Properties

Label 1690.2.l.n.361.3
Level $1690$
Weight $2$
Character 1690.361
Analytic conductor $13.495$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(361,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,4,12,0,0,0,0,-32,12,0,8,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.3
Character \(\chi\) \(=\) 1690.361
Dual form 1690.2.l.n.1161.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.494225 - 0.856023i) q^{3} +(0.500000 - 0.866025i) q^{4} -1.00000i q^{5} +(0.856023 + 0.494225i) q^{6} +(3.00783 + 1.73657i) q^{7} +1.00000i q^{8} +(1.01148 - 1.75194i) q^{9} +(0.500000 + 0.866025i) q^{10} +(5.23297 - 3.02125i) q^{11} -0.988450 q^{12} -3.47315 q^{14} +(-0.856023 + 0.494225i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.02766 - 1.77997i) q^{17} +2.02297i q^{18} +(2.69985 + 1.55876i) q^{19} +(-0.866025 - 0.500000i) q^{20} -3.43303i q^{21} +(-3.02125 + 5.23297i) q^{22} +(3.98724 + 6.90610i) q^{23} +(0.856023 - 0.494225i) q^{24} -1.00000 q^{25} -4.96495 q^{27} +(3.00783 - 1.73657i) q^{28} +(3.36517 + 5.82865i) q^{29} +(0.494225 - 0.856023i) q^{30} -8.96482i q^{31} +(0.866025 + 0.500000i) q^{32} +(-5.17253 - 2.98636i) q^{33} +2.05533i q^{34} +(1.73657 - 3.00783i) q^{35} +(-1.01148 - 1.75194i) q^{36} +(2.33417 - 1.34763i) q^{37} -3.11752 q^{38} +1.00000 q^{40} +(-2.80196 + 1.61772i) q^{41} +(1.71652 + 2.97309i) q^{42} +(-1.01752 + 1.76240i) q^{43} -6.04251i q^{44} +(-1.75194 - 1.01148i) q^{45} +(-6.90610 - 3.98724i) q^{46} +9.03057i q^{47} +(-0.494225 + 0.856023i) q^{48} +(2.53138 + 4.38447i) q^{49} +(0.866025 - 0.500000i) q^{50} -2.03159 q^{51} -11.1847 q^{53} +(4.29978 - 2.48248i) q^{54} +(-3.02125 - 5.23297i) q^{55} +(-1.73657 + 3.00783i) q^{56} -3.08152i q^{57} +(-5.82865 - 3.36517i) q^{58} +(5.54418 + 3.20093i) q^{59} +0.988450i q^{60} +(-6.52411 + 11.3001i) q^{61} +(4.48241 + 7.76376i) q^{62} +(6.08475 - 3.51303i) q^{63} -1.00000 q^{64} +5.97272 q^{66} +(7.35812 - 4.24821i) q^{67} +(-1.02766 - 1.77997i) q^{68} +(3.94119 - 6.82634i) q^{69} +3.47315i q^{70} +(0.105653 + 0.0609989i) q^{71} +(1.75194 + 1.01148i) q^{72} -0.138022i q^{73} +(-1.34763 + 2.33417i) q^{74} +(0.494225 + 0.856023i) q^{75} +(2.69985 - 1.55876i) q^{76} +20.9865 q^{77} -6.71618 q^{79} +(-0.866025 + 0.500000i) q^{80} +(-0.580644 - 1.00570i) q^{81} +(1.61772 - 2.80196i) q^{82} +3.03849i q^{83} +(-2.97309 - 1.71652i) q^{84} +(-1.77997 - 1.02766i) q^{85} -2.03505i q^{86} +(3.32631 - 5.76133i) q^{87} +(3.02125 + 5.23297i) q^{88} +(2.93073 - 1.69206i) q^{89} +2.02297 q^{90} +7.97448 q^{92} +(-7.67409 + 4.43064i) q^{93} +(-4.51529 - 7.82070i) q^{94} +(1.55876 - 2.69985i) q^{95} -0.988450i q^{96} +(-5.04478 - 2.91261i) q^{97} +(-4.38447 - 2.53138i) q^{98} -12.2238i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{3} + 12 q^{4} - 32 q^{9} + 12 q^{10} + 8 q^{12} + 12 q^{14} - 12 q^{16} - 6 q^{17} - 30 q^{22} - 6 q^{23} - 24 q^{25} - 80 q^{27} - 14 q^{29} - 4 q^{30} - 6 q^{35} + 32 q^{36} - 4 q^{38} + 24 q^{40}+ \cdots + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −0.494225 0.856023i −0.285341 0.494225i 0.687351 0.726326i \(-0.258774\pi\)
−0.972692 + 0.232100i \(0.925440\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.00000i 0.447214i
\(6\) 0.856023 + 0.494225i 0.349470 + 0.201767i
\(7\) 3.00783 + 1.73657i 1.13685 + 0.656363i 0.945650 0.325187i \(-0.105427\pi\)
0.191205 + 0.981550i \(0.438761\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.01148 1.75194i 0.337161 0.583980i
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) 5.23297 3.02125i 1.57780 0.910942i 0.582632 0.812736i \(-0.302023\pi\)
0.995166 0.0982065i \(-0.0313106\pi\)
\(12\) −0.988450 −0.285341
\(13\) 0 0
\(14\) −3.47315 −0.928238
\(15\) −0.856023 + 0.494225i −0.221024 + 0.127608i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.02766 1.77997i 0.249245 0.431705i −0.714072 0.700073i \(-0.753151\pi\)
0.963317 + 0.268368i \(0.0864842\pi\)
\(18\) 2.02297i 0.476818i
\(19\) 2.69985 + 1.55876i 0.619389 + 0.357604i 0.776631 0.629956i \(-0.216927\pi\)
−0.157242 + 0.987560i \(0.550260\pi\)
\(20\) −0.866025 0.500000i −0.193649 0.111803i
\(21\) 3.43303i 0.749150i
\(22\) −3.02125 + 5.23297i −0.644133 + 1.11567i
\(23\) 3.98724 + 6.90610i 0.831396 + 1.44002i 0.896931 + 0.442171i \(0.145791\pi\)
−0.0655344 + 0.997850i \(0.520875\pi\)
\(24\) 0.856023 0.494225i 0.174735 0.100883i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −4.96495 −0.955506
\(28\) 3.00783 1.73657i 0.568427 0.328182i
\(29\) 3.36517 + 5.82865i 0.624897 + 1.08235i 0.988561 + 0.150823i \(0.0481924\pi\)
−0.363664 + 0.931530i \(0.618474\pi\)
\(30\) 0.494225 0.856023i 0.0902328 0.156288i
\(31\) 8.96482i 1.61013i −0.593187 0.805065i \(-0.702131\pi\)
0.593187 0.805065i \(-0.297869\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −5.17253 2.98636i −0.900421 0.519859i
\(34\) 2.05533i 0.352486i
\(35\) 1.73657 3.00783i 0.293535 0.508417i
\(36\) −1.01148 1.75194i −0.168580 0.291990i
\(37\) 2.33417 1.34763i 0.383735 0.221550i −0.295707 0.955279i \(-0.595555\pi\)
0.679442 + 0.733729i \(0.262222\pi\)
\(38\) −3.11752 −0.505729
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −2.80196 + 1.61772i −0.437593 + 0.252645i −0.702576 0.711608i \(-0.747967\pi\)
0.264983 + 0.964253i \(0.414634\pi\)
\(42\) 1.71652 + 2.97309i 0.264864 + 0.458759i
\(43\) −1.01752 + 1.76240i −0.155171 + 0.268764i −0.933121 0.359562i \(-0.882926\pi\)
0.777950 + 0.628326i \(0.216259\pi\)
\(44\) 6.04251i 0.910942i
\(45\) −1.75194 1.01148i −0.261164 0.150783i
\(46\) −6.90610 3.98724i −1.01825 0.587886i
\(47\) 9.03057i 1.31724i 0.752474 + 0.658622i \(0.228860\pi\)
−0.752474 + 0.658622i \(0.771140\pi\)
\(48\) −0.494225 + 0.856023i −0.0713353 + 0.123556i
\(49\) 2.53138 + 4.38447i 0.361625 + 0.626353i
\(50\) 0.866025 0.500000i 0.122474 0.0707107i
\(51\) −2.03159 −0.284479
\(52\) 0 0
\(53\) −11.1847 −1.53633 −0.768165 0.640252i \(-0.778830\pi\)
−0.768165 + 0.640252i \(0.778830\pi\)
\(54\) 4.29978 2.48248i 0.585125 0.337822i
\(55\) −3.02125 5.23297i −0.407386 0.705613i
\(56\) −1.73657 + 3.00783i −0.232059 + 0.401939i
\(57\) 3.08152i 0.408157i
\(58\) −5.82865 3.36517i −0.765340 0.441869i
\(59\) 5.54418 + 3.20093i 0.721791 + 0.416726i 0.815411 0.578882i \(-0.196511\pi\)
−0.0936206 + 0.995608i \(0.529844\pi\)
\(60\) 0.988450i 0.127608i
\(61\) −6.52411 + 11.3001i −0.835327 + 1.44683i 0.0584376 + 0.998291i \(0.481388\pi\)
−0.893764 + 0.448537i \(0.851945\pi\)
\(62\) 4.48241 + 7.76376i 0.569267 + 0.985999i
\(63\) 6.08475 3.51303i 0.766606 0.442600i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 5.97272 0.735191
\(67\) 7.35812 4.24821i 0.898937 0.519002i 0.0220821 0.999756i \(-0.492970\pi\)
0.876855 + 0.480754i \(0.159637\pi\)
\(68\) −1.02766 1.77997i −0.124622 0.215852i
\(69\) 3.94119 6.82634i 0.474463 0.821794i
\(70\) 3.47315i 0.415121i
\(71\) 0.105653 + 0.0609989i 0.0125387 + 0.00723924i 0.506256 0.862383i \(-0.331029\pi\)
−0.493718 + 0.869622i \(0.664362\pi\)
\(72\) 1.75194 + 1.01148i 0.206468 + 0.119204i
\(73\) 0.138022i 0.0161543i −0.999967 0.00807713i \(-0.997429\pi\)
0.999967 0.00807713i \(-0.00257106\pi\)
\(74\) −1.34763 + 2.33417i −0.156659 + 0.271342i
\(75\) 0.494225 + 0.856023i 0.0570682 + 0.0988450i
\(76\) 2.69985 1.55876i 0.309694 0.178802i
\(77\) 20.9865 2.39164
\(78\) 0 0
\(79\) −6.71618 −0.755630 −0.377815 0.925881i \(-0.623324\pi\)
−0.377815 + 0.925881i \(0.623324\pi\)
\(80\) −0.866025 + 0.500000i −0.0968246 + 0.0559017i
\(81\) −0.580644 1.00570i −0.0645160 0.111745i
\(82\) 1.61772 2.80196i 0.178647 0.309425i
\(83\) 3.03849i 0.333518i 0.985998 + 0.166759i \(0.0533302\pi\)
−0.985998 + 0.166759i \(0.946670\pi\)
\(84\) −2.97309 1.71652i −0.324391 0.187287i
\(85\) −1.77997 1.02766i −0.193064 0.111466i
\(86\) 2.03505i 0.219445i
\(87\) 3.32631 5.76133i 0.356618 0.617680i
\(88\) 3.02125 + 5.23297i 0.322067 + 0.557836i
\(89\) 2.93073 1.69206i 0.310657 0.179358i −0.336564 0.941661i \(-0.609265\pi\)
0.647220 + 0.762303i \(0.275931\pi\)
\(90\) 2.02297 0.213239
\(91\) 0 0
\(92\) 7.97448 0.831396
\(93\) −7.67409 + 4.43064i −0.795766 + 0.459436i
\(94\) −4.51529 7.82070i −0.465716 0.806644i
\(95\) 1.55876 2.69985i 0.159925 0.276999i
\(96\) 0.988450i 0.100883i
\(97\) −5.04478 2.91261i −0.512220 0.295730i 0.221526 0.975155i \(-0.428896\pi\)
−0.733746 + 0.679424i \(0.762230\pi\)
\(98\) −4.38447 2.53138i −0.442899 0.255708i
\(99\) 12.2238i 1.22854i
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −4.23936 7.34278i −0.421832 0.730634i 0.574287 0.818654i \(-0.305279\pi\)
−0.996119 + 0.0880200i \(0.971946\pi\)
\(102\) 1.75941 1.01579i 0.174207 0.100579i
\(103\) 4.96891 0.489601 0.244801 0.969573i \(-0.421278\pi\)
0.244801 + 0.969573i \(0.421278\pi\)
\(104\) 0 0
\(105\) −3.43303 −0.335030
\(106\) 9.68619 5.59233i 0.940806 0.543175i
\(107\) 2.58471 + 4.47685i 0.249874 + 0.432794i 0.963491 0.267742i \(-0.0862776\pi\)
−0.713617 + 0.700536i \(0.752944\pi\)
\(108\) −2.48248 + 4.29978i −0.238876 + 0.413746i
\(109\) 8.09832i 0.775678i −0.921727 0.387839i \(-0.873222\pi\)
0.921727 0.387839i \(-0.126778\pi\)
\(110\) 5.23297 + 3.02125i 0.498944 + 0.288065i
\(111\) −2.30721 1.33207i −0.218991 0.126434i
\(112\) 3.47315i 0.328182i
\(113\) 9.12839 15.8108i 0.858726 1.48736i −0.0144182 0.999896i \(-0.504590\pi\)
0.873144 0.487462i \(-0.162077\pi\)
\(114\) 1.54076 + 2.66867i 0.144305 + 0.249944i
\(115\) 6.90610 3.98724i 0.643997 0.371812i
\(116\) 6.73035 0.624897
\(117\) 0 0
\(118\) −6.40187 −0.589340
\(119\) 6.18208 3.56923i 0.566711 0.327190i
\(120\) −0.494225 0.856023i −0.0451164 0.0781439i
\(121\) 12.7560 22.0940i 1.15963 2.00854i
\(122\) 13.0482i 1.18133i
\(123\) 2.76960 + 1.59903i 0.249727 + 0.144180i
\(124\) −7.76376 4.48241i −0.697206 0.402532i
\(125\) 1.00000i 0.0894427i
\(126\) −3.51303 + 6.08475i −0.312966 + 0.542072i
\(127\) 0.144813 + 0.250823i 0.0128501 + 0.0222570i 0.872379 0.488830i \(-0.162576\pi\)
−0.859529 + 0.511087i \(0.829243\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 2.01154 0.177107
\(130\) 0 0
\(131\) −19.4914 −1.70297 −0.851486 0.524378i \(-0.824298\pi\)
−0.851486 + 0.524378i \(0.824298\pi\)
\(132\) −5.17253 + 2.98636i −0.450211 + 0.259929i
\(133\) 5.41381 + 9.37699i 0.469436 + 0.813088i
\(134\) −4.24821 + 7.35812i −0.366990 + 0.635645i
\(135\) 4.96495i 0.427315i
\(136\) 1.77997 + 1.02766i 0.152631 + 0.0881214i
\(137\) 3.20947 + 1.85299i 0.274204 + 0.158312i 0.630796 0.775948i \(-0.282728\pi\)
−0.356593 + 0.934260i \(0.616062\pi\)
\(138\) 7.88237i 0.670992i
\(139\) 5.19164 8.99218i 0.440349 0.762707i −0.557366 0.830267i \(-0.688188\pi\)
0.997715 + 0.0675600i \(0.0215214\pi\)
\(140\) −1.73657 3.00783i −0.146767 0.254208i
\(141\) 7.73038 4.46314i 0.651015 0.375864i
\(142\) −0.121998 −0.0102378
\(143\) 0 0
\(144\) −2.02297 −0.168580
\(145\) 5.82865 3.36517i 0.484043 0.279462i
\(146\) 0.0690110 + 0.119531i 0.00571139 + 0.00989242i
\(147\) 2.50214 4.33384i 0.206373 0.357449i
\(148\) 2.69527i 0.221550i
\(149\) 17.9543 + 10.3659i 1.47087 + 0.849209i 0.999465 0.0327070i \(-0.0104128\pi\)
0.471407 + 0.881916i \(0.343746\pi\)
\(150\) −0.856023 0.494225i −0.0698940 0.0403533i
\(151\) 20.5005i 1.66831i −0.551531 0.834154i \(-0.685956\pi\)
0.551531 0.834154i \(-0.314044\pi\)
\(152\) −1.55876 + 2.69985i −0.126432 + 0.218987i
\(153\) −2.07893 3.60081i −0.168071 0.291108i
\(154\) −18.1749 + 10.4933i −1.46457 + 0.845571i
\(155\) −8.96482 −0.720072
\(156\) 0 0
\(157\) 11.6082 0.926434 0.463217 0.886245i \(-0.346695\pi\)
0.463217 + 0.886245i \(0.346695\pi\)
\(158\) 5.81638 3.35809i 0.462727 0.267155i
\(159\) 5.52774 + 9.57432i 0.438378 + 0.759293i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 27.6965i 2.18279i
\(162\) 1.00570 + 0.580644i 0.0790156 + 0.0456197i
\(163\) 7.59971 + 4.38770i 0.595256 + 0.343671i 0.767173 0.641440i \(-0.221663\pi\)
−0.171917 + 0.985111i \(0.554996\pi\)
\(164\) 3.23543i 0.252645i
\(165\) −2.98636 + 5.17253i −0.232488 + 0.402681i
\(166\) −1.51925 2.63141i −0.117916 0.204237i
\(167\) −8.37270 + 4.83398i −0.647899 + 0.374065i −0.787651 0.616122i \(-0.788703\pi\)
0.139752 + 0.990187i \(0.455370\pi\)
\(168\) 3.43303 0.264864
\(169\) 0 0
\(170\) 2.05533 0.157636
\(171\) 5.46171 3.15332i 0.417667 0.241140i
\(172\) 1.01752 + 1.76240i 0.0775855 + 0.134382i
\(173\) −4.50037 + 7.79487i −0.342157 + 0.592633i −0.984833 0.173505i \(-0.944491\pi\)
0.642676 + 0.766138i \(0.277824\pi\)
\(174\) 6.65262i 0.504333i
\(175\) −3.00783 1.73657i −0.227371 0.131273i
\(176\) −5.23297 3.02125i −0.394450 0.227736i
\(177\) 6.32793i 0.475636i
\(178\) −1.69206 + 2.93073i −0.126825 + 0.219668i
\(179\) −5.56726 9.64278i −0.416117 0.720735i 0.579428 0.815023i \(-0.303276\pi\)
−0.995545 + 0.0942881i \(0.969943\pi\)
\(180\) −1.75194 + 1.01148i −0.130582 + 0.0753915i
\(181\) −1.63511 −0.121536 −0.0607682 0.998152i \(-0.519355\pi\)
−0.0607682 + 0.998152i \(0.519355\pi\)
\(182\) 0 0
\(183\) 12.8975 0.953412
\(184\) −6.90610 + 3.98724i −0.509124 + 0.293943i
\(185\) −1.34763 2.33417i −0.0990800 0.171612i
\(186\) 4.43064 7.67409i 0.324870 0.562692i
\(187\) 12.4193i 0.908191i
\(188\) 7.82070 + 4.51529i 0.570383 + 0.329311i
\(189\) −14.9338 8.62201i −1.08627 0.627159i
\(190\) 3.11752i 0.226169i
\(191\) −4.61924 + 8.00075i −0.334236 + 0.578914i −0.983338 0.181788i \(-0.941812\pi\)
0.649102 + 0.760702i \(0.275145\pi\)
\(192\) 0.494225 + 0.856023i 0.0356676 + 0.0617782i
\(193\) 6.30719 3.64146i 0.454001 0.262118i −0.255517 0.966804i \(-0.582246\pi\)
0.709519 + 0.704687i \(0.248912\pi\)
\(194\) 5.82521 0.418226
\(195\) 0 0
\(196\) 5.06275 0.361625
\(197\) −17.8180 + 10.2872i −1.26948 + 0.732933i −0.974889 0.222692i \(-0.928516\pi\)
−0.294588 + 0.955624i \(0.595182\pi\)
\(198\) 6.11189 + 10.5861i 0.434353 + 0.752322i
\(199\) −1.38553 + 2.39981i −0.0982179 + 0.170118i −0.910947 0.412523i \(-0.864648\pi\)
0.812729 + 0.582642i \(0.197981\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) −7.27314 4.19915i −0.513007 0.296185i
\(202\) 7.34278 + 4.23936i 0.516636 + 0.298280i
\(203\) 23.3755i 1.64064i
\(204\) −1.01579 + 1.75941i −0.0711198 + 0.123183i
\(205\) 1.61772 + 2.80196i 0.112986 + 0.195698i
\(206\) −4.30320 + 2.48445i −0.299818 + 0.173100i
\(207\) 16.1321 1.12126
\(208\) 0 0
\(209\) 18.8376 1.30303
\(210\) 2.97309 1.71652i 0.205163 0.118451i
\(211\) −10.6377 18.4251i −0.732332 1.26844i −0.955884 0.293745i \(-0.905098\pi\)
0.223552 0.974692i \(-0.428235\pi\)
\(212\) −5.59233 + 9.68619i −0.384083 + 0.665250i
\(213\) 0.120589i 0.00826261i
\(214\) −4.47685 2.58471i −0.306031 0.176687i
\(215\) 1.76240 + 1.01752i 0.120195 + 0.0693945i
\(216\) 4.96495i 0.337822i
\(217\) 15.5681 26.9647i 1.05683 1.83048i
\(218\) 4.04916 + 7.01335i 0.274244 + 0.475004i
\(219\) −0.118150 + 0.0682140i −0.00798384 + 0.00460947i
\(220\) −6.04251 −0.407386
\(221\) 0 0
\(222\) 2.66414 0.178805
\(223\) −6.37306 + 3.67949i −0.426772 + 0.246397i −0.697970 0.716127i \(-0.745913\pi\)
0.271199 + 0.962523i \(0.412580\pi\)
\(224\) 1.73657 + 3.00783i 0.116030 + 0.200969i
\(225\) −1.01148 + 1.75194i −0.0674322 + 0.116796i
\(226\) 18.2568i 1.21442i
\(227\) −18.4665 10.6616i −1.22566 0.707637i −0.259543 0.965732i \(-0.583572\pi\)
−0.966120 + 0.258095i \(0.916905\pi\)
\(228\) −2.66867 1.54076i −0.176737 0.102039i
\(229\) 15.7929i 1.04363i 0.853060 + 0.521813i \(0.174744\pi\)
−0.853060 + 0.521813i \(0.825256\pi\)
\(230\) −3.98724 + 6.90610i −0.262911 + 0.455375i
\(231\) −10.3721 17.9649i −0.682432 1.18201i
\(232\) −5.82865 + 3.36517i −0.382670 + 0.220934i
\(233\) −8.13040 −0.532640 −0.266320 0.963885i \(-0.585808\pi\)
−0.266320 + 0.963885i \(0.585808\pi\)
\(234\) 0 0
\(235\) 9.03057 0.589089
\(236\) 5.54418 3.20093i 0.360895 0.208363i
\(237\) 3.31931 + 5.74921i 0.215612 + 0.373451i
\(238\) −3.56923 + 6.18208i −0.231359 + 0.400725i
\(239\) 12.5247i 0.810154i −0.914283 0.405077i \(-0.867245\pi\)
0.914283 0.405077i \(-0.132755\pi\)
\(240\) 0.856023 + 0.494225i 0.0552561 + 0.0319021i
\(241\) 3.10711 + 1.79389i 0.200146 + 0.115555i 0.596724 0.802447i \(-0.296469\pi\)
−0.396577 + 0.918001i \(0.629802\pi\)
\(242\) 25.5119i 1.63997i
\(243\) −8.02137 + 13.8934i −0.514571 + 0.891263i
\(244\) 6.52411 + 11.3001i 0.417663 + 0.723414i
\(245\) 4.38447 2.53138i 0.280114 0.161724i
\(246\) −3.19806 −0.203901
\(247\) 0 0
\(248\) 8.96482 0.569267
\(249\) 2.60102 1.50170i 0.164833 0.0951664i
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) −7.53629 + 13.0532i −0.475686 + 0.823912i −0.999612 0.0278513i \(-0.991134\pi\)
0.523926 + 0.851764i \(0.324467\pi\)
\(252\) 7.02606i 0.442600i
\(253\) 41.7302 + 24.0929i 2.62355 + 1.51471i
\(254\) −0.250823 0.144813i −0.0157381 0.00908637i
\(255\) 2.03159i 0.127223i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 11.1902 + 19.3820i 0.698026 + 1.20902i 0.969150 + 0.246472i \(0.0792714\pi\)
−0.271124 + 0.962544i \(0.587395\pi\)
\(258\) −1.74205 + 1.00577i −0.108455 + 0.0626166i
\(259\) 9.36106 0.581668
\(260\) 0 0
\(261\) 13.6153 0.842764
\(262\) 16.8800 9.74570i 1.04285 0.602091i
\(263\) −9.36507 16.2208i −0.577475 1.00022i −0.995768 0.0919039i \(-0.970705\pi\)
0.418293 0.908312i \(-0.362629\pi\)
\(264\) 2.98636 5.17253i 0.183798 0.318347i
\(265\) 11.1847i 0.687068i
\(266\) −9.37699 5.41381i −0.574940 0.331942i
\(267\) −2.89688 1.67252i −0.177286 0.102356i
\(268\) 8.49642i 0.519002i
\(269\) −3.26966 + 5.66322i −0.199355 + 0.345292i −0.948319 0.317317i \(-0.897218\pi\)
0.748965 + 0.662610i \(0.230551\pi\)
\(270\) −2.48248 4.29978i −0.151079 0.261676i
\(271\) 2.48068 1.43222i 0.150691 0.0870013i −0.422759 0.906242i \(-0.638938\pi\)
0.573449 + 0.819241i \(0.305605\pi\)
\(272\) −2.05533 −0.124622
\(273\) 0 0
\(274\) −3.70598 −0.223886
\(275\) −5.23297 + 3.02125i −0.315560 + 0.182188i
\(276\) −3.94119 6.82634i −0.237232 0.410897i
\(277\) −1.40342 + 2.43079i −0.0843233 + 0.146052i −0.905103 0.425193i \(-0.860206\pi\)
0.820779 + 0.571245i \(0.193540\pi\)
\(278\) 10.3833i 0.622747i
\(279\) −15.7058 9.06776i −0.940283 0.542873i
\(280\) 3.00783 + 1.73657i 0.179752 + 0.103780i
\(281\) 25.8974i 1.54491i −0.635071 0.772453i \(-0.719029\pi\)
0.635071 0.772453i \(-0.280971\pi\)
\(282\) −4.46314 + 7.73038i −0.265776 + 0.460337i
\(283\) −14.4387 25.0086i −0.858292 1.48661i −0.873557 0.486722i \(-0.838193\pi\)
0.0152651 0.999883i \(-0.495141\pi\)
\(284\) 0.105653 0.0609989i 0.00626937 0.00361962i
\(285\) −3.08152 −0.182533
\(286\) 0 0
\(287\) −11.2371 −0.663307
\(288\) 1.75194 1.01148i 0.103234 0.0596022i
\(289\) 6.38782 + 11.0640i 0.375754 + 0.650825i
\(290\) −3.36517 + 5.82865i −0.197610 + 0.342270i
\(291\) 5.75794i 0.337536i
\(292\) −0.119531 0.0690110i −0.00699500 0.00403856i
\(293\) 9.59726 + 5.54098i 0.560678 + 0.323708i 0.753418 0.657542i \(-0.228404\pi\)
−0.192740 + 0.981250i \(0.561737\pi\)
\(294\) 5.00428i 0.291856i
\(295\) 3.20093 5.54418i 0.186366 0.322795i
\(296\) 1.34763 + 2.33417i 0.0783296 + 0.135671i
\(297\) −25.9814 + 15.0004i −1.50760 + 0.870410i
\(298\) −20.7318 −1.20096
\(299\) 0 0
\(300\) 0.988450 0.0570682
\(301\) −6.12108 + 3.53401i −0.352813 + 0.203697i
\(302\) 10.2503 + 17.7540i 0.589836 + 1.02163i
\(303\) −4.19039 + 7.25798i −0.240732 + 0.416960i
\(304\) 3.11752i 0.178802i
\(305\) 11.3001 + 6.52411i 0.647041 + 0.373569i
\(306\) 3.60081 + 2.07893i 0.205845 + 0.118844i
\(307\) 6.38045i 0.364152i −0.983284 0.182076i \(-0.941718\pi\)
0.983284 0.182076i \(-0.0582816\pi\)
\(308\) 10.4933 18.1749i 0.597909 1.03561i
\(309\) −2.45576 4.25350i −0.139703 0.241973i
\(310\) 7.76376 4.48241i 0.440952 0.254584i
\(311\) −18.9443 −1.07423 −0.537115 0.843509i \(-0.680486\pi\)
−0.537115 + 0.843509i \(0.680486\pi\)
\(312\) 0 0
\(313\) −17.5007 −0.989196 −0.494598 0.869122i \(-0.664685\pi\)
−0.494598 + 0.869122i \(0.664685\pi\)
\(314\) −10.0530 + 5.80409i −0.567323 + 0.327544i
\(315\) −3.51303 6.08475i −0.197937 0.342837i
\(316\) −3.35809 + 5.81638i −0.188907 + 0.327197i
\(317\) 34.2450i 1.92339i 0.274121 + 0.961695i \(0.411613\pi\)
−0.274121 + 0.961695i \(0.588387\pi\)
\(318\) −9.57432 5.52774i −0.536901 0.309980i
\(319\) 35.2197 + 20.3341i 1.97192 + 1.13849i
\(320\) 1.00000i 0.0559017i
\(321\) 2.55486 4.42515i 0.142598 0.246988i
\(322\) −13.8483 23.9859i −0.771734 1.33668i
\(323\) 5.54908 3.20376i 0.308759 0.178262i
\(324\) −1.16129 −0.0645160
\(325\) 0 0
\(326\) −8.77539 −0.486024
\(327\) −6.93235 + 4.00239i −0.383360 + 0.221333i
\(328\) −1.61772 2.80196i −0.0893234 0.154713i
\(329\) −15.6823 + 27.1625i −0.864591 + 1.49751i
\(330\) 5.97272i 0.328787i
\(331\) 7.14286 + 4.12393i 0.392607 + 0.226672i 0.683289 0.730148i \(-0.260549\pi\)
−0.290682 + 0.956820i \(0.593882\pi\)
\(332\) 2.63141 + 1.51925i 0.144417 + 0.0833795i
\(333\) 5.45243i 0.298792i
\(334\) 4.83398 8.37270i 0.264504 0.458134i
\(335\) −4.24821 7.35812i −0.232105 0.402017i
\(336\) −2.97309 + 1.71652i −0.162196 + 0.0936437i
\(337\) −12.1509 −0.661902 −0.330951 0.943648i \(-0.607369\pi\)
−0.330951 + 0.943648i \(0.607369\pi\)
\(338\) 0 0
\(339\) −18.0459 −0.980120
\(340\) −1.77997 + 1.02766i −0.0965322 + 0.0557329i
\(341\) −27.0850 46.9126i −1.46673 2.54046i
\(342\) −3.15332 + 5.46171i −0.170512 + 0.295335i
\(343\) 6.72834i 0.363296i
\(344\) −1.76240 1.01752i −0.0950224 0.0548612i
\(345\) −6.82634 3.94119i −0.367518 0.212186i
\(346\) 9.00074i 0.483883i
\(347\) 7.35376 12.7371i 0.394770 0.683762i −0.598301 0.801271i \(-0.704157\pi\)
0.993072 + 0.117509i \(0.0374908\pi\)
\(348\) −3.32631 5.76133i −0.178309 0.308840i
\(349\) −23.9415 + 13.8226i −1.28156 + 0.739908i −0.977133 0.212629i \(-0.931798\pi\)
−0.304425 + 0.952536i \(0.598464\pi\)
\(350\) 3.47315 0.185648
\(351\) 0 0
\(352\) 6.04251 0.322067
\(353\) −13.0685 + 7.54512i −0.695568 + 0.401586i −0.805694 0.592331i \(-0.798208\pi\)
0.110127 + 0.993918i \(0.464874\pi\)
\(354\) 3.16396 + 5.48015i 0.168163 + 0.291267i
\(355\) 0.0609989 0.105653i 0.00323749 0.00560749i
\(356\) 3.38412i 0.179358i
\(357\) −6.11068 3.52800i −0.323412 0.186722i
\(358\) 9.64278 + 5.56726i 0.509637 + 0.294239i
\(359\) 10.0380i 0.529786i 0.964278 + 0.264893i \(0.0853367\pi\)
−0.964278 + 0.264893i \(0.914663\pi\)
\(360\) 1.01148 1.75194i 0.0533098 0.0923353i
\(361\) −4.64053 8.03763i −0.244238 0.423033i
\(362\) 1.41604 0.817553i 0.0744256 0.0429696i
\(363\) −25.2172 −1.32356
\(364\) 0 0
\(365\) −0.138022 −0.00722440
\(366\) −11.1696 + 6.44876i −0.583843 + 0.337082i
\(367\) 12.2676 + 21.2482i 0.640365 + 1.10915i 0.985351 + 0.170537i \(0.0545503\pi\)
−0.344986 + 0.938608i \(0.612116\pi\)
\(368\) 3.98724 6.90610i 0.207849 0.360005i
\(369\) 6.54516i 0.340728i
\(370\) 2.33417 + 1.34763i 0.121348 + 0.0700601i
\(371\) −33.6416 19.4230i −1.74658 1.00839i
\(372\) 8.86128i 0.459436i
\(373\) 0.621835 1.07705i 0.0321974 0.0557675i −0.849478 0.527625i \(-0.823083\pi\)
0.881675 + 0.471857i \(0.156416\pi\)
\(374\) 6.20966 + 10.7555i 0.321094 + 0.556151i
\(375\) 0.856023 0.494225i 0.0442048 0.0255217i
\(376\) −9.03057 −0.465716
\(377\) 0 0
\(378\) 17.2440 0.886936
\(379\) −15.9619 + 9.21560i −0.819907 + 0.473373i −0.850384 0.526162i \(-0.823631\pi\)
0.0304775 + 0.999535i \(0.490297\pi\)
\(380\) −1.55876 2.69985i −0.0799627 0.138500i
\(381\) 0.143140 0.247926i 0.00733330 0.0127017i
\(382\) 9.23847i 0.472681i
\(383\) −22.3707 12.9157i −1.14309 0.659963i −0.195896 0.980625i \(-0.562761\pi\)
−0.947194 + 0.320662i \(0.896095\pi\)
\(384\) −0.856023 0.494225i −0.0436838 0.0252208i
\(385\) 20.9865i 1.06957i
\(386\) −3.64146 + 6.30719i −0.185345 + 0.321027i
\(387\) 2.05842 + 3.56528i 0.104635 + 0.181233i
\(388\) −5.04478 + 2.91261i −0.256110 + 0.147865i
\(389\) −31.2329 −1.58357 −0.791784 0.610801i \(-0.790848\pi\)
−0.791784 + 0.610801i \(0.790848\pi\)
\(390\) 0 0
\(391\) 16.3902 0.828886
\(392\) −4.38447 + 2.53138i −0.221449 + 0.127854i
\(393\) 9.63314 + 16.6851i 0.485928 + 0.841651i
\(394\) 10.2872 17.8180i 0.518262 0.897655i
\(395\) 6.71618i 0.337928i
\(396\) −10.5861 6.11189i −0.531972 0.307134i
\(397\) 24.3492 + 14.0580i 1.22205 + 0.705553i 0.965355 0.260939i \(-0.0840321\pi\)
0.256698 + 0.966492i \(0.417365\pi\)
\(398\) 2.77107i 0.138901i
\(399\) 5.35128 9.26869i 0.267899 0.464015i
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) 5.33234 3.07863i 0.266284 0.153739i −0.360914 0.932599i \(-0.617535\pi\)
0.627198 + 0.778860i \(0.284202\pi\)
\(402\) 8.39829 0.418869
\(403\) 0 0
\(404\) −8.47871 −0.421832
\(405\) −1.00570 + 0.580644i −0.0499739 + 0.0288524i
\(406\) −11.6877 20.2438i −0.580053 1.00468i
\(407\) 8.14309 14.1042i 0.403638 0.699121i
\(408\) 2.03159i 0.100579i
\(409\) −22.9330 13.2403i −1.13396 0.654693i −0.189033 0.981971i \(-0.560535\pi\)
−0.944928 + 0.327278i \(0.893869\pi\)
\(410\) −2.80196 1.61772i −0.138379 0.0798933i
\(411\) 3.66318i 0.180691i
\(412\) 2.48445 4.30320i 0.122400 0.212003i
\(413\) 11.1173 + 19.2558i 0.547047 + 0.947514i
\(414\) −13.9708 + 8.06604i −0.686627 + 0.396424i
\(415\) 3.03849 0.149154
\(416\) 0 0
\(417\) −10.2634 −0.502599
\(418\) −16.3139 + 9.41882i −0.797938 + 0.460690i
\(419\) 5.92699 + 10.2659i 0.289553 + 0.501520i 0.973703 0.227821i \(-0.0731602\pi\)
−0.684150 + 0.729341i \(0.739827\pi\)
\(420\) −1.71652 + 2.97309i −0.0837575 + 0.145072i
\(421\) 9.48437i 0.462240i −0.972925 0.231120i \(-0.925761\pi\)
0.972925 0.231120i \(-0.0742390\pi\)
\(422\) 18.4251 + 10.6377i 0.896920 + 0.517837i
\(423\) 15.8210 + 9.13427i 0.769244 + 0.444123i
\(424\) 11.1847i 0.543175i
\(425\) −1.02766 + 1.77997i −0.0498490 + 0.0863410i
\(426\) 0.0602944 + 0.104433i 0.00292127 + 0.00505979i
\(427\) −39.2469 + 22.6592i −1.89929 + 1.09656i
\(428\) 5.16942 0.249874
\(429\) 0 0
\(430\) −2.03505 −0.0981387
\(431\) 12.2261 7.05875i 0.588911 0.340008i −0.175756 0.984434i \(-0.556237\pi\)
0.764667 + 0.644426i \(0.222904\pi\)
\(432\) 2.48248 + 4.29978i 0.119438 + 0.206873i
\(433\) 13.1597 22.7932i 0.632414 1.09537i −0.354643 0.935002i \(-0.615398\pi\)
0.987057 0.160371i \(-0.0512691\pi\)
\(434\) 31.1361i 1.49458i
\(435\) −5.76133 3.32631i −0.276235 0.159484i
\(436\) −7.01335 4.04916i −0.335879 0.193920i
\(437\) 24.8606i 1.18924i
\(438\) 0.0682140 0.118150i 0.00325939 0.00564543i
\(439\) −13.2985 23.0336i −0.634702 1.09934i −0.986578 0.163289i \(-0.947790\pi\)
0.351877 0.936046i \(-0.385544\pi\)
\(440\) 5.23297 3.02125i 0.249472 0.144033i
\(441\) 10.2418 0.487704
\(442\) 0 0
\(443\) 15.9166 0.756222 0.378111 0.925760i \(-0.376574\pi\)
0.378111 + 0.925760i \(0.376574\pi\)
\(444\) −2.30721 + 1.33207i −0.109495 + 0.0632172i
\(445\) −1.69206 2.93073i −0.0802113 0.138930i
\(446\) 3.67949 6.37306i 0.174229 0.301773i
\(447\) 20.4924i 0.969256i
\(448\) −3.00783 1.73657i −0.142107 0.0820454i
\(449\) 33.5454 + 19.3675i 1.58311 + 0.914007i 0.994402 + 0.105659i \(0.0336953\pi\)
0.588705 + 0.808348i \(0.299638\pi\)
\(450\) 2.02297i 0.0953635i
\(451\) −9.77506 + 16.9309i −0.460289 + 0.797245i
\(452\) −9.12839 15.8108i −0.429363 0.743679i
\(453\) −17.5489 + 10.1319i −0.824520 + 0.476037i
\(454\) 21.3232 1.00075
\(455\) 0 0
\(456\) 3.08152 0.144305
\(457\) 12.1538 7.01701i 0.568532 0.328242i −0.188031 0.982163i \(-0.560210\pi\)
0.756563 + 0.653921i \(0.226877\pi\)
\(458\) −7.89647 13.6771i −0.368978 0.639088i
\(459\) −5.10230 + 8.83744i −0.238155 + 0.412497i
\(460\) 7.97448i 0.371812i
\(461\) 7.79551 + 4.50074i 0.363073 + 0.209620i 0.670428 0.741975i \(-0.266111\pi\)
−0.307355 + 0.951595i \(0.599444\pi\)
\(462\) 17.9649 + 10.3721i 0.835805 + 0.482552i
\(463\) 34.7780i 1.61627i 0.588997 + 0.808135i \(0.299523\pi\)
−0.588997 + 0.808135i \(0.700477\pi\)
\(464\) 3.36517 5.82865i 0.156224 0.270588i
\(465\) 4.43064 + 7.67409i 0.205466 + 0.355878i
\(466\) 7.04113 4.06520i 0.326174 0.188317i
\(467\) −18.1864 −0.841568 −0.420784 0.907161i \(-0.638245\pi\)
−0.420784 + 0.907161i \(0.638245\pi\)
\(468\) 0 0
\(469\) 29.5093 1.36261
\(470\) −7.82070 + 4.51529i −0.360742 + 0.208275i
\(471\) −5.73706 9.93687i −0.264350 0.457867i
\(472\) −3.20093 + 5.54418i −0.147335 + 0.255192i
\(473\) 12.2968i 0.565407i
\(474\) −5.74921 3.31931i −0.264070 0.152461i
\(475\) −2.69985 1.55876i −0.123878 0.0715208i
\(476\) 7.13845i 0.327190i
\(477\) −11.3131 + 19.5948i −0.517991 + 0.897186i
\(478\) 6.26234 + 10.8467i 0.286433 + 0.496116i
\(479\) 27.7954 16.0477i 1.27000 0.733238i 0.295016 0.955492i \(-0.404675\pi\)
0.974989 + 0.222255i \(0.0713417\pi\)
\(480\) −0.988450 −0.0451164
\(481\) 0 0
\(482\) −3.58778 −0.163419
\(483\) 23.7089 13.6883i 1.07879 0.622840i
\(484\) −12.7560 22.0940i −0.579816 1.00427i
\(485\) −2.91261 + 5.04478i −0.132255 + 0.229072i
\(486\) 16.0427i 0.727713i
\(487\) −27.1309 15.6640i −1.22942 0.709804i −0.262509 0.964929i \(-0.584550\pi\)
−0.966908 + 0.255125i \(0.917883\pi\)
\(488\) −11.3001 6.52411i −0.511531 0.295333i
\(489\) 8.67404i 0.392254i
\(490\) −2.53138 + 4.38447i −0.114356 + 0.198070i
\(491\) −3.63614 6.29798i −0.164097 0.284224i 0.772237 0.635334i \(-0.219138\pi\)
−0.936334 + 0.351110i \(0.885804\pi\)
\(492\) 2.76960 1.59903i 0.124863 0.0720899i
\(493\) 13.8331 0.623010
\(494\) 0 0
\(495\) −12.2238 −0.549418
\(496\) −7.76376 + 4.48241i −0.348603 + 0.201266i
\(497\) 0.211858 + 0.366949i 0.00950314 + 0.0164599i
\(498\) −1.50170 + 2.60102i −0.0672928 + 0.116555i
\(499\) 9.57876i 0.428804i −0.976745 0.214402i \(-0.931220\pi\)
0.976745 0.214402i \(-0.0687803\pi\)
\(500\) 0.866025 + 0.500000i 0.0387298 + 0.0223607i
\(501\) 8.27600 + 4.77815i 0.369744 + 0.213472i
\(502\) 15.0726i 0.672722i
\(503\) −3.22712 + 5.58954i −0.143890 + 0.249225i −0.928958 0.370184i \(-0.879295\pi\)
0.785068 + 0.619409i \(0.212628\pi\)
\(504\) 3.51303 + 6.08475i 0.156483 + 0.271036i
\(505\) −7.34278 + 4.23936i −0.326750 + 0.188649i
\(506\) −48.1858 −2.14212
\(507\) 0 0
\(508\) 0.289626 0.0128501
\(509\) −2.69443 + 1.55563i −0.119429 + 0.0689521i −0.558524 0.829488i \(-0.688632\pi\)
0.439096 + 0.898440i \(0.355299\pi\)
\(510\) −1.01579 1.75941i −0.0449801 0.0779079i
\(511\) 0.239685 0.415147i 0.0106031 0.0183650i
\(512\) 1.00000i 0.0441942i
\(513\) −13.4046 7.73917i −0.591829 0.341693i
\(514\) −19.3820 11.1902i −0.854904 0.493579i
\(515\) 4.96891i 0.218956i
\(516\) 1.00577 1.74205i 0.0442766 0.0766894i
\(517\) 27.2836 + 47.2567i 1.19993 + 2.07835i
\(518\) −8.10692 + 4.68053i −0.356198 + 0.205651i
\(519\) 8.89678 0.390525
\(520\) 0 0
\(521\) 42.6003 1.86635 0.933177 0.359416i \(-0.117024\pi\)
0.933177 + 0.359416i \(0.117024\pi\)
\(522\) −11.7912 + 6.80763i −0.516085 + 0.297962i
\(523\) 0.673013 + 1.16569i 0.0294288 + 0.0509722i 0.880365 0.474297i \(-0.157298\pi\)
−0.850936 + 0.525270i \(0.823964\pi\)
\(524\) −9.74570 + 16.8800i −0.425743 + 0.737408i
\(525\) 3.43303i 0.149830i
\(526\) 16.2208 + 9.36507i 0.707260 + 0.408337i
\(527\) −15.9571 9.21282i −0.695101 0.401317i
\(528\) 5.97272i 0.259929i
\(529\) −20.2961 + 35.1539i −0.882440 + 1.52843i
\(530\) −5.59233 9.68619i −0.242915 0.420741i
\(531\) 11.2157 6.47538i 0.486719 0.281008i
\(532\) 10.8276 0.469436
\(533\) 0 0
\(534\) 3.34503 0.144754
\(535\) 4.47685 2.58471i 0.193551 0.111747i
\(536\) 4.24821 + 7.35812i 0.183495 + 0.317822i
\(537\) −5.50296 + 9.53141i −0.237470 + 0.411311i
\(538\) 6.53932i 0.281930i
\(539\) 26.4932 + 15.2959i 1.14114 + 0.658840i
\(540\) 4.29978 + 2.48248i 0.185033 + 0.106829i
\(541\) 21.9468i 0.943567i −0.881714 0.471784i \(-0.843610\pi\)
0.881714 0.471784i \(-0.156390\pi\)
\(542\) −1.43222 + 2.48068i −0.0615192 + 0.106554i
\(543\) 0.808110 + 1.39969i 0.0346793 + 0.0600664i
\(544\) 1.77997 1.02766i 0.0763154 0.0440607i
\(545\) −8.09832 −0.346894
\(546\) 0 0
\(547\) −26.7344 −1.14308 −0.571540 0.820574i \(-0.693654\pi\)
−0.571540 + 0.820574i \(0.693654\pi\)
\(548\) 3.20947 1.85299i 0.137102 0.0791558i
\(549\) 13.1980 + 22.8597i 0.563279 + 0.975628i
\(550\) 3.02125 5.23297i 0.128827 0.223134i
\(551\) 20.9820i 0.893863i
\(552\) 6.82634 + 3.94119i 0.290548 + 0.167748i
\(553\) −20.2012 11.6631i −0.859041 0.495967i
\(554\) 2.80684i 0.119251i
\(555\) −1.33207 + 2.30721i −0.0565432 + 0.0979357i
\(556\) −5.19164 8.99218i −0.220174 0.381353i
\(557\) −14.9708 + 8.64340i −0.634333 + 0.366233i −0.782428 0.622741i \(-0.786019\pi\)
0.148095 + 0.988973i \(0.452686\pi\)
\(558\) 18.1355 0.767738
\(559\) 0 0
\(560\) −3.47315 −0.146767
\(561\) −10.6312 + 6.13795i −0.448851 + 0.259144i
\(562\) 12.9487 + 22.4278i 0.546207 + 0.946058i
\(563\) −18.1162 + 31.3782i −0.763508 + 1.32243i 0.177524 + 0.984117i \(0.443191\pi\)
−0.941032 + 0.338318i \(0.890142\pi\)
\(564\) 8.92627i 0.375864i
\(565\) −15.8108 9.12839i −0.665167 0.384034i
\(566\) 25.0086 + 14.4387i 1.05119 + 0.606904i
\(567\) 4.03332i 0.169384i
\(568\) −0.0609989 + 0.105653i −0.00255946 + 0.00443311i
\(569\) 10.7431 + 18.6076i 0.450375 + 0.780072i 0.998409 0.0563839i \(-0.0179571\pi\)
−0.548034 + 0.836456i \(0.684624\pi\)
\(570\) 2.66867 1.54076i 0.111778 0.0645352i
\(571\) −16.8212 −0.703944 −0.351972 0.936011i \(-0.614489\pi\)
−0.351972 + 0.936011i \(0.614489\pi\)
\(572\) 0 0
\(573\) 9.13177 0.381485
\(574\) 9.73164 5.61856i 0.406191 0.234514i
\(575\) −3.98724 6.90610i −0.166279 0.288004i
\(576\) −1.01148 + 1.75194i −0.0421451 + 0.0729975i
\(577\) 33.5996i 1.39877i −0.714746 0.699384i \(-0.753458\pi\)
0.714746 0.699384i \(-0.246542\pi\)
\(578\) −11.0640 6.38782i −0.460203 0.265698i
\(579\) −6.23434 3.59940i −0.259090 0.149586i
\(580\) 6.73035i 0.279462i
\(581\) −5.27657 + 9.13928i −0.218909 + 0.379161i
\(582\) −2.87897 4.98652i −0.119337 0.206698i
\(583\) −58.5289 + 33.7917i −2.42402 + 1.39951i
\(584\) 0.138022 0.00571139
\(585\) 0 0
\(586\) −11.0820 −0.457792
\(587\) −22.9482 + 13.2491i −0.947172 + 0.546850i −0.892201 0.451638i \(-0.850840\pi\)
−0.0549709 + 0.998488i \(0.517507\pi\)
\(588\) −2.50214 4.33384i −0.103187 0.178724i
\(589\) 13.9740 24.2037i 0.575789 0.997296i
\(590\) 6.40187i 0.263561i
\(591\) 17.6122 + 10.1684i 0.724468 + 0.418272i
\(592\) −2.33417 1.34763i −0.0959338 0.0553874i
\(593\) 33.8602i 1.39047i −0.718783 0.695235i \(-0.755300\pi\)
0.718783 0.695235i \(-0.244700\pi\)
\(594\) 15.0004 25.9814i 0.615473 1.06603i
\(595\) −3.56923 6.18208i −0.146324 0.253441i
\(596\) 17.9543 10.3659i 0.735436 0.424604i
\(597\) 2.73906 0.112102
\(598\) 0 0
\(599\) 15.5745 0.636358 0.318179 0.948031i \(-0.396929\pi\)
0.318179 + 0.948031i \(0.396929\pi\)
\(600\) −0.856023 + 0.494225i −0.0349470 + 0.0201767i
\(601\) 16.8801 + 29.2372i 0.688555 + 1.19261i 0.972305 + 0.233714i \(0.0750879\pi\)
−0.283751 + 0.958898i \(0.591579\pi\)
\(602\) 3.53401 6.12108i 0.144035 0.249477i
\(603\) 17.1880i 0.699948i
\(604\) −17.7540 10.2503i −0.722399 0.417077i
\(605\) −22.0940 12.7560i −0.898247 0.518603i
\(606\) 8.38079i 0.340446i
\(607\) 3.55160 6.15154i 0.144155 0.249683i −0.784902 0.619619i \(-0.787287\pi\)
0.929057 + 0.369936i \(0.120620\pi\)
\(608\) 1.55876 + 2.69985i 0.0632161 + 0.109493i
\(609\) 20.0100 11.5528i 0.810845 0.468141i
\(610\) −13.0482 −0.528307
\(611\) 0 0
\(612\) −4.15786 −0.168071
\(613\) 14.8367 8.56598i 0.599249 0.345976i −0.169497 0.985531i \(-0.554214\pi\)
0.768746 + 0.639554i \(0.220881\pi\)
\(614\) 3.19023 + 5.52563i 0.128747 + 0.222996i
\(615\) 1.59903 2.76960i 0.0644792 0.111681i
\(616\) 20.9865i 0.845571i
\(617\) 18.3916 + 10.6184i 0.740416 + 0.427479i 0.822221 0.569169i \(-0.192735\pi\)
−0.0818045 + 0.996648i \(0.526068\pi\)
\(618\) 4.25350 + 2.45576i 0.171101 + 0.0987851i
\(619\) 23.8169i 0.957284i 0.878010 + 0.478642i \(0.158871\pi\)
−0.878010 + 0.478642i \(0.841129\pi\)
\(620\) −4.48241 + 7.76376i −0.180018 + 0.311800i
\(621\) −19.7964 34.2884i −0.794404 1.37595i
\(622\) 16.4062 9.47213i 0.657829 0.379798i
\(623\) 11.7535 0.470896
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 15.1560 8.75033i 0.605756 0.349734i
\(627\) −9.31004 16.1255i −0.371807 0.643989i
\(628\) 5.80409 10.0530i 0.231608 0.401158i
\(629\) 5.53966i 0.220881i
\(630\) 6.08475 + 3.51303i 0.242422 + 0.139962i
\(631\) −9.64325 5.56753i −0.383892 0.221640i 0.295619 0.955306i \(-0.404474\pi\)
−0.679510 + 0.733666i \(0.737808\pi\)
\(632\) 6.71618i 0.267155i
\(633\) −10.5149 + 18.2123i −0.417929 + 0.723874i
\(634\) −17.1225 29.6570i −0.680021 1.17783i
\(635\) 0.250823 0.144813i 0.00995362 0.00574672i
\(636\) 11.0555 0.438378
\(637\) 0 0
\(638\) −40.6682 −1.61007
\(639\) 0.213733 0.123399i 0.00845514 0.00488158i
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) −0.521743 + 0.903685i −0.0206076 + 0.0356934i −0.876145 0.482047i \(-0.839893\pi\)
0.855538 + 0.517741i \(0.173227\pi\)
\(642\) 5.10972i 0.201665i
\(643\) −5.87873 3.39409i −0.231835 0.133850i 0.379583 0.925157i \(-0.376067\pi\)
−0.611418 + 0.791308i \(0.709401\pi\)
\(644\) 23.9859 + 13.8483i 0.945177 + 0.545698i
\(645\) 2.01154i 0.0792044i
\(646\) −3.20376 + 5.54908i −0.126050 + 0.218326i
\(647\) −5.50186 9.52950i −0.216300 0.374643i 0.737374 0.675485i \(-0.236066\pi\)
−0.953674 + 0.300842i \(0.902732\pi\)
\(648\) 1.00570 0.580644i 0.0395078 0.0228098i
\(649\) 38.6833 1.51845
\(650\) 0 0
\(651\) −30.7765 −1.20623
\(652\) 7.59971 4.38770i 0.297628 0.171835i
\(653\) 1.67573 + 2.90244i 0.0655762 + 0.113581i 0.896949 0.442133i \(-0.145778\pi\)
−0.831373 + 0.555714i \(0.812445\pi\)
\(654\) 4.00239 6.93235i 0.156506 0.271076i
\(655\) 19.4914i 0.761592i
\(656\) 2.80196 + 1.61772i 0.109398 + 0.0631612i
\(657\) −0.241806 0.139607i −0.00943376 0.00544658i
\(658\) 31.3645i 1.22272i
\(659\) 2.23147 3.86501i 0.0869256 0.150560i −0.819285 0.573387i \(-0.805629\pi\)
0.906210 + 0.422828i \(0.138962\pi\)
\(660\) 2.98636 + 5.17253i 0.116244 + 0.201340i
\(661\) −9.26094 + 5.34681i −0.360209 + 0.207967i −0.669172 0.743107i \(-0.733351\pi\)
0.308963 + 0.951074i \(0.400018\pi\)
\(662\) −8.24786 −0.320562
\(663\) 0 0
\(664\) −3.03849 −0.117916
\(665\) 9.37699 5.41381i 0.363624 0.209938i
\(666\) 2.72622 + 4.72195i 0.105639 + 0.182972i
\(667\) −26.8355 + 46.4804i −1.03907 + 1.79973i
\(668\) 9.66796i 0.374065i
\(669\) 6.29945 + 3.63699i 0.243551 + 0.140614i
\(670\) 7.35812 + 4.24821i 0.284269 + 0.164123i
\(671\) 78.8440i 3.04374i
\(672\) 1.71652 2.97309i 0.0662161 0.114690i
\(673\) 4.16705 + 7.21754i 0.160628 + 0.278216i 0.935094 0.354400i \(-0.115315\pi\)
−0.774466 + 0.632615i \(0.781981\pi\)
\(674\) 10.5230 6.07545i 0.405330 0.234018i
\(675\) 4.96495 0.191101
\(676\) 0 0
\(677\) −10.4945 −0.403338 −0.201669 0.979454i \(-0.564637\pi\)
−0.201669 + 0.979454i \(0.564637\pi\)
\(678\) 15.6282 9.02296i 0.600198 0.346525i
\(679\) −10.1159 17.5213i −0.388213 0.672405i
\(680\) 1.02766 1.77997i 0.0394091 0.0682586i
\(681\) 21.0770i 0.807671i
\(682\) 46.9126 + 27.0850i 1.79638 + 1.03714i
\(683\) 3.71581 + 2.14532i 0.142182 + 0.0820886i 0.569403 0.822058i \(-0.307174\pi\)
−0.427222 + 0.904147i \(0.640508\pi\)
\(684\) 6.30664i 0.241140i
\(685\) 1.85299 3.20947i 0.0707991 0.122628i
\(686\) 3.36417 + 5.82691i 0.128445 + 0.222473i
\(687\) 13.5191 7.80527i 0.515787 0.297790i
\(688\) 2.03505 0.0775855
\(689\) 0 0
\(690\) 7.88237 0.300077
\(691\) 26.5236 15.3134i 1.00901 0.582550i 0.0981061 0.995176i \(-0.468722\pi\)
0.910901 + 0.412626i \(0.135388\pi\)
\(692\) 4.50037 + 7.79487i 0.171078 + 0.296316i
\(693\) 21.2275 36.7671i 0.806366 1.39667i
\(694\) 14.7075i 0.558290i
\(695\) −8.99218 5.19164i −0.341093 0.196930i
\(696\) 5.76133 + 3.32631i 0.218383 + 0.126083i
\(697\) 6.64987i 0.251882i
\(698\) 13.8226 23.9415i 0.523194 0.906198i
\(699\) 4.01825 + 6.95981i 0.151984 + 0.263244i
\(700\) −3.00783 + 1.73657i −0.113685 + 0.0656363i
\(701\) −8.16045 −0.308216 −0.154108 0.988054i \(-0.549250\pi\)
−0.154108 + 0.988054i \(0.549250\pi\)
\(702\) 0 0
\(703\) 8.40255 0.316908
\(704\) −5.23297 + 3.02125i −0.197225 + 0.113868i
\(705\) −4.46314 7.73038i −0.168091 0.291143i
\(706\) 7.54512 13.0685i 0.283964 0.491841i
\(707\) 29.4478i 1.10750i
\(708\) −5.48015 3.16396i −0.205957 0.118909i
\(709\) −27.8250 16.0648i −1.04499 0.603325i −0.123747 0.992314i \(-0.539491\pi\)
−0.921243 + 0.388989i \(0.872825\pi\)
\(710\) 0.121998i 0.00457850i
\(711\) −6.79330 + 11.7663i −0.254769 + 0.441272i
\(712\) 1.69206 + 2.93073i 0.0634126 + 0.109834i
\(713\) 61.9119 35.7449i 2.31862 1.33866i
\(714\) 7.05601 0.264064
\(715\) 0 0
\(716\) −11.1345 −0.416117
\(717\) −10.7214 + 6.19001i −0.400399 + 0.231170i
\(718\) −5.01901 8.69318i −0.187308 0.324427i
\(719\) 0.414515 0.717961i 0.0154588 0.0267754i −0.858193 0.513328i \(-0.828412\pi\)
0.873651 + 0.486553i \(0.161746\pi\)
\(720\) 2.02297i 0.0753915i
\(721\) 14.9457 + 8.62888i 0.556605 + 0.321356i
\(722\) 8.03763 + 4.64053i 0.299130 + 0.172703i
\(723\) 3.54634i 0.131890i
\(724\) −0.817553 + 1.41604i −0.0303841 + 0.0526268i
\(725\) −3.36517 5.82865i −0.124979 0.216471i
\(726\) 21.8388 12.6086i 0.810513 0.467950i
\(727\) 42.6451 1.58162 0.790810 0.612061i \(-0.209659\pi\)
0.790810 + 0.612061i \(0.209659\pi\)
\(728\) 0 0
\(729\) 12.3736 0.458281
\(730\) 0.119531 0.0690110i 0.00442403 0.00255421i
\(731\) 2.09134 + 3.62231i 0.0773511 + 0.133976i
\(732\) 6.44876 11.1696i 0.238353 0.412839i
\(733\) 30.2477i 1.11722i −0.829429 0.558612i \(-0.811334\pi\)
0.829429 0.558612i \(-0.188666\pi\)
\(734\) −21.2482 12.2676i −0.784284 0.452807i
\(735\) −4.33384 2.50214i −0.159856 0.0922929i
\(736\) 7.97448i 0.293943i
\(737\) 25.6699 44.4615i 0.945561 1.63776i
\(738\) −3.27258 5.66828i −0.120465 0.208652i
\(739\) 13.7656 7.94757i 0.506376 0.292356i −0.224967 0.974366i \(-0.572227\pi\)
0.731343 + 0.682010i \(0.238894\pi\)
\(740\) −2.69527 −0.0990800
\(741\) 0 0
\(742\) 38.8459 1.42608
\(743\) −6.62750 + 3.82639i −0.243139 + 0.140377i −0.616619 0.787262i \(-0.711498\pi\)
0.373479 + 0.927638i \(0.378165\pi\)
\(744\) −4.43064 7.67409i −0.162435 0.281346i
\(745\) 10.3659 17.9543i 0.379778 0.657794i
\(746\) 1.24367i 0.0455340i
\(747\) 5.32326 + 3.07338i 0.194768 + 0.112449i
\(748\) −10.7555 6.20966i −0.393258 0.227048i
\(749\) 17.9542i 0.656031i
\(750\) −0.494225 + 0.856023i −0.0180466 + 0.0312575i
\(751\) 15.1630 + 26.2631i 0.553305 + 0.958352i 0.998033 + 0.0626868i \(0.0199669\pi\)
−0.444728 + 0.895666i \(0.646700\pi\)
\(752\) 7.82070 4.51529i 0.285192 0.164656i
\(753\) 14.8985 0.542931
\(754\) 0 0
\(755\) −20.5005 −0.746090
\(756\) −14.9338 + 8.62201i −0.543135 + 0.313579i
\(757\) 10.4654 + 18.1266i 0.380372 + 0.658823i 0.991115 0.133005i \(-0.0424628\pi\)
−0.610744 + 0.791828i \(0.709129\pi\)
\(758\) 9.21560 15.9619i 0.334726 0.579762i
\(759\) 47.6293i 1.72883i
\(760\) 2.69985 + 1.55876i 0.0979339 + 0.0565422i
\(761\) −13.2186 7.63175i −0.479173 0.276651i 0.240899 0.970550i \(-0.422558\pi\)
−0.720072 + 0.693900i \(0.755891\pi\)
\(762\) 0.286281i 0.0103709i
\(763\) 14.0633 24.3584i 0.509127 0.881833i
\(764\) 4.61924 + 8.00075i 0.167118 + 0.289457i
\(765\) −3.60081 + 2.07893i −0.130188 + 0.0751638i
\(766\) 25.8315 0.933329
\(767\) 0 0
\(768\) 0.988450 0.0356676
\(769\) −14.1819 + 8.18791i −0.511411 + 0.295263i −0.733414 0.679783i \(-0.762074\pi\)
0.222002 + 0.975046i \(0.428741\pi\)
\(770\) 10.4933 + 18.1749i 0.378151 + 0.654977i
\(771\) 11.0610 19.1582i 0.398351 0.689964i
\(772\) 7.28291i 0.262118i
\(773\) −4.66097 2.69101i −0.167643 0.0967890i 0.413831 0.910354i \(-0.364191\pi\)
−0.581474 + 0.813565i \(0.697524\pi\)
\(774\) −3.56528 2.05842i −0.128151 0.0739882i
\(775\) 8.96482i 0.322026i
\(776\) 2.91261 5.04478i 0.104557 0.181097i
\(777\) −4.62647 8.01329i −0.165974 0.287475i
\(778\) 27.0485 15.6164i 0.969734 0.559876i
\(779\) −10.0865 −0.361387
\(780\) 0 0
\(781\) 0.737173 0.0263781
\(782\) −14.1943 + 8.19508i −0.507587 + 0.293055i
\(783\) −16.7079 28.9390i −0.597093 1.03419i
\(784\) 2.53138 4.38447i 0.0904063 0.156588i
\(785\) 11.6082i 0.414314i
\(786\) −16.6851 9.63314i −0.595137 0.343603i
\(787\) −22.7928 13.1594i −0.812477 0.469084i 0.0353385 0.999375i \(-0.488749\pi\)
−0.847815 + 0.530292i \(0.822082\pi\)
\(788\) 20.5744i 0.732933i
\(789\) −9.25691 + 16.0334i −0.329555 + 0.570806i
\(790\) −3.35809 5.81638i −0.119476 0.206938i
\(791\) 54.9133 31.7042i 1.95249 1.12727i
\(792\) 12.2238 0.434353
\(793\) 0 0
\(794\) −28.1161 −0.997802
\(795\) 9.57432 5.52774i 0.339566 0.196049i
\(796\) 1.38553 + 2.39981i 0.0491089 + 0.0850592i
\(797\) −11.4362 + 19.8081i −0.405091 + 0.701639i −0.994332 0.106319i \(-0.966094\pi\)
0.589241 + 0.807957i \(0.299427\pi\)
\(798\) 10.7026i 0.378866i
\(799\) 16.0741 + 9.28039i 0.568661 + 0.328317i
\(800\) −0.866025 0.500000i −0.0306186 0.0176777i
\(801\) 6.84595i 0.241890i
\(802\) −3.07863 + 5.33234i −0.108710 + 0.188291i
\(803\) −0.417000 0.722264i −0.0147156 0.0254882i
\(804\) −7.27314 + 4.19915i −0.256504 + 0.148093i
\(805\) 27.6965 0.976174
\(806\) 0 0
\(807\) 6.46379 0.227536
\(808\) 7.34278 4.23936i 0.258318 0.149140i
\(809\) 9.56123 + 16.5605i 0.336155 + 0.582238i 0.983706 0.179785i \(-0.0575401\pi\)
−0.647551 + 0.762022i \(0.724207\pi\)
\(810\) 0.580644 1.00570i 0.0204017 0.0353369i
\(811\) 13.2144i 0.464019i 0.972714 + 0.232009i \(0.0745300\pi\)
−0.972714 + 0.232009i \(0.925470\pi\)
\(812\) 20.2438 + 11.6877i 0.710417 + 0.410159i
\(813\) −2.45203 1.41568i −0.0859965 0.0496501i
\(814\) 16.2862i 0.570830i
\(815\) 4.38770 7.59971i 0.153694 0.266206i
\(816\) 1.01579 + 1.75941i 0.0355599 + 0.0615916i
\(817\) −5.49433 + 3.17215i −0.192222 + 0.110980i
\(818\) 26.4807 0.925876
\(819\) 0 0
\(820\) 3.23543 0.112986
\(821\) 8.10356 4.67859i 0.282816 0.163284i −0.351881 0.936045i \(-0.614458\pi\)
0.634698 + 0.772761i \(0.281125\pi\)
\(822\) 1.83159 + 3.17240i 0.0638840 + 0.110650i
\(823\) 5.27953 9.14441i 0.184033 0.318754i −0.759217 0.650837i \(-0.774418\pi\)
0.943250 + 0.332083i \(0.107751\pi\)
\(824\) 4.96891i 0.173100i
\(825\) 5.17253 + 2.98636i 0.180084 + 0.103972i
\(826\) −19.2558 11.1173i −0.669994 0.386821i
\(827\) 12.6564i 0.440107i 0.975488 + 0.220054i \(0.0706232\pi\)
−0.975488 + 0.220054i \(0.929377\pi\)
\(828\) 8.06604 13.9708i 0.280314 0.485519i
\(829\) 27.2877 + 47.2636i 0.947740 + 1.64153i 0.750170 + 0.661245i \(0.229972\pi\)
0.197570 + 0.980289i \(0.436695\pi\)
\(830\) −2.63141 + 1.51925i −0.0913376 + 0.0527338i
\(831\) 2.77442 0.0962436
\(832\) 0 0
\(833\) 10.4056 0.360533
\(834\) 8.88832 5.13168i 0.307777 0.177695i
\(835\) 4.83398 + 8.37270i 0.167287 + 0.289749i
\(836\) 9.41882 16.3139i 0.325757 0.564227i
\(837\) 44.5099i 1.53849i
\(838\) −10.2659 5.92699i −0.354628 0.204745i
\(839\) −10.4662 6.04265i −0.361333 0.208616i 0.308333 0.951279i \(-0.400229\pi\)
−0.669665 + 0.742663i \(0.733562\pi\)
\(840\) 3.43303i 0.118451i
\(841\) −8.14879 + 14.1141i −0.280993 + 0.486694i
\(842\) 4.74218 + 8.21370i 0.163426 + 0.283063i
\(843\) −22.1687 + 12.7991i −0.763532 + 0.440825i
\(844\) −21.2755 −0.732332
\(845\) 0 0
\(846\) −18.2685 −0.628085
\(847\) 76.7356 44.3033i 2.63667 1.52228i
\(848\) 5.59233 + 9.68619i 0.192041 + 0.332625i
\(849\) −14.2719 + 24.7197i −0.489812 + 0.848379i
\(850\) 2.05533i 0.0704971i
\(851\) 18.6138 + 10.7467i 0.638072 + 0.368391i
\(852\) −0.104433 0.0602944i −0.00357782 0.00206565i
\(853\) 16.2371i 0.555947i −0.960589 0.277973i \(-0.910337\pi\)
0.960589 0.277973i \(-0.0896627\pi\)
\(854\) 22.6592 39.2469i 0.775382 1.34300i
\(855\) −3.15332 5.46171i −0.107841 0.186787i
\(856\) −4.47685 + 2.58471i −0.153016 + 0.0883436i
\(857\) −30.2096 −1.03194 −0.515970 0.856607i \(-0.672568\pi\)
−0.515970 + 0.856607i \(0.672568\pi\)
\(858\) 0 0
\(859\) 18.9280 0.645814 0.322907 0.946431i \(-0.395340\pi\)
0.322907 + 0.946431i \(0.395340\pi\)
\(860\) 1.76240 1.01752i 0.0600974 0.0346973i
\(861\) 5.55367 + 9.61924i 0.189269 + 0.327823i
\(862\) −7.05875 + 12.2261i −0.240422 + 0.416423i
\(863\) 9.02786i 0.307312i 0.988124 + 0.153656i \(0.0491048\pi\)
−0.988124 + 0.153656i \(0.950895\pi\)
\(864\) −4.29978 2.48248i −0.146281 0.0844556i
\(865\) 7.79487 + 4.50037i 0.265033 + 0.153017i
\(866\) 26.3194i 0.894368i
\(867\) 6.31404 10.9362i 0.214436 0.371414i
\(868\) −15.5681 26.9647i −0.528415 0.915241i
\(869\) −35.1456 + 20.2913i −1.19223 + 0.688335i
\(870\) 6.65262 0.225545
\(871\) 0 0
\(872\) 8.09832 0.274244
\(873\) −10.2054 + 5.89210i −0.345401 + 0.199418i
\(874\) −12.4303 21.5299i −0.420461 0.728260i
\(875\) −1.73657 + 3.00783i −0.0587069 + 0.101683i
\(876\) 0.136428i 0.00460947i
\(877\) −36.8628 21.2827i −1.24477 0.718667i −0.274707 0.961528i \(-0.588581\pi\)
−0.970061 + 0.242861i \(0.921914\pi\)
\(878\) 23.0336 + 13.2985i 0.777348 + 0.448802i
\(879\) 10.9540i 0.369468i
\(880\) −3.02125 + 5.23297i −0.101846 + 0.176403i
\(881\) 19.9663 + 34.5826i 0.672680 + 1.16512i 0.977141 + 0.212591i \(0.0681903\pi\)
−0.304461 + 0.952525i \(0.598476\pi\)
\(882\) −8.86964 + 5.12089i −0.298656 + 0.172429i
\(883\) 26.1186 0.878962 0.439481 0.898252i \(-0.355162\pi\)
0.439481 + 0.898252i \(0.355162\pi\)
\(884\) 0 0
\(885\) −6.32793 −0.212711
\(886\) −13.7842 + 7.95831i −0.463089 + 0.267365i
\(887\) −11.6005 20.0926i −0.389506 0.674644i 0.602877 0.797834i \(-0.294021\pi\)
−0.992383 + 0.123190i \(0.960687\pi\)
\(888\) 1.33207 2.30721i 0.0447013 0.0774250i
\(889\) 1.00591i 0.0337372i
\(890\) 2.93073 + 1.69206i 0.0982383 + 0.0567179i
\(891\) −6.07698 3.50854i −0.203586 0.117541i
\(892\) 7.35898i 0.246397i
\(893\) −14.0765 + 24.3812i −0.471052 + 0.815886i
\(894\) 10.2462 + 17.7469i 0.342684 + 0.593546i
\(895\) −9.64278 + 5.56726i −0.322323 + 0.186093i
\(896\) 3.47315 0.116030
\(897\) 0 0
\(898\) −38.7349 −1.29260
\(899\) 52.2528 30.1682i 1.74273 1.00617i
\(900\) 1.01148 + 1.75194i 0.0337161 + 0.0583980i
\(901\) −11.4941 + 19.9083i −0.382923 + 0.663241i
\(902\) 19.5501i 0.650948i
\(903\) 6.05039 + 3.49319i 0.201344 + 0.116246i
\(904\) 15.8108 + 9.12839i 0.525860 + 0.303606i
\(905\) 1.63511i 0.0543527i
\(906\) 10.1319 17.5489i 0.336609 0.583024i
\(907\) 11.0787 + 19.1889i 0.367862 + 0.637156i 0.989231 0.146362i \(-0.0467566\pi\)
−0.621369 + 0.783518i \(0.713423\pi\)
\(908\) −18.4665 + 10.6616i −0.612831 + 0.353818i
\(909\) −17.1521 −0.568901
\(910\) 0 0
\(911\) −10.5539 −0.349666 −0.174833 0.984598i \(-0.555939\pi\)
−0.174833 + 0.984598i \(0.555939\pi\)
\(912\) −2.66867 + 1.54076i −0.0883685 + 0.0510196i
\(913\) 9.18006 + 15.9003i 0.303816 + 0.526224i
\(914\) −7.01701 + 12.1538i −0.232102 + 0.402013i
\(915\) 12.8975i 0.426379i
\(916\) 13.6771 + 7.89647i 0.451904 + 0.260907i
\(917\) −58.6269 33.8483i −1.93603 1.11777i
\(918\) 10.2046i 0.336802i
\(919\) −14.9497 + 25.8937i −0.493146 + 0.854153i −0.999969 0.00789664i \(-0.997486\pi\)
0.506823 + 0.862050i \(0.330820\pi\)
\(920\) 3.98724 + 6.90610i 0.131455 + 0.227687i
\(921\) −5.46182 + 3.15338i −0.179973 + 0.103907i
\(922\) −9.00148 −0.296448
\(923\) 0 0
\(924\) −20.7441 −0.682432
\(925\) −2.33417 + 1.34763i −0.0767470 + 0.0443099i
\(926\) −17.3890 30.1186i −0.571438 0.989759i
\(927\) 5.02597 8.70523i 0.165074 0.285917i
\(928\) 6.73035i 0.220934i
\(929\) 49.0656 + 28.3280i 1.60979 + 0.929413i 0.989416 + 0.145107i \(0.0463527\pi\)
0.620374 + 0.784306i \(0.286981\pi\)
\(930\) −7.67409 4.43064i −0.251643 0.145286i
\(931\) 15.7832i 0.517275i
\(932\) −4.06520 + 7.04113i −0.133160 + 0.230640i
\(933\) 9.36273 + 16.2167i 0.306522 + 0.530912i
\(934\) 15.7499 9.09322i 0.515353 0.297539i
\(935\) −12.4193 −0.406155
\(936\) 0 0
\(937\) −37.4212 −1.22250 −0.611249 0.791439i \(-0.709332\pi\)
−0.611249 + 0.791439i \(0.709332\pi\)
\(938\) −25.5558 + 14.7547i −0.834428 + 0.481757i
\(939\) 8.64927 + 14.9810i 0.282258 + 0.488886i
\(940\) 4.51529 7.82070i 0.147272 0.255083i
\(941\) 0.100449i 0.00327454i −0.999999 0.00163727i \(-0.999479\pi\)
0.999999 0.00163727i \(-0.000521159\pi\)
\(942\) 9.93687 + 5.73706i 0.323761 + 0.186923i
\(943\) −22.3442 12.9004i −0.727627 0.420096i
\(944\) 6.40187i 0.208363i
\(945\) −8.62201 + 14.9338i −0.280474 + 0.485795i
\(946\) −6.14839 10.6493i −0.199902 0.346240i
\(947\) 24.1724 13.9559i 0.785497 0.453507i −0.0528777 0.998601i \(-0.516839\pi\)
0.838375 + 0.545094i \(0.183506\pi\)
\(948\) 6.63861 0.215612
\(949\) 0 0
\(950\) 3.11752 0.101146
\(951\) 29.3145 16.9247i 0.950588 0.548822i
\(952\) 3.56923 + 6.18208i 0.115679 + 0.200362i
\(953\) 2.14253 3.71097i 0.0694033 0.120210i −0.829235 0.558899i \(-0.811224\pi\)
0.898639 + 0.438689i \(0.144557\pi\)
\(954\) 22.6262i 0.732549i
\(955\) 8.00075 + 4.61924i 0.258898 + 0.149475i
\(956\) −10.8467 6.26234i −0.350807 0.202539i
\(957\) 40.1985i 1.29943i
\(958\) −16.0477 + 27.7954i −0.518477 + 0.898029i
\(959\) 6.43571 + 11.1470i 0.207820 + 0.359954i
\(960\) 0.856023 0.494225i 0.0276280 0.0159511i
\(961\) −49.3680 −1.59252
\(962\) 0 0
\(963\) 10.4576 0.336990
\(964\) 3.10711 1.79389i 0.100073 0.0577773i
\(965\) −3.64146 6.30719i −0.117223 0.203036i
\(966\) −13.6883 + 23.7089i −0.440415 + 0.762820i
\(967\) 28.0511i 0.902062i 0.892508 + 0.451031i \(0.148944\pi\)
−0.892508 + 0.451031i \(0.851056\pi\)
\(968\) 22.0940 + 12.7560i 0.710127 + 0.409992i
\(969\) −5.48499 3.16676i −0.176203 0.101731i
\(970\) 5.82521i 0.187036i
\(971\) 14.6521 25.3782i 0.470209 0.814426i −0.529211 0.848491i \(-0.677512\pi\)
0.999420 + 0.0340646i \(0.0108452\pi\)
\(972\) 8.02137 + 13.8934i 0.257285 + 0.445631i
\(973\) 31.2312 18.0313i 1.00123 0.578058i
\(974\) 31.3280 1.00382
\(975\) 0 0
\(976\) 13.0482 0.417663
\(977\) 18.3016 10.5664i 0.585519 0.338049i −0.177805 0.984066i \(-0.556900\pi\)
0.763324 + 0.646016i \(0.223566\pi\)
\(978\) 4.33702 + 7.51194i 0.138683 + 0.240205i
\(979\) 10.2243 17.7090i 0.326769 0.565981i
\(980\) 5.06275i 0.161724i
\(981\) −14.1878 8.19131i −0.452981 0.261528i
\(982\) 6.29798 + 3.63614i 0.200977 + 0.116034i
\(983\) 30.8904i 0.985250i −0.870242 0.492625i \(-0.836037\pi\)
0.870242 0.492625i \(-0.163963\pi\)
\(984\) −1.59903 + 2.76960i −0.0509753 + 0.0882917i
\(985\) 10.2872 + 17.8180i 0.327777 + 0.567727i
\(986\) −11.9798 + 6.91653i −0.381514 + 0.220267i
\(987\) 31.0023 0.986813
\(988\) 0 0
\(989\) −16.2284 −0.516034
\(990\) 10.5861 6.11189i 0.336449 0.194249i
\(991\) −9.98310 17.2912i −0.317124 0.549274i 0.662763 0.748829i \(-0.269384\pi\)
−0.979887 + 0.199555i \(0.936050\pi\)
\(992\) 4.48241 7.76376i 0.142317 0.246500i
\(993\) 8.15260i 0.258715i
\(994\) −0.366949 0.211858i −0.0116389 0.00671974i
\(995\) 2.39981 + 1.38553i 0.0760792 + 0.0439244i
\(996\) 3.00340i 0.0951664i
\(997\) −0.779576 + 1.35027i −0.0246894 + 0.0427633i −0.878106 0.478466i \(-0.841193\pi\)
0.853417 + 0.521229i \(0.174526\pi\)
\(998\) 4.78938 + 8.29545i 0.151605 + 0.262588i
\(999\) −11.5890 + 6.69094i −0.366661 + 0.211692i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.l.n.361.3 24
13.2 odd 12 1690.2.a.v.1.4 6
13.3 even 3 1690.2.d.l.1351.4 12
13.4 even 6 inner 1690.2.l.n.1161.3 24
13.5 odd 4 1690.2.e.v.991.3 12
13.6 odd 12 1690.2.e.v.191.3 12
13.7 odd 12 1690.2.e.u.191.3 12
13.8 odd 4 1690.2.e.u.991.3 12
13.9 even 3 inner 1690.2.l.n.1161.8 24
13.10 even 6 1690.2.d.l.1351.10 12
13.11 odd 12 1690.2.a.w.1.4 yes 6
13.12 even 2 inner 1690.2.l.n.361.8 24
65.24 odd 12 8450.2.a.cp.1.3 6
65.54 odd 12 8450.2.a.cq.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.v.1.4 6 13.2 odd 12
1690.2.a.w.1.4 yes 6 13.11 odd 12
1690.2.d.l.1351.4 12 13.3 even 3
1690.2.d.l.1351.10 12 13.10 even 6
1690.2.e.u.191.3 12 13.7 odd 12
1690.2.e.u.991.3 12 13.8 odd 4
1690.2.e.v.191.3 12 13.6 odd 12
1690.2.e.v.991.3 12 13.5 odd 4
1690.2.l.n.361.3 24 1.1 even 1 trivial
1690.2.l.n.361.8 24 13.12 even 2 inner
1690.2.l.n.1161.3 24 13.4 even 6 inner
1690.2.l.n.1161.8 24 13.9 even 3 inner
8450.2.a.cp.1.3 6 65.24 odd 12
8450.2.a.cq.1.3 6 65.54 odd 12