117\) 0 0
\(118\) −3.36517e9 −1.59786
\(119\) −2.50417e8 −0.114473
\(120\) 0 0
\(121\) 3.64130e9 1.54427
\(122\) −1.78580e9 −0.729818
\(123\) 0 0
\(124\) 7.98588e9 3.03337
\(125\) 2.96742e9 1.08713
\(126\) 0 0
\(127\) −2.09297e9 −0.713916 −0.356958 0.934121i \(-0.616186\pi\)
−0.356958 + 0.934121i \(0.616186\pi\)
\(128\) 5.98816e9 1.97174
\(129\) 0 0
\(130\) 7.95548e9 2.44299
\(131\) 1.95319e9 0.579459 0.289730 0.957109i \(-0.406435\pi\)
0.289730 + 0.957109i \(0.406435\pi\)
\(132\) 0 0
\(133\) 1.61327e8 0.0447070
\(134\) −2.65382e9 −0.711049
\(135\) 0 0
\(136\) −7.24586e9 −1.81620
\(137\) 9.41931e8 0.228442 0.114221 0.993455i \(-0.463563\pi\)
0.114221 + 0.993455i \(0.463563\pi\)
\(138\) 0 0
\(139\) −5.29062e9 −1.20210 −0.601049 0.799212i \(-0.705250\pi\)
−0.601049 + 0.799212i \(0.705250\pi\)
\(140\) −1.83953e9 −0.404697
\(141\) 0 0
\(142\) −8.49318e9 −1.75296
\(143\) 1.29336e10 2.58647
\(144\) 0 0
\(145\) 4.50602e9 0.846521
\(146\) −4.07233e9 −0.741745
\(147\) 0 0
\(148\) 8.41126e9 1.44106
\(149\) −1.09321e10 −1.81705 −0.908524 0.417832i \(-0.862790\pi\)
−0.908524 + 0.417832i \(0.862790\pi\)
\(150\) 0 0
\(151\) 7.06959e9 1.10662 0.553310 0.832976i \(-0.313365\pi\)
0.553310 + 0.832976i \(0.313365\pi\)
\(152\) 4.66804e9 0.709314
\(153\) 0 0
\(154\) −4.13026e9 −0.591745
\(155\) −6.57402e9 −0.914826
\(156\) 0 0
\(157\) −1.05476e9 −0.138550 −0.0692748 0.997598i \(-0.522069\pi\)
−0.0692748 + 0.997598i \(0.522069\pi\)
\(158\) −1.52296e9 −0.194416
\(159\) 0 0
\(160\) −2.04539e10 −2.46738
\(161\) −1.33675e9 −0.156796
\(162\) 0 0
\(163\) 3.82509e9 0.424422 0.212211 0.977224i \(-0.431934\pi\)
0.212211 + 0.977224i \(0.431934\pi\)
\(164\) 3.30504e10 3.56763
\(165\) 0 0
\(166\) −1.92199e9 −0.196456
\(167\) 5.94366e9 0.591330 0.295665 0.955292i \(-0.404459\pi\)
0.295665 + 0.955292i \(0.404459\pi\)
\(168\) 0 0
\(169\) 1.72786e10 1.62937
\(170\) 9.63752e9 0.885004
\(171\) 0 0
\(172\) 4.00371e9 0.348806
\(173\) −5.16427e8 −0.0438330 −0.0219165 0.999760i \(-0.506977\pi\)
−0.0219165 + 0.999760i \(0.506977\pi\)
\(174\) 0 0
\(175\) −9.03512e8 −0.0728220
\(176\) −6.62293e10 −5.20287
\(177\) 0 0
\(178\) 1.70262e10 1.27124
\(179\) −1.54846e10 −1.12736 −0.563678 0.825995i \(-0.690614\pi\)
−0.563678 + 0.825995i \(0.690614\pi\)
\(180\) 0 0
\(181\) −1.72451e10 −1.19430 −0.597150 0.802130i \(-0.703700\pi\)
−0.597150 + 0.802130i \(0.703700\pi\)
\(182\) −8.90430e9 −0.601560
\(183\) 0 0
\(184\) −3.86792e10 −2.48770
\(185\) −6.92420e9 −0.434607
\(186\) 0 0
\(187\) 1.56682e10 0.936981
\(188\) −1.74115e10 −1.01654
\(189\) 0 0
\(190\) −6.20883e9 −0.345636
\(191\) −3.06828e9 −0.166819 −0.0834093 0.996515i \(-0.526581\pi\)
−0.0834093 + 0.996515i \(0.526581\pi\)
\(192\) 0 0
\(193\) 5.94109e9 0.308218 0.154109 0.988054i \(-0.450749\pi\)
0.154109 + 0.988054i \(0.450749\pi\)
\(194\) −7.49463e10 −3.79877
\(195\) 0 0
\(196\) −5.21579e10 −2.52446
\(197\) 2.88485e10 1.36466 0.682332 0.731042i \(-0.260966\pi\)
0.682332 + 0.731042i \(0.260966\pi\)
\(198\) 0 0
\(199\) −1.01293e10 −0.457868 −0.228934 0.973442i \(-0.573524\pi\)
−0.228934 + 0.973442i \(0.573524\pi\)
\(200\) −2.61433e10 −1.15538
\(201\) 0 0
\(202\) 6.81106e10 2.87828
\(203\) −5.04344e9 −0.208447
\(204\) 0 0
\(205\) −2.72073e10 −1.07595
\(206\) −1.07258e10 −0.414981
\(207\) 0 0
\(208\) −1.42782e11 −5.28917
\(209\) −1.00940e10 −0.365935
\(210\) 0 0
\(211\) −3.41201e10 −1.18506 −0.592528 0.805550i \(-0.701870\pi\)
−0.592528 + 0.805550i \(0.701870\pi\)
\(212\) 3.42807e10 1.16557
\(213\) 0 0
\(214\) 6.43667e10 2.09797
\(215\) −3.29588e9 −0.105196
\(216\) 0 0
\(217\) 7.35809e9 0.225266
\(218\) 5.35236e10 1.60506
\(219\) 0 0
\(220\) 1.15096e11 3.31252
\(221\) 3.37785e10 0.952522
\(222\) 0 0
\(223\) 9.38041e9 0.254010 0.127005 0.991902i \(-0.459464\pi\)
0.127005 + 0.991902i \(0.459464\pi\)
\(224\) 2.28934e10 0.607567
\(225\) 0 0
\(226\) 7.11797e9 0.181496
\(227\) 3.27963e10 0.819800 0.409900 0.912130i \(-0.365564\pi\)
0.409900 + 0.912130i \(0.365564\pi\)
\(228\) 0 0
\(229\) 3.30142e10 0.793307 0.396653 0.917968i \(-0.370172\pi\)
0.396653 + 0.917968i \(0.370172\pi\)
\(230\) 5.14462e10 1.21221
\(231\) 0 0
\(232\) −1.45933e11 −3.30718
\(233\) −2.01073e10 −0.446944 −0.223472 0.974710i \(-0.571739\pi\)
−0.223472 + 0.974710i \(0.571739\pi\)
\(234\) 0 0
\(235\) 1.43332e10 0.306577
\(236\) −1.04960e11 −2.20251
\(237\) 0 0
\(238\) −1.07870e10 −0.217923
\(239\) 4.41998e10 0.876253 0.438126 0.898913i \(-0.355642\pi\)
0.438126 + 0.898913i \(0.355642\pi\)
\(240\) 0 0
\(241\) 5.60361e10 1.07002 0.535009 0.844846i \(-0.320308\pi\)
0.535009 + 0.844846i \(0.320308\pi\)
\(242\) 1.56853e11 2.93983
\(243\) 0 0
\(244\) −5.56993e10 −1.00599
\(245\) 4.29367e10 0.761345
\(246\) 0 0
\(247\) −2.17613e10 −0.372005
\(248\) 2.12908e11 3.57403
\(249\) 0 0
\(250\) 1.27824e11 2.06959
\(251\) 5.21561e10 0.829417 0.414709 0.909954i \(-0.363883\pi\)
0.414709 + 0.909954i \(0.363883\pi\)
\(252\) 0 0
\(253\) 8.36385e10 1.28341
\(254\) −9.01569e10 −1.35909
\(255\) 0 0
\(256\) 7.42275e10 1.08015
\(257\) 5.58927e10 0.799201 0.399600 0.916689i \(-0.369149\pi\)
0.399600 + 0.916689i \(0.369149\pi\)
\(258\) 0 0
\(259\) 7.75003e9 0.107017
\(260\) 2.48132e11 3.36746
\(261\) 0 0
\(262\) 8.41355e10 1.10312
\(263\) −1.16761e11 −1.50487 −0.752433 0.658669i \(-0.771120\pi\)
−0.752433 + 0.658669i \(0.771120\pi\)
\(264\) 0 0
\(265\) −2.82201e10 −0.351521
\(266\) 6.94934e9 0.0851092
\(267\) 0 0
\(268\) −8.27728e10 −0.980124
\(269\) −2.13880e10 −0.249049 −0.124525 0.992217i \(-0.539741\pi\)
−0.124525 + 0.992217i \(0.539741\pi\)
\(270\) 0 0
\(271\) 8.91662e10 1.00424 0.502121 0.864797i \(-0.332553\pi\)
0.502121 + 0.864797i \(0.332553\pi\)
\(272\) −1.72970e11 −1.91607
\(273\) 0 0
\(274\) 4.05746e10 0.434888
\(275\) 5.65312e10 0.596062
\(276\) 0 0
\(277\) −1.73135e11 −1.76695 −0.883477 0.468474i \(-0.844804\pi\)
−0.883477 + 0.468474i \(0.844804\pi\)
\(278\) −2.27899e11 −2.28844
\(279\) 0 0
\(280\) −4.90427e10 −0.476830
\(281\) −1.99315e11 −1.90705 −0.953525 0.301314i \(-0.902575\pi\)
−0.953525 + 0.301314i \(0.902575\pi\)
\(282\) 0 0
\(283\) 1.53833e11 1.42565 0.712823 0.701344i \(-0.247416\pi\)
0.712823 + 0.701344i \(0.247416\pi\)
\(284\) −2.64903e11 −2.41632
\(285\) 0 0
\(286\) 5.57127e11 4.92388
\(287\) 3.04523e10 0.264942
\(288\) 0 0
\(289\) −7.76676e10 −0.654937
\(290\) 1.94102e11 1.61153
\(291\) 0 0
\(292\) −1.27016e11 −1.02244
\(293\) −3.10497e9 −0.0246123 −0.0123062 0.999924i \(-0.503917\pi\)
−0.0123062 + 0.999924i \(0.503917\pi\)
\(294\) 0 0
\(295\) 8.64035e10 0.664251
\(296\) 2.24249e11 1.69792
\(297\) 0 0
\(298\) −4.70913e11 −3.45913
\(299\) 1.80313e11 1.30469
\(300\) 0 0
\(301\) 3.68897e9 0.0259033
\(302\) 3.04530e11 2.10668
\(303\) 0 0
\(304\) 1.11434e11 0.748316
\(305\) 4.58520e10 0.303396
\(306\) 0 0
\(307\) −2.42673e11 −1.55919 −0.779593 0.626286i \(-0.784574\pi\)
−0.779593 + 0.626286i \(0.784574\pi\)
\(308\) −1.28823e11 −0.815672
\(309\) 0 0
\(310\) −2.83183e11 −1.74156
\(311\) 5.16832e9 0.0313276 0.0156638 0.999877i \(-0.495014\pi\)
0.0156638 + 0.999877i \(0.495014\pi\)
\(312\) 0 0
\(313\) 2.71239e11 1.59736 0.798680 0.601757i \(-0.205532\pi\)
0.798680 + 0.601757i \(0.205532\pi\)
\(314\) −4.54349e10 −0.263758
\(315\) 0 0
\(316\) −4.75013e10 −0.267987
\(317\) −1.20224e11 −0.668690 −0.334345 0.942451i \(-0.608515\pi\)
−0.334345 + 0.942451i \(0.608515\pi\)
\(318\) 0 0
\(319\) 3.15560e11 1.70618
\(320\) −3.96866e11 −2.11577
\(321\) 0 0
\(322\) −5.75820e10 −0.298494
\(323\) −2.63623e10 −0.134764
\(324\) 0 0
\(325\) 1.21874e11 0.605948
\(326\) 1.64770e11 0.807976
\(327\) 0 0
\(328\) 8.81142e11 4.20352
\(329\) −1.60427e10 −0.0754913
\(330\) 0 0
\(331\) −3.62897e11 −1.66172 −0.830860 0.556482i \(-0.812151\pi\)
−0.830860 + 0.556482i \(0.812151\pi\)
\(332\) −5.99469e10 −0.270798
\(333\) 0 0
\(334\) 2.56029e11 1.12572
\(335\) 6.81390e10 0.295593
\(336\) 0 0
\(337\) 2.40253e11 1.01469 0.507347 0.861742i \(-0.330626\pi\)
0.507347 + 0.861742i \(0.330626\pi\)
\(338\) 7.44293e11 3.10184
\(339\) 0 0
\(340\) 3.00595e11 1.21991
\(341\) −4.60383e11 −1.84385
\(342\) 0 0
\(343\) −9.80123e10 −0.382347
\(344\) 1.06741e11 0.410977
\(345\) 0 0
\(346\) −2.22456e10 −0.0834453
\(347\) −1.87422e11 −0.693967 −0.346984 0.937871i \(-0.612794\pi\)
−0.346984 + 0.937871i \(0.612794\pi\)
\(348\) 0 0
\(349\) 1.99385e11 0.719412 0.359706 0.933066i \(-0.382877\pi\)
0.359706 + 0.933066i \(0.382877\pi\)
\(350\) −3.89197e10 −0.138632
\(351\) 0 0
\(352\) −1.43240e12 −4.97305
\(353\) 3.13590e11 1.07492 0.537459 0.843290i \(-0.319384\pi\)
0.537459 + 0.843290i \(0.319384\pi\)
\(354\) 0 0
\(355\) 2.18070e11 0.728731
\(356\) 5.31048e11 1.75230
\(357\) 0 0
\(358\) −6.67014e11 −2.14616
\(359\) 5.91463e9 0.0187933 0.00939664 0.999956i \(-0.497009\pi\)
0.00939664 + 0.999956i \(0.497009\pi\)
\(360\) 0 0
\(361\) 1.69836e10 0.0526316
\(362\) −7.42852e11 −2.27360
\(363\) 0 0
\(364\) −2.77726e11 −0.829201
\(365\) 1.04560e11 0.308354
\(366\) 0 0
\(367\) −3.59433e11 −1.03424 −0.517119 0.855914i \(-0.672995\pi\)
−0.517119 + 0.855914i \(0.672995\pi\)
\(368\) −9.23335e11 −2.62448
\(369\) 0 0
\(370\) −2.98267e11 −0.827365
\(371\) 3.15858e10 0.0865584
\(372\) 0 0
\(373\) 5.44784e11 1.45725 0.728626 0.684912i \(-0.240159\pi\)
0.728626 + 0.684912i \(0.240159\pi\)
\(374\) 6.74922e11 1.78374
\(375\) 0 0
\(376\) −4.64199e11 −1.19773
\(377\) 6.80305e11 1.73447
\(378\) 0 0
\(379\) 2.17993e11 0.542708 0.271354 0.962480i \(-0.412529\pi\)
0.271354 + 0.962480i \(0.412529\pi\)
\(380\) −1.93654e11 −0.476431
\(381\) 0 0
\(382\) −1.32169e11 −0.317574
\(383\) −7.78646e11 −1.84904 −0.924518 0.381138i \(-0.875532\pi\)
−0.924518 + 0.381138i \(0.875532\pi\)
\(384\) 0 0
\(385\) 1.06048e11 0.245997
\(386\) 2.55919e11 0.586758
\(387\) 0 0
\(388\) −2.33758e12 −5.23629
\(389\) 3.58920e10 0.0794739 0.0397370 0.999210i \(-0.487348\pi\)
0.0397370 + 0.999210i \(0.487348\pi\)
\(390\) 0 0
\(391\) 2.18437e11 0.472641
\(392\) −1.39056e12 −2.97441
\(393\) 0 0
\(394\) 1.24268e12 2.59792
\(395\) 3.91034e10 0.0808216
\(396\) 0 0
\(397\) 2.77227e11 0.560116 0.280058 0.959983i \(-0.409646\pi\)
0.280058 + 0.959983i \(0.409646\pi\)
\(398\) −4.36330e11 −0.871647
\(399\) 0 0
\(400\) −6.24082e11 −1.21891
\(401\) −7.76515e11 −1.49969 −0.749843 0.661616i \(-0.769871\pi\)
−0.749843 + 0.661616i \(0.769871\pi\)
\(402\) 0 0
\(403\) −9.92525e11 −1.87443
\(404\) 2.12437e12 3.96748
\(405\) 0 0
\(406\) −2.17251e11 −0.396822
\(407\) −4.84906e11 −0.875957
\(408\) 0 0
\(409\) 7.79697e11 1.37775 0.688876 0.724880i \(-0.258105\pi\)
0.688876 + 0.724880i \(0.258105\pi\)
\(410\) −1.17198e12 −2.04830
\(411\) 0 0
\(412\) −3.34539e11 −0.572018
\(413\) −9.67085e10 −0.163565
\(414\) 0 0
\(415\) 4.93487e10 0.0816693
\(416\) −3.08807e12 −5.05553
\(417\) 0 0
\(418\) −4.34809e11 −0.696635
\(419\) 3.67894e11 0.583122 0.291561 0.956552i \(-0.405825\pi\)
0.291561 + 0.956552i \(0.405825\pi\)
\(420\) 0 0
\(421\) −1.66297e11 −0.257997 −0.128998 0.991645i \(-0.541176\pi\)
−0.128998 + 0.991645i \(0.541176\pi\)
\(422\) −1.46976e12 −2.25600
\(423\) 0 0
\(424\) 9.13941e11 1.37332
\(425\) 1.47642e11 0.219512
\(426\) 0 0
\(427\) −5.13207e10 −0.0747079
\(428\) 2.00760e12 2.89188
\(429\) 0 0
\(430\) −1.41973e11 −0.200262
\(431\) −1.10815e12 −1.54686 −0.773431 0.633880i \(-0.781461\pi\)
−0.773431 + 0.633880i \(0.781461\pi\)
\(432\) 0 0
\(433\) 2.07579e10 0.0283784 0.0141892 0.999899i \(-0.495483\pi\)
0.0141892 + 0.999899i \(0.495483\pi\)
\(434\) 3.16957e11 0.428841
\(435\) 0 0
\(436\) 1.66941e12 2.21245
\(437\) −1.40725e11 −0.184589
\(438\) 0 0
\(439\) −8.98118e11 −1.15410 −0.577050 0.816709i \(-0.695796\pi\)
−0.577050 + 0.816709i \(0.695796\pi\)
\(440\) 3.06852e12 3.90294
\(441\) 0 0
\(442\) 1.45504e12 1.81332
\(443\) 6.20774e11 0.765803 0.382901 0.923789i \(-0.374925\pi\)
0.382901 + 0.923789i \(0.374925\pi\)
\(444\) 0 0
\(445\) −4.37162e11 −0.528472
\(446\) 4.04071e11 0.483560
\(447\) 0 0
\(448\) 4.44199e11 0.520986
\(449\) 5.22475e11 0.606677 0.303338 0.952883i \(-0.401899\pi\)
0.303338 + 0.952883i \(0.401899\pi\)
\(450\) 0 0
\(451\) −1.90535e12 −2.16860
\(452\) 2.22010e11 0.250178
\(453\) 0 0
\(454\) 1.41273e12 1.56066
\(455\) 2.28626e11 0.250077
\(456\) 0 0
\(457\) −1.61179e12 −1.72856 −0.864281 0.503010i \(-0.832226\pi\)
−0.864281 + 0.503010i \(0.832226\pi\)
\(458\) 1.42212e12 1.51022
\(459\) 0 0
\(460\) 1.60461e12 1.67093
\(461\) −1.17117e12 −1.20772 −0.603861 0.797090i \(-0.706372\pi\)
−0.603861 + 0.797090i \(0.706372\pi\)
\(462\) 0 0
\(463\) −5.19973e11 −0.525856 −0.262928 0.964815i \(-0.584688\pi\)
−0.262928 + 0.964815i \(0.584688\pi\)
\(464\) −3.48365e12 −3.48902
\(465\) 0 0
\(466\) −8.66144e11 −0.850851
\(467\) −1.08655e12 −1.05712 −0.528559 0.848897i \(-0.677267\pi\)
−0.528559 + 0.848897i \(0.677267\pi\)
\(468\) 0 0
\(469\) −7.62658e10 −0.0727867
\(470\) 6.17419e11 0.583633
\(471\) 0 0
\(472\) −2.79828e12 −2.59509
\(473\) −2.30812e11 −0.212023
\(474\) 0 0
\(475\) −9.51161e10 −0.0857300
\(476\) −3.36446e11 −0.300389
\(477\) 0 0
\(478\) 1.90395e12 1.66813
\(479\) 2.08556e9 0.00181015 0.000905073 1.00000i \(-0.499712\pi\)
0.000905073 1.00000i \(0.499712\pi\)
\(480\) 0 0
\(481\) −1.04539e12 −0.890486
\(482\) 2.41381e12 2.03700
\(483\) 0 0
\(484\) 4.89224e12 4.05232
\(485\) 1.92431e12 1.57920
\(486\) 0 0
\(487\) 1.93534e12 1.55911 0.779554 0.626335i \(-0.215446\pi\)
0.779554 + 0.626335i \(0.215446\pi\)
\(488\) −1.48497e12 −1.18530
\(489\) 0 0
\(490\) 1.84954e12 1.44938
\(491\) −2.34837e12 −1.82347 −0.911736 0.410777i \(-0.865257\pi\)
−0.911736 + 0.410777i \(0.865257\pi\)
\(492\) 0 0
\(493\) 8.24143e11 0.628336
\(494\) −9.37390e11 −0.708189
\(495\) 0 0
\(496\) 5.08244e12 3.77055
\(497\) −2.44078e11 −0.179442
\(498\) 0 0
\(499\) −8.80765e11 −0.635927 −0.317964 0.948103i \(-0.602999\pi\)
−0.317964 + 0.948103i \(0.602999\pi\)
\(500\) 3.98685e12 2.85276
\(501\) 0 0
\(502\) 2.24668e12 1.57897
\(503\) 9.56263e11 0.666072 0.333036 0.942914i \(-0.391927\pi\)
0.333036 + 0.942914i \(0.391927\pi\)
\(504\) 0 0
\(505\) −1.74880e12 −1.19654
\(506\) 3.60281e12 2.44323
\(507\) 0 0
\(508\) −2.81200e12 −1.87339
\(509\) 8.02783e11 0.530112 0.265056 0.964233i \(-0.414610\pi\)
0.265056 + 0.964233i \(0.414610\pi\)
\(510\) 0 0
\(511\) −1.17031e11 −0.0759289
\(512\) 1.31485e11 0.0845591
\(513\) 0 0
\(514\) 2.40763e12 1.52145
\(515\) 2.75395e11 0.172514
\(516\) 0 0
\(517\) 1.00377e12 0.617910
\(518\) 3.33840e11 0.203730
\(519\) 0 0
\(520\) 6.61532e12 3.96767
\(521\) 1.35878e12 0.807939 0.403969 0.914773i \(-0.367630\pi\)
0.403969 + 0.914773i \(0.367630\pi\)
\(522\) 0 0
\(523\) 1.01846e12 0.595234 0.297617 0.954685i \(-0.403808\pi\)
0.297617 + 0.954685i \(0.403808\pi\)
\(524\) 2.62419e12 1.52056
\(525\) 0 0
\(526\) −5.02961e12 −2.86483
\(527\) −1.20238e12 −0.679036
\(528\) 0 0
\(529\) −6.35108e11 −0.352612
\(530\) −1.21561e12 −0.669194
\(531\) 0 0
\(532\) 2.16750e11 0.117316
\(533\) −4.10767e12 −2.20457
\(534\) 0 0
\(535\) −1.65267e12 −0.872155
\(536\) −2.20676e12 −1.15482
\(537\) 0 0
\(538\) −9.21311e11 −0.474118
\(539\) 3.00689e12 1.53450
\(540\) 0 0
\(541\) −3.14397e12 −1.57794 −0.788971 0.614431i \(-0.789386\pi\)
−0.788971 + 0.614431i \(0.789386\pi\)
\(542\) 3.84092e12 1.91178
\(543\) 0 0
\(544\) −3.74098e12 −1.83143
\(545\) −1.37426e12 −0.667246
\(546\) 0 0
\(547\) −2.40457e12 −1.14840 −0.574201 0.818714i \(-0.694687\pi\)
−0.574201 + 0.818714i \(0.694687\pi\)
\(548\) 1.26552e12 0.599457
\(549\) 0 0
\(550\) 2.43514e12 1.13473
\(551\) −5.30943e11 −0.245395
\(552\) 0 0
\(553\) −4.37671e10 −0.0199015
\(554\) −7.45796e12 −3.36377
\(555\) 0 0
\(556\) −7.10817e12 −3.15443
\(557\) −1.99076e12 −0.876337 −0.438168 0.898893i \(-0.644373\pi\)
−0.438168 + 0.898893i \(0.644373\pi\)
\(558\) 0 0
\(559\) −4.97601e11 −0.215540
\(560\) −1.17073e12 −0.503048
\(561\) 0 0
\(562\) −8.58571e12 −3.63047
\(563\) −2.14736e12 −0.900778 −0.450389 0.892832i \(-0.648715\pi\)
−0.450389 + 0.892832i \(0.648715\pi\)
\(564\) 0 0
\(565\) −1.82760e11 −0.0754506
\(566\) 6.62653e12 2.71402
\(567\) 0 0
\(568\) −7.06245e12 −2.84700
\(569\) −3.97619e12 −1.59024 −0.795120 0.606453i \(-0.792592\pi\)
−0.795120 + 0.606453i \(0.792592\pi\)
\(570\) 0 0
\(571\) −1.06959e12 −0.421072 −0.210536 0.977586i \(-0.567521\pi\)
−0.210536 + 0.977586i \(0.567521\pi\)
\(572\) 1.73768e13 6.78717
\(573\) 0 0
\(574\) 1.31176e12 0.504372
\(575\) 7.88129e11 0.300671
\(576\) 0 0
\(577\) 1.68962e12 0.634596 0.317298 0.948326i \(-0.397224\pi\)
0.317298 + 0.948326i \(0.397224\pi\)
\(578\) −3.34561e12 −1.24681
\(579\) 0 0
\(580\) 6.05404e12 2.22136
\(581\) −5.52344e10 −0.0201102
\(582\) 0 0
\(583\) −1.97627e12 −0.708497
\(584\) −3.38631e12 −1.20467
\(585\) 0 0
\(586\) −1.33750e11 −0.0468547
\(587\) −2.74627e12 −0.954709 −0.477355 0.878711i \(-0.658404\pi\)
−0.477355 + 0.878711i \(0.658404\pi\)
\(588\) 0 0
\(589\) 7.74614e11 0.265196
\(590\) 3.72192e12 1.26454
\(591\) 0 0
\(592\) 5.35317e12 1.79128
\(593\) 1.76038e12 0.584603 0.292302 0.956326i \(-0.405579\pi\)
0.292302 + 0.956326i \(0.405579\pi\)
\(594\) 0 0
\(595\) 2.76964e11 0.0905935
\(596\) −1.46878e13 −4.76813
\(597\) 0 0
\(598\) 7.76719e12 2.48375
\(599\) 3.01029e12 0.955406 0.477703 0.878521i \(-0.341469\pi\)
0.477703 + 0.878521i \(0.341469\pi\)
\(600\) 0 0
\(601\) −4.62803e12 −1.44698 −0.723488 0.690337i \(-0.757462\pi\)
−0.723488 + 0.690337i \(0.757462\pi\)
\(602\) 1.58906e11 0.0493124
\(603\) 0 0
\(604\) 9.49830e12 2.90389
\(605\) −4.02733e12 −1.22213
\(606\) 0 0
\(607\) −4.99925e12 −1.49471 −0.747353 0.664427i \(-0.768675\pi\)
−0.747353 + 0.664427i \(0.768675\pi\)
\(608\) 2.41008e12 0.715261
\(609\) 0 0
\(610\) 1.97512e12 0.577577
\(611\) 2.16399e12 0.628159
\(612\) 0 0
\(613\) −2.54862e11 −0.0729010 −0.0364505 0.999335i \(-0.511605\pi\)
−0.0364505 + 0.999335i \(0.511605\pi\)
\(614\) −1.04534e13 −2.96824
\(615\) 0 0
\(616\) −3.43449e12 −0.961057
\(617\) 6.48851e12 1.80244 0.901222 0.433357i \(-0.142671\pi\)
0.901222 + 0.433357i \(0.142671\pi\)
\(618\) 0 0
\(619\) −6.56476e11 −0.179726 −0.0898630 0.995954i \(-0.528643\pi\)
−0.0898630 + 0.995954i \(0.528643\pi\)
\(620\) −8.83248e12 −2.40060
\(621\) 0 0
\(622\) 2.22630e11 0.0596387
\(623\) 4.89301e11 0.130131
\(624\) 0 0
\(625\) −1.85649e12 −0.486668
\(626\) 1.16839e13 3.04091
\(627\) 0 0
\(628\) −1.41712e12 −0.363569
\(629\) −1.26642e12 −0.322590
\(630\) 0 0
\(631\) 5.77708e12 1.45069 0.725347 0.688383i \(-0.241679\pi\)
0.725347 + 0.688383i \(0.241679\pi\)
\(632\) −1.26641e12 −0.315753
\(633\) 0 0
\(634\) −5.17877e12 −1.27299
\(635\) 2.31486e12 0.564992
\(636\) 0 0
\(637\) 6.48245e12 1.55995
\(638\) 1.35931e13 3.24806
\(639\) 0 0
\(640\) −6.62298e12 −1.56043
\(641\) 7.53058e11 0.176184 0.0880922 0.996112i \(-0.471923\pi\)
0.0880922 + 0.996112i \(0.471923\pi\)
\(642\) 0 0
\(643\) 5.17768e12 1.19450 0.597249 0.802056i \(-0.296260\pi\)
0.597249 + 0.802056i \(0.296260\pi\)
\(644\) −1.79599e12 −0.411450
\(645\) 0 0
\(646\) −1.13558e12 −0.256551
\(647\) −8.30839e12 −1.86401 −0.932004 0.362449i \(-0.881941\pi\)
−0.932004 + 0.362449i \(0.881941\pi\)
\(648\) 0 0
\(649\) 6.05089e12 1.33881
\(650\) 5.24984e12 1.15355
\(651\) 0 0
\(652\) 5.13918e12 1.11373
\(653\) −7.02989e12 −1.51300 −0.756500 0.653993i \(-0.773092\pi\)
−0.756500 + 0.653993i \(0.773092\pi\)
\(654\) 0 0
\(655\) −2.16025e12 −0.458583
\(656\) 2.10343e13 4.43465
\(657\) 0 0
\(658\) −6.91057e11 −0.143713
\(659\) −2.62898e12 −0.543003 −0.271501 0.962438i \(-0.587520\pi\)
−0.271501 + 0.962438i \(0.587520\pi\)
\(660\) 0 0
\(661\) −5.20751e12 −1.06102 −0.530510 0.847679i \(-0.678000\pi\)
−0.530510 + 0.847679i \(0.678000\pi\)
\(662\) −1.56322e13 −3.16343
\(663\) 0 0
\(664\) −1.59822e12 −0.319065
\(665\) −1.78430e11 −0.0353811
\(666\) 0 0
\(667\) 4.39938e12 0.860646
\(668\) 7.98556e12 1.55171
\(669\) 0 0
\(670\) 2.93516e12 0.562723
\(671\) 3.21105e12 0.611498
\(672\) 0 0
\(673\) 4.84982e12 0.911292 0.455646 0.890161i \(-0.349408\pi\)
0.455646 + 0.890161i \(0.349408\pi\)
\(674\) 1.03492e13 1.93168
\(675\) 0 0
\(676\) 2.32146e13 4.27563
\(677\) −2.55117e12 −0.466756 −0.233378 0.972386i \(-0.574978\pi\)
−0.233378 + 0.972386i \(0.574978\pi\)
\(678\) 0 0
\(679\) −2.15382e12 −0.388861
\(680\) 8.01401e12 1.43734
\(681\) 0 0
\(682\) −1.98315e13 −3.51015
\(683\) −2.83001e12 −0.497617 −0.248808 0.968553i \(-0.580039\pi\)
−0.248808 + 0.968553i \(0.580039\pi\)
\(684\) 0 0
\(685\) −1.04179e12 −0.180789
\(686\) −4.22198e12 −0.727876
\(687\) 0 0
\(688\) 2.54808e12 0.433575
\(689\) −4.26058e12 −0.720248
\(690\) 0 0
\(691\) −3.09239e12 −0.515993 −0.257996 0.966146i \(-0.583062\pi\)
−0.257996 + 0.966146i \(0.583062\pi\)
\(692\) −6.93842e11 −0.115023
\(693\) 0 0
\(694\) −8.07341e12 −1.32111
\(695\) 5.85149e12 0.951338
\(696\) 0 0
\(697\) −4.97617e12 −0.798633
\(698\) 8.58870e12 1.36955
\(699\) 0 0
\(700\) −1.21391e12 −0.191093
\(701\) −1.12689e13 −1.76259 −0.881293 0.472570i \(-0.843327\pi\)
−0.881293 + 0.472570i \(0.843327\pi\)
\(702\) 0 0
\(703\) 8.15875e11 0.125987
\(704\) −2.77928e13 −4.26437
\(705\) 0 0
\(706\) 1.35082e13 2.04633
\(707\) 1.95737e12 0.294636
\(708\) 0 0
\(709\) −4.29500e12 −0.638344 −0.319172 0.947697i \(-0.603405\pi\)
−0.319172 + 0.947697i \(0.603405\pi\)
\(710\) 9.39357e12 1.38729
\(711\) 0 0
\(712\) 1.41580e13 2.06463
\(713\) −6.41843e12 −0.930092
\(714\) 0 0
\(715\) −1.43047e13 −2.04693
\(716\) −2.08042e13 −2.95830
\(717\) 0 0
\(718\) 2.54779e11 0.0357769
\(719\) 1.11078e13 1.55006 0.775028 0.631927i \(-0.217736\pi\)
0.775028 + 0.631927i \(0.217736\pi\)
\(720\) 0 0
\(721\) −3.08240e11 −0.0424796
\(722\) 7.31584e11 0.100195
\(723\) 0 0
\(724\) −2.31696e13 −3.13397
\(725\) 2.97354e12 0.399717
\(726\) 0 0
\(727\) 9.05905e12 1.20276 0.601379 0.798964i \(-0.294618\pi\)
0.601379 + 0.798964i \(0.294618\pi\)
\(728\) −7.40431e12 −0.976998
\(729\) 0 0
\(730\) 4.50405e12 0.587016
\(731\) −6.02810e11 −0.0780822
\(732\) 0 0
\(733\) 6.02219e12 0.770525 0.385262 0.922807i \(-0.374111\pi\)
0.385262 + 0.922807i \(0.374111\pi\)
\(734\) −1.54829e13 −1.96889
\(735\) 0 0
\(736\) −1.99698e13 −2.50856
\(737\) 4.77182e12 0.595773
\(738\) 0 0
\(739\) −7.03467e11 −0.0867649 −0.0433824 0.999059i \(-0.513813\pi\)
−0.0433824 + 0.999059i \(0.513813\pi\)
\(740\) −9.30296e12 −1.14046
\(741\) 0 0
\(742\) 1.36059e12 0.164782
\(743\) 7.85573e12 0.945664 0.472832 0.881153i \(-0.343232\pi\)
0.472832 + 0.881153i \(0.343232\pi\)
\(744\) 0 0
\(745\) 1.20911e13 1.43801
\(746\) 2.34671e13 2.77418
\(747\) 0 0
\(748\) 2.10508e13 2.45874
\(749\) 1.84978e12 0.214759
\(750\) 0 0
\(751\) 1.08319e13 1.24259 0.621293 0.783578i \(-0.286607\pi\)
0.621293 + 0.783578i \(0.286607\pi\)
\(752\) −1.10812e13 −1.26359
\(753\) 0 0
\(754\) 2.93048e13 3.30193
\(755\) −7.81906e12 −0.875777
\(756\) 0 0
\(757\) −1.32080e13 −1.46186 −0.730930 0.682453i \(-0.760913\pi\)
−0.730930 + 0.682453i \(0.760913\pi\)
\(758\) 9.39027e12 1.03316
\(759\) 0 0
\(760\) −5.16291e12 −0.561350
\(761\) 2.17084e12 0.234637 0.117318 0.993094i \(-0.462570\pi\)
0.117318 + 0.993094i \(0.462570\pi\)
\(762\) 0 0
\(763\) 1.53817e12 0.164302
\(764\) −4.12236e12 −0.437750
\(765\) 0 0
\(766\) −3.35410e13 −3.52003
\(767\) 1.30449e13 1.36101
\(768\) 0 0
\(769\) 1.19754e13 1.23487 0.617435 0.786622i \(-0.288172\pi\)
0.617435 + 0.786622i \(0.288172\pi\)
\(770\) 4.56813e12 0.468306
\(771\) 0 0
\(772\) 7.98211e12 0.808798
\(773\) −2.52680e12 −0.254544 −0.127272 0.991868i \(-0.540622\pi\)
−0.127272 + 0.991868i \(0.540622\pi\)
\(774\) 0 0
\(775\) −4.33821e12 −0.431970
\(776\) −6.23211e13 −6.16960
\(777\) 0 0
\(778\) 1.54608e12 0.151295
\(779\) 3.20583e12 0.311904
\(780\) 0 0
\(781\) 1.52716e13 1.46877
\(782\) 9.40942e12 0.899772
\(783\) 0 0
\(784\) −3.31948e13 −3.13796
\(785\) 1.16658e12 0.109648
\(786\) 0 0
\(787\) −8.75997e12 −0.813985 −0.406992 0.913432i \(-0.633422\pi\)
−0.406992 + 0.913432i \(0.633422\pi\)
\(788\) 3.87593e13 3.58103
\(789\) 0 0
\(790\) 1.68442e12 0.153861
\(791\) 2.04557e11 0.0185789
\(792\) 0 0
\(793\) 6.92259e12 0.621641
\(794\) 1.19418e13 1.06630
\(795\) 0 0
\(796\) −1.36091e13 −1.20149
\(797\) −3.27725e12 −0.287705 −0.143852 0.989599i \(-0.545949\pi\)
−0.143852 + 0.989599i \(0.545949\pi\)
\(798\) 0 0
\(799\) 2.62152e12 0.227559
\(800\) −1.34976e13 −1.16507
\(801\) 0 0
\(802\) −3.34492e13 −2.85496
\(803\) 7.32243e12 0.621492
\(804\) 0 0
\(805\) 1.47847e12 0.124088
\(806\) −4.27540e13 −3.56837
\(807\) 0 0
\(808\) 5.66369e13 4.67464
\(809\) −1.21000e13 −0.993159 −0.496579 0.867991i \(-0.665411\pi\)
−0.496579 + 0.867991i \(0.665411\pi\)
\(810\) 0 0
\(811\) −1.32448e13 −1.07511 −0.537555 0.843229i \(-0.680652\pi\)
−0.537555 + 0.843229i \(0.680652\pi\)
\(812\) −6.77608e12 −0.546987
\(813\) 0 0
\(814\) −2.08878e13 −1.66757
\(815\) −4.23060e12 −0.335887
\(816\) 0 0
\(817\) 3.88352e11 0.0304948
\(818\) 3.35862e13 2.62284
\(819\) 0 0
\(820\) −3.65542e13 −2.82342
\(821\) −1.15927e12 −0.0890511 −0.0445256 0.999008i \(-0.514178\pi\)
−0.0445256 + 0.999008i \(0.514178\pi\)
\(822\) 0 0
\(823\) 1.70322e13 1.29411 0.647056 0.762443i \(-0.276000\pi\)
0.647056 + 0.762443i \(0.276000\pi\)
\(824\) −8.91899e12 −0.673974
\(825\) 0 0
\(826\) −4.16582e12 −0.311380
\(827\) 3.98089e12 0.295941 0.147970 0.988992i \(-0.452726\pi\)
0.147970 + 0.988992i \(0.452726\pi\)
\(828\) 0 0
\(829\) 8.79574e12 0.646810 0.323405 0.946261i \(-0.395172\pi\)
0.323405 + 0.946261i \(0.395172\pi\)
\(830\) 2.12574e12 0.155475
\(831\) 0 0
\(832\) −5.99175e13 −4.33510
\(833\) 7.85304e12 0.565113
\(834\) 0 0
\(835\) −6.57377e12 −0.467978
\(836\) −1.35617e13 −0.960254
\(837\) 0 0
\(838\) 1.58474e13 1.11010
\(839\) 1.26751e13 0.883127 0.441564 0.897230i \(-0.354424\pi\)
0.441564 + 0.897230i \(0.354424\pi\)
\(840\) 0 0
\(841\) 2.09127e12 0.144154
\(842\) −7.16340e12 −0.491150
\(843\) 0 0
\(844\) −4.58418e13 −3.10971
\(845\) −1.91104e13 −1.28948
\(846\) 0 0
\(847\) 4.50765e12 0.300937
\(848\) 2.18172e13 1.44883
\(849\) 0 0
\(850\) 6.35982e12 0.417888
\(851\) −6.76032e12 −0.441859
\(852\) 0 0
\(853\) −8.10425e12 −0.524134 −0.262067 0.965050i \(-0.584404\pi\)
−0.262067 + 0.965050i \(0.584404\pi\)
\(854\) −2.21069e12 −0.142222
\(855\) 0 0
\(856\) 5.35237e13 3.40733
\(857\) 9.24804e12 0.585647 0.292824 0.956166i \(-0.405405\pi\)
0.292824 + 0.956166i \(0.405405\pi\)
\(858\) 0 0
\(859\) −3.30863e12 −0.207338 −0.103669 0.994612i \(-0.533058\pi\)
−0.103669 + 0.994612i \(0.533058\pi\)
\(860\) −4.42815e12 −0.276045
\(861\) 0 0
\(862\) −4.77348e13 −2.94478
\(863\) 2.69935e13 1.65657 0.828287 0.560305i \(-0.189316\pi\)
0.828287 + 0.560305i \(0.189316\pi\)
\(864\) 0 0
\(865\) 5.71175e11 0.0346894
\(866\) 8.94169e11 0.0540243
\(867\) 0 0
\(868\) 9.88591e12 0.591123
\(869\) 2.73843e12 0.162897
\(870\) 0 0
\(871\) 1.02874e13 0.605654
\(872\) 4.45072e13 2.60679
\(873\) 0 0
\(874\) −6.06188e12 −0.351404
\(875\) 3.67344e12 0.211854
\(876\) 0 0
\(877\) 2.37336e13 1.35477 0.677386 0.735628i \(-0.263113\pi\)
0.677386 + 0.735628i \(0.263113\pi\)
\(878\) −3.86874e13 −2.19707
\(879\) 0 0
\(880\) 7.32504e13 4.11754
\(881\) 2.27869e13 1.27437 0.637183 0.770712i \(-0.280099\pi\)
0.637183 + 0.770712i \(0.280099\pi\)
\(882\) 0 0
\(883\) −2.77944e13 −1.53863 −0.769315 0.638870i \(-0.779402\pi\)
−0.769315 + 0.638870i \(0.779402\pi\)
\(884\) 4.53828e13 2.49952
\(885\) 0 0
\(886\) 2.67405e13 1.45787
\(887\) −1.16529e13 −0.632091 −0.316045 0.948744i \(-0.602355\pi\)
−0.316045 + 0.948744i \(0.602355\pi\)
\(888\) 0 0
\(889\) −2.59094e12 −0.139123
\(890\) −1.88312e13 −1.00606
\(891\) 0 0
\(892\) 1.26030e13 0.666549
\(893\) −1.68888e12 −0.0888724
\(894\) 0 0
\(895\) 1.71262e13 0.892188
\(896\) 7.41289e12 0.384239
\(897\) 0 0
\(898\) 2.25062e13 1.15494
\(899\) −2.42161e13 −1.23648
\(900\) 0 0
\(901\) −5.16140e12 −0.260919
\(902\) −8.20747e13 −4.12838
\(903\) 0 0
\(904\) 5.91890e12 0.294770
\(905\) 1.90733e13 0.945166
\(906\) 0 0
\(907\) 1.39840e13 0.686120 0.343060 0.939314i \(-0.388537\pi\)
0.343060 + 0.939314i \(0.388537\pi\)
\(908\) 4.40632e13 2.15124
\(909\) 0 0
\(910\) 9.84828e12 0.476073
\(911\) −8.94857e11 −0.0430448 −0.0215224 0.999768i \(-0.506851\pi\)
−0.0215224 + 0.999768i \(0.506851\pi\)
\(912\) 0 0
\(913\) 3.45592e12 0.164606
\(914\) −6.94294e13 −3.29068
\(915\) 0 0
\(916\) 4.43560e13 2.08172
\(917\) 2.41790e12 0.112921
\(918\) 0 0
\(919\) 1.60525e13 0.742374 0.371187 0.928558i \(-0.378951\pi\)
0.371187 + 0.928558i \(0.378951\pi\)
\(920\) 4.27797e13 1.96876
\(921\) 0 0
\(922\) −5.04495e13 −2.29915
\(923\) 3.29235e13 1.49313
\(924\) 0 0
\(925\) −4.56930e12 −0.205216
\(926\) −2.23984e13 −1.00108
\(927\) 0 0
\(928\) −7.53442e13 −3.33491
\(929\) 5.95071e12 0.262119 0.131059 0.991375i \(-0.458162\pi\)
0.131059 + 0.991375i \(0.458162\pi\)
\(930\) 0 0
\(931\) −5.05921e12 −0.220704
\(932\) −2.70151e13 −1.17283
\(933\) 0 0
\(934\) −4.68042e13 −2.01244
\(935\) −1.73292e13 −0.741525
\(936\) 0 0
\(937\) 3.70309e12 0.156941 0.0784705 0.996916i \(-0.474996\pi\)
0.0784705 + 0.996916i \(0.474996\pi\)
\(938\) −3.28523e12 −0.138565
\(939\) 0 0
\(940\) 1.92573e13 0.804490
\(941\) −1.14833e13 −0.477435 −0.238717 0.971089i \(-0.576727\pi\)
−0.238717 + 0.971089i \(0.576727\pi\)
\(942\) 0 0
\(943\) −2.65634e13 −1.09391
\(944\) −6.67994e13 −2.73778
\(945\) 0 0
\(946\) −9.94248e12 −0.403631
\(947\) −1.87912e13 −0.759239 −0.379620 0.925143i \(-0.623945\pi\)
−0.379620 + 0.925143i \(0.623945\pi\)
\(948\) 0 0
\(949\) 1.57862e13 0.631800
\(950\) −4.09722e12 −0.163205
\(951\) 0 0
\(952\) −8.96982e12 −0.353930
\(953\) 3.02709e13 1.18880 0.594398 0.804171i \(-0.297391\pi\)
0.594398 + 0.804171i \(0.297391\pi\)
\(954\) 0 0
\(955\) 3.39356e12 0.132020
\(956\) 5.93843e13 2.29938
\(957\) 0 0
\(958\) 8.98378e10 0.00344599
\(959\) 1.16604e12 0.0445173
\(960\) 0 0
\(961\) 8.89025e12 0.336247
\(962\) −4.50314e13 −1.69523
\(963\) 0 0
\(964\) 7.52869e13 2.80784
\(965\) −6.57092e12 −0.243923
\(966\) 0 0
\(967\) 4.58324e13 1.68560 0.842799 0.538229i \(-0.180906\pi\)
0.842799 + 0.538229i \(0.180906\pi\)
\(968\) 1.30430e14 4.77461
\(969\) 0 0
\(970\) 8.28916e13 3.00634
\(971\) 4.80491e11 0.0173460 0.00867300 0.999962i \(-0.497239\pi\)
0.00867300 + 0.999962i \(0.497239\pi\)
\(972\) 0 0
\(973\) −6.54938e12 −0.234257
\(974\) 8.33666e13 2.96809
\(975\) 0 0
\(976\) −3.54487e13 −1.25048
\(977\) −4.03929e13 −1.41834 −0.709169 0.705039i \(-0.750930\pi\)
−0.709169 + 0.705039i \(0.750930\pi\)
\(978\) 0 0
\(979\) −3.06147e13 −1.06514
\(980\) 5.76873e13 1.99785
\(981\) 0 0
\(982\) −1.01158e14 −3.47136
\(983\) −4.73016e13 −1.61579 −0.807895 0.589326i \(-0.799393\pi\)
−0.807895 + 0.589326i \(0.799393\pi\)
\(984\) 0 0
\(985\) −3.19069e13 −1.07999
\(986\) 3.55008e13 1.19617
\(987\) 0 0
\(988\) −2.92373e13 −0.976181
\(989\) −3.21787e12 −0.106951
\(990\) 0 0
\(991\) −1.02031e13 −0.336048 −0.168024 0.985783i \(-0.553739\pi\)
−0.168024 + 0.985783i \(0.553739\pi\)
\(992\) 1.09923e14 3.60400
\(993\) 0 0
\(994\) −1.05139e13 −0.341606
\(995\) 1.12031e13 0.362356
\(996\) 0 0
\(997\) 5.02498e12 0.161067 0.0805335 0.996752i \(-0.474338\pi\)
0.0805335 + 0.996752i \(0.474338\pi\)
\(998\) −3.79398e13 −1.21062
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.10.a.f.1.8 8
3.2 odd 2 19.10.a.b.1.1 8
12.11 even 2 304.10.a.i.1.1 8
57.56 even 2 361.10.a.c.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.a.b.1.1 8 3.2 odd 2
171.10.a.f.1.8 8 1.1 even 1 trivial
304.10.a.i.1.1 8 12.11 even 2
361.10.a.c.1.8 8 57.56 even 2