Properties

Label 1690.2.l.n.1161.8
Level $1690$
Weight $2$
Character 1690.1161
Analytic conductor $13.495$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(361,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,4,12,0,0,0,0,-32,12,0,8,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1161.8
Character \(\chi\) \(=\) 1690.1161
Dual form 1690.2.l.n.361.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-0.494225 + 0.856023i) q^{3} +(0.500000 + 0.866025i) q^{4} -1.00000i q^{5} +(-0.856023 + 0.494225i) q^{6} +(-3.00783 + 1.73657i) q^{7} +1.00000i q^{8} +(1.01148 + 1.75194i) q^{9} +(0.500000 - 0.866025i) q^{10} +(-5.23297 - 3.02125i) q^{11} -0.988450 q^{12} -3.47315 q^{14} +(0.856023 + 0.494225i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.02766 + 1.77997i) q^{17} +2.02297i q^{18} +(-2.69985 + 1.55876i) q^{19} +(0.866025 - 0.500000i) q^{20} -3.43303i q^{21} +(-3.02125 - 5.23297i) q^{22} +(3.98724 - 6.90610i) q^{23} +(-0.856023 - 0.494225i) q^{24} -1.00000 q^{25} -4.96495 q^{27} +(-3.00783 - 1.73657i) q^{28} +(3.36517 - 5.82865i) q^{29} +(0.494225 + 0.856023i) q^{30} -8.96482i q^{31} +(-0.866025 + 0.500000i) q^{32} +(5.17253 - 2.98636i) q^{33} +2.05533i q^{34} +(1.73657 + 3.00783i) q^{35} +(-1.01148 + 1.75194i) q^{36} +(-2.33417 - 1.34763i) q^{37} -3.11752 q^{38} +1.00000 q^{40} +(2.80196 + 1.61772i) q^{41} +(1.71652 - 2.97309i) q^{42} +(-1.01752 - 1.76240i) q^{43} -6.04251i q^{44} +(1.75194 - 1.01148i) q^{45} +(6.90610 - 3.98724i) q^{46} +9.03057i q^{47} +(-0.494225 - 0.856023i) q^{48} +(2.53138 - 4.38447i) q^{49} +(-0.866025 - 0.500000i) q^{50} -2.03159 q^{51} -11.1847 q^{53} +(-4.29978 - 2.48248i) q^{54} +(-3.02125 + 5.23297i) q^{55} +(-1.73657 - 3.00783i) q^{56} -3.08152i q^{57} +(5.82865 - 3.36517i) q^{58} +(-5.54418 + 3.20093i) q^{59} +0.988450i q^{60} +(-6.52411 - 11.3001i) q^{61} +(4.48241 - 7.76376i) q^{62} +(-6.08475 - 3.51303i) q^{63} -1.00000 q^{64} +5.97272 q^{66} +(-7.35812 - 4.24821i) q^{67} +(-1.02766 + 1.77997i) q^{68} +(3.94119 + 6.82634i) q^{69} +3.47315i q^{70} +(-0.105653 + 0.0609989i) q^{71} +(-1.75194 + 1.01148i) q^{72} -0.138022i q^{73} +(-1.34763 - 2.33417i) q^{74} +(0.494225 - 0.856023i) q^{75} +(-2.69985 - 1.55876i) q^{76} +20.9865 q^{77} -6.71618 q^{79} +(0.866025 + 0.500000i) q^{80} +(-0.580644 + 1.00570i) q^{81} +(1.61772 + 2.80196i) q^{82} +3.03849i q^{83} +(2.97309 - 1.71652i) q^{84} +(1.77997 - 1.02766i) q^{85} -2.03505i q^{86} +(3.32631 + 5.76133i) q^{87} +(3.02125 - 5.23297i) q^{88} +(-2.93073 - 1.69206i) q^{89} +2.02297 q^{90} +7.97448 q^{92} +(7.67409 + 4.43064i) q^{93} +(-4.51529 + 7.82070i) q^{94} +(1.55876 + 2.69985i) q^{95} -0.988450i q^{96} +(5.04478 - 2.91261i) q^{97} +(4.38447 - 2.53138i) q^{98} -12.2238i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{3} + 12 q^{4} - 32 q^{9} + 12 q^{10} + 8 q^{12} + 12 q^{14} - 12 q^{16} - 6 q^{17} - 30 q^{22} - 6 q^{23} - 24 q^{25} - 80 q^{27} - 14 q^{29} - 4 q^{30} - 6 q^{35} + 32 q^{36} - 4 q^{38} + 24 q^{40}+ \cdots + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −0.494225 + 0.856023i −0.285341 + 0.494225i −0.972692 0.232100i \(-0.925440\pi\)
0.687351 + 0.726326i \(0.258774\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.00000i 0.447214i
\(6\) −0.856023 + 0.494225i −0.349470 + 0.201767i
\(7\) −3.00783 + 1.73657i −1.13685 + 0.656363i −0.945650 0.325187i \(-0.894573\pi\)
−0.191205 + 0.981550i \(0.561239\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.01148 + 1.75194i 0.337161 + 0.583980i
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) −5.23297 3.02125i −1.57780 0.910942i −0.995166 0.0982065i \(-0.968689\pi\)
−0.582632 0.812736i \(-0.697977\pi\)
\(12\) −0.988450 −0.285341
\(13\) 0 0
\(14\) −3.47315 −0.928238
\(15\) 0.856023 + 0.494225i 0.221024 + 0.127608i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.02766 + 1.77997i 0.249245 + 0.431705i 0.963317 0.268368i \(-0.0864842\pi\)
−0.714072 + 0.700073i \(0.753151\pi\)
\(18\) 2.02297i 0.476818i
\(19\) −2.69985 + 1.55876i −0.619389 + 0.357604i −0.776631 0.629956i \(-0.783073\pi\)
0.157242 + 0.987560i \(0.449740\pi\)
\(20\) 0.866025 0.500000i 0.193649 0.111803i
\(21\) 3.43303i 0.749150i
\(22\) −3.02125 5.23297i −0.644133 1.11567i
\(23\) 3.98724 6.90610i 0.831396 1.44002i −0.0655344 0.997850i \(-0.520875\pi\)
0.896931 0.442171i \(-0.145791\pi\)
\(24\) −0.856023 0.494225i −0.174735 0.100883i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −4.96495 −0.955506
\(28\) −3.00783 1.73657i −0.568427 0.328182i
\(29\) 3.36517 5.82865i 0.624897 1.08235i −0.363664 0.931530i \(-0.618474\pi\)
0.988561 0.150823i \(-0.0481924\pi\)
\(30\) 0.494225 + 0.856023i 0.0902328 + 0.156288i
\(31\) 8.96482i 1.61013i −0.593187 0.805065i \(-0.702131\pi\)
0.593187 0.805065i \(-0.297869\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 5.17253 2.98636i 0.900421 0.519859i
\(34\) 2.05533i 0.352486i
\(35\) 1.73657 + 3.00783i 0.293535 + 0.508417i
\(36\) −1.01148 + 1.75194i −0.168580 + 0.291990i
\(37\) −2.33417 1.34763i −0.383735 0.221550i 0.295707 0.955279i \(-0.404445\pi\)
−0.679442 + 0.733729i \(0.737778\pi\)
\(38\) −3.11752 −0.505729
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 2.80196 + 1.61772i 0.437593 + 0.252645i 0.702576 0.711608i \(-0.252033\pi\)
−0.264983 + 0.964253i \(0.585366\pi\)
\(42\) 1.71652 2.97309i 0.264864 0.458759i
\(43\) −1.01752 1.76240i −0.155171 0.268764i 0.777950 0.628326i \(-0.216259\pi\)
−0.933121 + 0.359562i \(0.882926\pi\)
\(44\) 6.04251i 0.910942i
\(45\) 1.75194 1.01148i 0.261164 0.150783i
\(46\) 6.90610 3.98724i 1.01825 0.587886i
\(47\) 9.03057i 1.31724i 0.752474 + 0.658622i \(0.228860\pi\)
−0.752474 + 0.658622i \(0.771140\pi\)
\(48\) −0.494225 0.856023i −0.0713353 0.123556i
\(49\) 2.53138 4.38447i 0.361625 0.626353i
\(50\) −0.866025 0.500000i −0.122474 0.0707107i
\(51\) −2.03159 −0.284479
\(52\) 0 0
\(53\) −11.1847 −1.53633 −0.768165 0.640252i \(-0.778830\pi\)
−0.768165 + 0.640252i \(0.778830\pi\)
\(54\) −4.29978 2.48248i −0.585125 0.337822i
\(55\) −3.02125 + 5.23297i −0.407386 + 0.705613i
\(56\) −1.73657 3.00783i −0.232059 0.401939i
\(57\) 3.08152i 0.408157i
\(58\) 5.82865 3.36517i 0.765340 0.441869i
\(59\) −5.54418 + 3.20093i −0.721791 + 0.416726i −0.815411 0.578882i \(-0.803489\pi\)
0.0936206 + 0.995608i \(0.470156\pi\)
\(60\) 0.988450i 0.127608i
\(61\) −6.52411 11.3001i −0.835327 1.44683i −0.893764 0.448537i \(-0.851945\pi\)
0.0584376 0.998291i \(-0.481388\pi\)
\(62\) 4.48241 7.76376i 0.569267 0.985999i
\(63\) −6.08475 3.51303i −0.766606 0.442600i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 5.97272 0.735191
\(67\) −7.35812 4.24821i −0.898937 0.519002i −0.0220821 0.999756i \(-0.507030\pi\)
−0.876855 + 0.480754i \(0.840363\pi\)
\(68\) −1.02766 + 1.77997i −0.124622 + 0.215852i
\(69\) 3.94119 + 6.82634i 0.474463 + 0.821794i
\(70\) 3.47315i 0.415121i
\(71\) −0.105653 + 0.0609989i −0.0125387 + 0.00723924i −0.506256 0.862383i \(-0.668971\pi\)
0.493718 + 0.869622i \(0.335638\pi\)
\(72\) −1.75194 + 1.01148i −0.206468 + 0.119204i
\(73\) 0.138022i 0.0161543i −0.999967 0.00807713i \(-0.997429\pi\)
0.999967 0.00807713i \(-0.00257106\pi\)
\(74\) −1.34763 2.33417i −0.156659 0.271342i
\(75\) 0.494225 0.856023i 0.0570682 0.0988450i
\(76\) −2.69985 1.55876i −0.309694 0.178802i
\(77\) 20.9865 2.39164
\(78\) 0 0
\(79\) −6.71618 −0.755630 −0.377815 0.925881i \(-0.623324\pi\)
−0.377815 + 0.925881i \(0.623324\pi\)
\(80\) 0.866025 + 0.500000i 0.0968246 + 0.0559017i
\(81\) −0.580644 + 1.00570i −0.0645160 + 0.111745i
\(82\) 1.61772 + 2.80196i 0.178647 + 0.309425i
\(83\) 3.03849i 0.333518i 0.985998 + 0.166759i \(0.0533302\pi\)
−0.985998 + 0.166759i \(0.946670\pi\)
\(84\) 2.97309 1.71652i 0.324391 0.187287i
\(85\) 1.77997 1.02766i 0.193064 0.111466i
\(86\) 2.03505i 0.219445i
\(87\) 3.32631 + 5.76133i 0.356618 + 0.617680i
\(88\) 3.02125 5.23297i 0.322067 0.557836i
\(89\) −2.93073 1.69206i −0.310657 0.179358i 0.336564 0.941661i \(-0.390735\pi\)
−0.647220 + 0.762303i \(0.724069\pi\)
\(90\) 2.02297 0.213239
\(91\) 0 0
\(92\) 7.97448 0.831396
\(93\) 7.67409 + 4.43064i 0.795766 + 0.459436i
\(94\) −4.51529 + 7.82070i −0.465716 + 0.806644i
\(95\) 1.55876 + 2.69985i 0.159925 + 0.276999i
\(96\) 0.988450i 0.100883i
\(97\) 5.04478 2.91261i 0.512220 0.295730i −0.221526 0.975155i \(-0.571104\pi\)
0.733746 + 0.679424i \(0.237770\pi\)
\(98\) 4.38447 2.53138i 0.442899 0.255708i
\(99\) 12.2238i 1.22854i
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −4.23936 + 7.34278i −0.421832 + 0.730634i −0.996119 0.0880200i \(-0.971946\pi\)
0.574287 + 0.818654i \(0.305279\pi\)
\(102\) −1.75941 1.01579i −0.174207 0.100579i
\(103\) 4.96891 0.489601 0.244801 0.969573i \(-0.421278\pi\)
0.244801 + 0.969573i \(0.421278\pi\)
\(104\) 0 0
\(105\) −3.43303 −0.335030
\(106\) −9.68619 5.59233i −0.940806 0.543175i
\(107\) 2.58471 4.47685i 0.249874 0.432794i −0.713617 0.700536i \(-0.752944\pi\)
0.963491 + 0.267742i \(0.0862776\pi\)
\(108\) −2.48248 4.29978i −0.238876 0.413746i
\(109\) 8.09832i 0.775678i −0.921727 0.387839i \(-0.873222\pi\)
0.921727 0.387839i \(-0.126778\pi\)
\(110\) −5.23297 + 3.02125i −0.498944 + 0.288065i
\(111\) 2.30721 1.33207i 0.218991 0.126434i
\(112\) 3.47315i 0.328182i
\(113\) 9.12839 + 15.8108i 0.858726 + 1.48736i 0.873144 + 0.487462i \(0.162077\pi\)
−0.0144182 + 0.999896i \(0.504590\pi\)
\(114\) 1.54076 2.66867i 0.144305 0.249944i
\(115\) −6.90610 3.98724i −0.643997 0.371812i
\(116\) 6.73035 0.624897
\(117\) 0 0
\(118\) −6.40187 −0.589340
\(119\) −6.18208 3.56923i −0.566711 0.327190i
\(120\) −0.494225 + 0.856023i −0.0451164 + 0.0781439i
\(121\) 12.7560 + 22.0940i 1.15963 + 2.00854i
\(122\) 13.0482i 1.18133i
\(123\) −2.76960 + 1.59903i −0.249727 + 0.144180i
\(124\) 7.76376 4.48241i 0.697206 0.402532i
\(125\) 1.00000i 0.0894427i
\(126\) −3.51303 6.08475i −0.312966 0.542072i
\(127\) 0.144813 0.250823i 0.0128501 0.0222570i −0.859529 0.511087i \(-0.829243\pi\)
0.872379 + 0.488830i \(0.162576\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 2.01154 0.177107
\(130\) 0 0
\(131\) −19.4914 −1.70297 −0.851486 0.524378i \(-0.824298\pi\)
−0.851486 + 0.524378i \(0.824298\pi\)
\(132\) 5.17253 + 2.98636i 0.450211 + 0.259929i
\(133\) 5.41381 9.37699i 0.469436 0.813088i
\(134\) −4.24821 7.35812i −0.366990 0.635645i
\(135\) 4.96495i 0.427315i
\(136\) −1.77997 + 1.02766i −0.152631 + 0.0881214i
\(137\) −3.20947 + 1.85299i −0.274204 + 0.158312i −0.630796 0.775948i \(-0.717272\pi\)
0.356593 + 0.934260i \(0.383938\pi\)
\(138\) 7.88237i 0.670992i
\(139\) 5.19164 + 8.99218i 0.440349 + 0.762707i 0.997715 0.0675600i \(-0.0215214\pi\)
−0.557366 + 0.830267i \(0.688188\pi\)
\(140\) −1.73657 + 3.00783i −0.146767 + 0.254208i
\(141\) −7.73038 4.46314i −0.651015 0.375864i
\(142\) −0.121998 −0.0102378
\(143\) 0 0
\(144\) −2.02297 −0.168580
\(145\) −5.82865 3.36517i −0.484043 0.279462i
\(146\) 0.0690110 0.119531i 0.00571139 0.00989242i
\(147\) 2.50214 + 4.33384i 0.206373 + 0.357449i
\(148\) 2.69527i 0.221550i
\(149\) −17.9543 + 10.3659i −1.47087 + 0.849209i −0.999465 0.0327070i \(-0.989587\pi\)
−0.471407 + 0.881916i \(0.656254\pi\)
\(150\) 0.856023 0.494225i 0.0698940 0.0403533i
\(151\) 20.5005i 1.66831i −0.551531 0.834154i \(-0.685956\pi\)
0.551531 0.834154i \(-0.314044\pi\)
\(152\) −1.55876 2.69985i −0.126432 0.218987i
\(153\) −2.07893 + 3.60081i −0.168071 + 0.291108i
\(154\) 18.1749 + 10.4933i 1.46457 + 0.845571i
\(155\) −8.96482 −0.720072
\(156\) 0 0
\(157\) 11.6082 0.926434 0.463217 0.886245i \(-0.346695\pi\)
0.463217 + 0.886245i \(0.346695\pi\)
\(158\) −5.81638 3.35809i −0.462727 0.267155i
\(159\) 5.52774 9.57432i 0.438378 0.759293i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 27.6965i 2.18279i
\(162\) −1.00570 + 0.580644i −0.0790156 + 0.0456197i
\(163\) −7.59971 + 4.38770i −0.595256 + 0.343671i −0.767173 0.641440i \(-0.778337\pi\)
0.171917 + 0.985111i \(0.445004\pi\)
\(164\) 3.23543i 0.252645i
\(165\) −2.98636 5.17253i −0.232488 0.402681i
\(166\) −1.51925 + 2.63141i −0.117916 + 0.204237i
\(167\) 8.37270 + 4.83398i 0.647899 + 0.374065i 0.787651 0.616122i \(-0.211297\pi\)
−0.139752 + 0.990187i \(0.544630\pi\)
\(168\) 3.43303 0.264864
\(169\) 0 0
\(170\) 2.05533 0.157636
\(171\) −5.46171 3.15332i −0.417667 0.241140i
\(172\) 1.01752 1.76240i 0.0775855 0.134382i
\(173\) −4.50037 7.79487i −0.342157 0.592633i 0.642676 0.766138i \(-0.277824\pi\)
−0.984833 + 0.173505i \(0.944491\pi\)
\(174\) 6.65262i 0.504333i
\(175\) 3.00783 1.73657i 0.227371 0.131273i
\(176\) 5.23297 3.02125i 0.394450 0.227736i
\(177\) 6.32793i 0.475636i
\(178\) −1.69206 2.93073i −0.126825 0.219668i
\(179\) −5.56726 + 9.64278i −0.416117 + 0.720735i −0.995545 0.0942881i \(-0.969943\pi\)
0.579428 + 0.815023i \(0.303276\pi\)
\(180\) 1.75194 + 1.01148i 0.130582 + 0.0753915i
\(181\) −1.63511 −0.121536 −0.0607682 0.998152i \(-0.519355\pi\)
−0.0607682 + 0.998152i \(0.519355\pi\)
\(182\) 0 0
\(183\) 12.8975 0.953412
\(184\) 6.90610 + 3.98724i 0.509124 + 0.293943i
\(185\) −1.34763 + 2.33417i −0.0990800 + 0.171612i
\(186\) 4.43064 + 7.67409i 0.324870 + 0.562692i
\(187\) 12.4193i 0.908191i
\(188\) −7.82070 + 4.51529i −0.570383 + 0.329311i
\(189\) 14.9338 8.62201i 1.08627 0.627159i
\(190\) 3.11752i 0.226169i
\(191\) −4.61924 8.00075i −0.334236 0.578914i 0.649102 0.760702i \(-0.275145\pi\)
−0.983338 + 0.181788i \(0.941812\pi\)
\(192\) 0.494225 0.856023i 0.0356676 0.0617782i
\(193\) −6.30719 3.64146i −0.454001 0.262118i 0.255517 0.966804i \(-0.417754\pi\)
−0.709519 + 0.704687i \(0.751088\pi\)
\(194\) 5.82521 0.418226
\(195\) 0 0
\(196\) 5.06275 0.361625
\(197\) 17.8180 + 10.2872i 1.26948 + 0.732933i 0.974889 0.222692i \(-0.0714844\pi\)
0.294588 + 0.955624i \(0.404818\pi\)
\(198\) 6.11189 10.5861i 0.434353 0.752322i
\(199\) −1.38553 2.39981i −0.0982179 0.170118i 0.812729 0.582642i \(-0.197981\pi\)
−0.910947 + 0.412523i \(0.864648\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 7.27314 4.19915i 0.513007 0.296185i
\(202\) −7.34278 + 4.23936i −0.516636 + 0.298280i
\(203\) 23.3755i 1.64064i
\(204\) −1.01579 1.75941i −0.0711198 0.123183i
\(205\) 1.61772 2.80196i 0.112986 0.195698i
\(206\) 4.30320 + 2.48445i 0.299818 + 0.173100i
\(207\) 16.1321 1.12126
\(208\) 0 0
\(209\) 18.8376 1.30303
\(210\) −2.97309 1.71652i −0.205163 0.118451i
\(211\) −10.6377 + 18.4251i −0.732332 + 1.26844i 0.223552 + 0.974692i \(0.428235\pi\)
−0.955884 + 0.293745i \(0.905098\pi\)
\(212\) −5.59233 9.68619i −0.384083 0.665250i
\(213\) 0.120589i 0.00826261i
\(214\) 4.47685 2.58471i 0.306031 0.176687i
\(215\) −1.76240 + 1.01752i −0.120195 + 0.0693945i
\(216\) 4.96495i 0.337822i
\(217\) 15.5681 + 26.9647i 1.05683 + 1.83048i
\(218\) 4.04916 7.01335i 0.274244 0.475004i
\(219\) 0.118150 + 0.0682140i 0.00798384 + 0.00460947i
\(220\) −6.04251 −0.407386
\(221\) 0 0
\(222\) 2.66414 0.178805
\(223\) 6.37306 + 3.67949i 0.426772 + 0.246397i 0.697970 0.716127i \(-0.254087\pi\)
−0.271199 + 0.962523i \(0.587420\pi\)
\(224\) 1.73657 3.00783i 0.116030 0.200969i
\(225\) −1.01148 1.75194i −0.0674322 0.116796i
\(226\) 18.2568i 1.21442i
\(227\) 18.4665 10.6616i 1.22566 0.707637i 0.259543 0.965732i \(-0.416428\pi\)
0.966120 + 0.258095i \(0.0830947\pi\)
\(228\) 2.66867 1.54076i 0.176737 0.102039i
\(229\) 15.7929i 1.04363i 0.853060 + 0.521813i \(0.174744\pi\)
−0.853060 + 0.521813i \(0.825256\pi\)
\(230\) −3.98724 6.90610i −0.262911 0.455375i
\(231\) −10.3721 + 17.9649i −0.682432 + 1.18201i
\(232\) 5.82865 + 3.36517i 0.382670 + 0.220934i
\(233\) −8.13040 −0.532640 −0.266320 0.963885i \(-0.585808\pi\)
−0.266320 + 0.963885i \(0.585808\pi\)
\(234\) 0 0
\(235\) 9.03057 0.589089
\(236\) −5.54418 3.20093i −0.360895 0.208363i
\(237\) 3.31931 5.74921i 0.215612 0.373451i
\(238\) −3.56923 6.18208i −0.231359 0.400725i
\(239\) 12.5247i 0.810154i −0.914283 0.405077i \(-0.867245\pi\)
0.914283 0.405077i \(-0.132755\pi\)
\(240\) −0.856023 + 0.494225i −0.0552561 + 0.0319021i
\(241\) −3.10711 + 1.79389i −0.200146 + 0.115555i −0.596724 0.802447i \(-0.703531\pi\)
0.396577 + 0.918001i \(0.370198\pi\)
\(242\) 25.5119i 1.63997i
\(243\) −8.02137 13.8934i −0.514571 0.891263i
\(244\) 6.52411 11.3001i 0.417663 0.723414i
\(245\) −4.38447 2.53138i −0.280114 0.161724i
\(246\) −3.19806 −0.203901
\(247\) 0 0
\(248\) 8.96482 0.569267
\(249\) −2.60102 1.50170i −0.164833 0.0951664i
\(250\) −0.500000 + 0.866025i −0.0316228 + 0.0547723i
\(251\) −7.53629 13.0532i −0.475686 0.823912i 0.523926 0.851764i \(-0.324467\pi\)
−0.999612 + 0.0278513i \(0.991134\pi\)
\(252\) 7.02606i 0.442600i
\(253\) −41.7302 + 24.0929i −2.62355 + 1.51471i
\(254\) 0.250823 0.144813i 0.0157381 0.00908637i
\(255\) 2.03159i 0.127223i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 11.1902 19.3820i 0.698026 1.20902i −0.271124 0.962544i \(-0.587395\pi\)
0.969150 0.246472i \(-0.0792714\pi\)
\(258\) 1.74205 + 1.00577i 0.108455 + 0.0626166i
\(259\) 9.36106 0.581668
\(260\) 0 0
\(261\) 13.6153 0.842764
\(262\) −16.8800 9.74570i −1.04285 0.602091i
\(263\) −9.36507 + 16.2208i −0.577475 + 1.00022i 0.418293 + 0.908312i \(0.362629\pi\)
−0.995768 + 0.0919039i \(0.970705\pi\)
\(264\) 2.98636 + 5.17253i 0.183798 + 0.318347i
\(265\) 11.1847i 0.687068i
\(266\) 9.37699 5.41381i 0.574940 0.331942i
\(267\) 2.89688 1.67252i 0.177286 0.102356i
\(268\) 8.49642i 0.519002i
\(269\) −3.26966 5.66322i −0.199355 0.345292i 0.748965 0.662610i \(-0.230551\pi\)
−0.948319 + 0.317317i \(0.897218\pi\)
\(270\) −2.48248 + 4.29978i −0.151079 + 0.261676i
\(271\) −2.48068 1.43222i −0.150691 0.0870013i 0.422759 0.906242i \(-0.361062\pi\)
−0.573449 + 0.819241i \(0.694395\pi\)
\(272\) −2.05533 −0.124622
\(273\) 0 0
\(274\) −3.70598 −0.223886
\(275\) 5.23297 + 3.02125i 0.315560 + 0.182188i
\(276\) −3.94119 + 6.82634i −0.237232 + 0.410897i
\(277\) −1.40342 2.43079i −0.0843233 0.146052i 0.820779 0.571245i \(-0.193540\pi\)
−0.905103 + 0.425193i \(0.860206\pi\)
\(278\) 10.3833i 0.622747i
\(279\) 15.7058 9.06776i 0.940283 0.542873i
\(280\) −3.00783 + 1.73657i −0.179752 + 0.103780i
\(281\) 25.8974i 1.54491i −0.635071 0.772453i \(-0.719029\pi\)
0.635071 0.772453i \(-0.280971\pi\)
\(282\) −4.46314 7.73038i −0.265776 0.460337i
\(283\) −14.4387 + 25.0086i −0.858292 + 1.48661i 0.0152651 + 0.999883i \(0.495141\pi\)
−0.873557 + 0.486722i \(0.838193\pi\)
\(284\) −0.105653 0.0609989i −0.00626937 0.00361962i
\(285\) −3.08152 −0.182533
\(286\) 0 0
\(287\) −11.2371 −0.663307
\(288\) −1.75194 1.01148i −0.103234 0.0596022i
\(289\) 6.38782 11.0640i 0.375754 0.650825i
\(290\) −3.36517 5.82865i −0.197610 0.342270i
\(291\) 5.75794i 0.337536i
\(292\) 0.119531 0.0690110i 0.00699500 0.00403856i
\(293\) −9.59726 + 5.54098i −0.560678 + 0.323708i −0.753418 0.657542i \(-0.771596\pi\)
0.192740 + 0.981250i \(0.438263\pi\)
\(294\) 5.00428i 0.291856i
\(295\) 3.20093 + 5.54418i 0.186366 + 0.322795i
\(296\) 1.34763 2.33417i 0.0783296 0.135671i
\(297\) 25.9814 + 15.0004i 1.50760 + 0.870410i
\(298\) −20.7318 −1.20096
\(299\) 0 0
\(300\) 0.988450 0.0570682
\(301\) 6.12108 + 3.53401i 0.352813 + 0.203697i
\(302\) 10.2503 17.7540i 0.589836 1.02163i
\(303\) −4.19039 7.25798i −0.240732 0.416960i
\(304\) 3.11752i 0.178802i
\(305\) −11.3001 + 6.52411i −0.647041 + 0.373569i
\(306\) −3.60081 + 2.07893i −0.205845 + 0.118844i
\(307\) 6.38045i 0.364152i −0.983284 0.182076i \(-0.941718\pi\)
0.983284 0.182076i \(-0.0582816\pi\)
\(308\) 10.4933 + 18.1749i 0.597909 + 1.03561i
\(309\) −2.45576 + 4.25350i −0.139703 + 0.241973i
\(310\) −7.76376 4.48241i −0.440952 0.254584i
\(311\) −18.9443 −1.07423 −0.537115 0.843509i \(-0.680486\pi\)
−0.537115 + 0.843509i \(0.680486\pi\)
\(312\) 0 0
\(313\) −17.5007 −0.989196 −0.494598 0.869122i \(-0.664685\pi\)
−0.494598 + 0.869122i \(0.664685\pi\)
\(314\) 10.0530 + 5.80409i 0.567323 + 0.327544i
\(315\) −3.51303 + 6.08475i −0.197937 + 0.342837i
\(316\) −3.35809 5.81638i −0.188907 0.327197i
\(317\) 34.2450i 1.92339i 0.274121 + 0.961695i \(0.411613\pi\)
−0.274121 + 0.961695i \(0.588387\pi\)
\(318\) 9.57432 5.52774i 0.536901 0.309980i
\(319\) −35.2197 + 20.3341i −1.97192 + 1.13849i
\(320\) 1.00000i 0.0559017i
\(321\) 2.55486 + 4.42515i 0.142598 + 0.246988i
\(322\) −13.8483 + 23.9859i −0.771734 + 1.33668i
\(323\) −5.54908 3.20376i −0.308759 0.178262i
\(324\) −1.16129 −0.0645160
\(325\) 0 0
\(326\) −8.77539 −0.486024
\(327\) 6.93235 + 4.00239i 0.383360 + 0.221333i
\(328\) −1.61772 + 2.80196i −0.0893234 + 0.154713i
\(329\) −15.6823 27.1625i −0.864591 1.49751i
\(330\) 5.97272i 0.328787i
\(331\) −7.14286 + 4.12393i −0.392607 + 0.226672i −0.683289 0.730148i \(-0.739451\pi\)
0.290682 + 0.956820i \(0.406118\pi\)
\(332\) −2.63141 + 1.51925i −0.144417 + 0.0833795i
\(333\) 5.45243i 0.298792i
\(334\) 4.83398 + 8.37270i 0.264504 + 0.458134i
\(335\) −4.24821 + 7.35812i −0.232105 + 0.402017i
\(336\) 2.97309 + 1.71652i 0.162196 + 0.0936437i
\(337\) −12.1509 −0.661902 −0.330951 0.943648i \(-0.607369\pi\)
−0.330951 + 0.943648i \(0.607369\pi\)
\(338\) 0 0
\(339\) −18.0459 −0.980120
\(340\) 1.77997 + 1.02766i 0.0965322 + 0.0557329i
\(341\) −27.0850 + 46.9126i −1.46673 + 2.54046i
\(342\) −3.15332 5.46171i −0.170512 0.295335i
\(343\) 6.72834i 0.363296i
\(344\) 1.76240 1.01752i 0.0950224 0.0548612i
\(345\) 6.82634 3.94119i 0.367518 0.212186i
\(346\) 9.00074i 0.483883i
\(347\) 7.35376 + 12.7371i 0.394770 + 0.683762i 0.993072 0.117509i \(-0.0374908\pi\)
−0.598301 + 0.801271i \(0.704157\pi\)
\(348\) −3.32631 + 5.76133i −0.178309 + 0.308840i
\(349\) 23.9415 + 13.8226i 1.28156 + 0.739908i 0.977133 0.212629i \(-0.0682025\pi\)
0.304425 + 0.952536i \(0.401536\pi\)
\(350\) 3.47315 0.185648
\(351\) 0 0
\(352\) 6.04251 0.322067
\(353\) 13.0685 + 7.54512i 0.695568 + 0.401586i 0.805694 0.592331i \(-0.201792\pi\)
−0.110127 + 0.993918i \(0.535126\pi\)
\(354\) 3.16396 5.48015i 0.168163 0.291267i
\(355\) 0.0609989 + 0.105653i 0.00323749 + 0.00560749i
\(356\) 3.38412i 0.179358i
\(357\) 6.11068 3.52800i 0.323412 0.186722i
\(358\) −9.64278 + 5.56726i −0.509637 + 0.294239i
\(359\) 10.0380i 0.529786i 0.964278 + 0.264893i \(0.0853367\pi\)
−0.964278 + 0.264893i \(0.914663\pi\)
\(360\) 1.01148 + 1.75194i 0.0533098 + 0.0923353i
\(361\) −4.64053 + 8.03763i −0.244238 + 0.423033i
\(362\) −1.41604 0.817553i −0.0744256 0.0429696i
\(363\) −25.2172 −1.32356
\(364\) 0 0
\(365\) −0.138022 −0.00722440
\(366\) 11.1696 + 6.44876i 0.583843 + 0.337082i
\(367\) 12.2676 21.2482i 0.640365 1.10915i −0.344986 0.938608i \(-0.612116\pi\)
0.985351 0.170537i \(-0.0545503\pi\)
\(368\) 3.98724 + 6.90610i 0.207849 + 0.360005i
\(369\) 6.54516i 0.340728i
\(370\) −2.33417 + 1.34763i −0.121348 + 0.0700601i
\(371\) 33.6416 19.4230i 1.74658 1.00839i
\(372\) 8.86128i 0.459436i
\(373\) 0.621835 + 1.07705i 0.0321974 + 0.0557675i 0.881675 0.471857i \(-0.156416\pi\)
−0.849478 + 0.527625i \(0.823083\pi\)
\(374\) 6.20966 10.7555i 0.321094 0.556151i
\(375\) −0.856023 0.494225i −0.0442048 0.0255217i
\(376\) −9.03057 −0.465716
\(377\) 0 0
\(378\) 17.2440 0.886936
\(379\) 15.9619 + 9.21560i 0.819907 + 0.473373i 0.850384 0.526162i \(-0.176369\pi\)
−0.0304775 + 0.999535i \(0.509703\pi\)
\(380\) −1.55876 + 2.69985i −0.0799627 + 0.138500i
\(381\) 0.143140 + 0.247926i 0.00733330 + 0.0127017i
\(382\) 9.23847i 0.472681i
\(383\) 22.3707 12.9157i 1.14309 0.659963i 0.195896 0.980625i \(-0.437239\pi\)
0.947194 + 0.320662i \(0.103905\pi\)
\(384\) 0.856023 0.494225i 0.0436838 0.0252208i
\(385\) 20.9865i 1.06957i
\(386\) −3.64146 6.30719i −0.185345 0.321027i
\(387\) 2.05842 3.56528i 0.104635 0.181233i
\(388\) 5.04478 + 2.91261i 0.256110 + 0.147865i
\(389\) −31.2329 −1.58357 −0.791784 0.610801i \(-0.790848\pi\)
−0.791784 + 0.610801i \(0.790848\pi\)
\(390\) 0 0
\(391\) 16.3902 0.828886
\(392\) 4.38447 + 2.53138i 0.221449 + 0.127854i
\(393\) 9.63314 16.6851i 0.485928 0.841651i
\(394\) 10.2872 + 17.8180i 0.518262 + 0.897655i
\(395\) 6.71618i 0.337928i
\(396\) 10.5861 6.11189i 0.531972 0.307134i
\(397\) −24.3492 + 14.0580i −1.22205 + 0.705553i −0.965355 0.260939i \(-0.915968\pi\)
−0.256698 + 0.966492i \(0.582635\pi\)
\(398\) 2.77107i 0.138901i
\(399\) 5.35128 + 9.26869i 0.267899 + 0.464015i
\(400\) 0.500000 0.866025i 0.0250000 0.0433013i
\(401\) −5.33234 3.07863i −0.266284 0.153739i 0.360914 0.932599i \(-0.382465\pi\)
−0.627198 + 0.778860i \(0.715798\pi\)
\(402\) 8.39829 0.418869
\(403\) 0 0
\(404\) −8.47871 −0.421832
\(405\) 1.00570 + 0.580644i 0.0499739 + 0.0288524i
\(406\) −11.6877 + 20.2438i −0.580053 + 1.00468i
\(407\) 8.14309 + 14.1042i 0.403638 + 0.699121i
\(408\) 2.03159i 0.100579i
\(409\) 22.9330 13.2403i 1.13396 0.654693i 0.189033 0.981971i \(-0.439465\pi\)
0.944928 + 0.327278i \(0.106131\pi\)
\(410\) 2.80196 1.61772i 0.138379 0.0798933i
\(411\) 3.66318i 0.180691i
\(412\) 2.48445 + 4.30320i 0.122400 + 0.212003i
\(413\) 11.1173 19.2558i 0.547047 0.947514i
\(414\) 13.9708 + 8.06604i 0.686627 + 0.396424i
\(415\) 3.03849 0.149154
\(416\) 0 0
\(417\) −10.2634 −0.502599
\(418\) 16.3139 + 9.41882i 0.797938 + 0.460690i
\(419\) 5.92699 10.2659i 0.289553 0.501520i −0.684150 0.729341i \(-0.739827\pi\)
0.973703 + 0.227821i \(0.0731602\pi\)
\(420\) −1.71652 2.97309i −0.0837575 0.145072i
\(421\) 9.48437i 0.462240i −0.972925 0.231120i \(-0.925761\pi\)
0.972925 0.231120i \(-0.0742390\pi\)
\(422\) −18.4251 + 10.6377i −0.896920 + 0.517837i
\(423\) −15.8210 + 9.13427i −0.769244 + 0.444123i
\(424\) 11.1847i 0.543175i
\(425\) −1.02766 1.77997i −0.0498490 0.0863410i
\(426\) 0.0602944 0.104433i 0.00292127 0.00505979i
\(427\) 39.2469 + 22.6592i 1.89929 + 1.09656i
\(428\) 5.16942 0.249874
\(429\) 0 0
\(430\) −2.03505 −0.0981387
\(431\) −12.2261 7.05875i −0.588911 0.340008i 0.175756 0.984434i \(-0.443763\pi\)
−0.764667 + 0.644426i \(0.777096\pi\)
\(432\) 2.48248 4.29978i 0.119438 0.206873i
\(433\) 13.1597 + 22.7932i 0.632414 + 1.09537i 0.987057 + 0.160371i \(0.0512691\pi\)
−0.354643 + 0.935002i \(0.615398\pi\)
\(434\) 31.1361i 1.49458i
\(435\) 5.76133 3.32631i 0.276235 0.159484i
\(436\) 7.01335 4.04916i 0.335879 0.193920i
\(437\) 24.8606i 1.18924i
\(438\) 0.0682140 + 0.118150i 0.00325939 + 0.00564543i
\(439\) −13.2985 + 23.0336i −0.634702 + 1.09934i 0.351877 + 0.936046i \(0.385544\pi\)
−0.986578 + 0.163289i \(0.947790\pi\)
\(440\) −5.23297 3.02125i −0.249472 0.144033i
\(441\) 10.2418 0.487704
\(442\) 0 0
\(443\) 15.9166 0.756222 0.378111 0.925760i \(-0.376574\pi\)
0.378111 + 0.925760i \(0.376574\pi\)
\(444\) 2.30721 + 1.33207i 0.109495 + 0.0632172i
\(445\) −1.69206 + 2.93073i −0.0802113 + 0.138930i
\(446\) 3.67949 + 6.37306i 0.174229 + 0.301773i
\(447\) 20.4924i 0.969256i
\(448\) 3.00783 1.73657i 0.142107 0.0820454i
\(449\) −33.5454 + 19.3675i −1.58311 + 0.914007i −0.588705 + 0.808348i \(0.700362\pi\)
−0.994402 + 0.105659i \(0.966305\pi\)
\(450\) 2.02297i 0.0953635i
\(451\) −9.77506 16.9309i −0.460289 0.797245i
\(452\) −9.12839 + 15.8108i −0.429363 + 0.743679i
\(453\) 17.5489 + 10.1319i 0.824520 + 0.476037i
\(454\) 21.3232 1.00075
\(455\) 0 0
\(456\) 3.08152 0.144305
\(457\) −12.1538 7.01701i −0.568532 0.328242i 0.188031 0.982163i \(-0.439790\pi\)
−0.756563 + 0.653921i \(0.773123\pi\)
\(458\) −7.89647 + 13.6771i −0.368978 + 0.639088i
\(459\) −5.10230 8.83744i −0.238155 0.412497i
\(460\) 7.97448i 0.371812i
\(461\) −7.79551 + 4.50074i −0.363073 + 0.209620i −0.670428 0.741975i \(-0.733889\pi\)
0.307355 + 0.951595i \(0.400556\pi\)
\(462\) −17.9649 + 10.3721i −0.835805 + 0.482552i
\(463\) 34.7780i 1.61627i 0.588997 + 0.808135i \(0.299523\pi\)
−0.588997 + 0.808135i \(0.700477\pi\)
\(464\) 3.36517 + 5.82865i 0.156224 + 0.270588i
\(465\) 4.43064 7.67409i 0.205466 0.355878i
\(466\) −7.04113 4.06520i −0.326174 0.188317i
\(467\) −18.1864 −0.841568 −0.420784 0.907161i \(-0.638245\pi\)
−0.420784 + 0.907161i \(0.638245\pi\)
\(468\) 0 0
\(469\) 29.5093 1.36261
\(470\) 7.82070 + 4.51529i 0.360742 + 0.208275i
\(471\) −5.73706 + 9.93687i −0.264350 + 0.457867i
\(472\) −3.20093 5.54418i −0.147335 0.255192i
\(473\) 12.2968i 0.565407i
\(474\) 5.74921 3.31931i 0.264070 0.152461i
\(475\) 2.69985 1.55876i 0.123878 0.0715208i
\(476\) 7.13845i 0.327190i
\(477\) −11.3131 19.5948i −0.517991 0.897186i
\(478\) 6.26234 10.8467i 0.286433 0.496116i
\(479\) −27.7954 16.0477i −1.27000 0.733238i −0.295016 0.955492i \(-0.595325\pi\)
−0.974989 + 0.222255i \(0.928658\pi\)
\(480\) −0.988450 −0.0451164
\(481\) 0 0
\(482\) −3.58778 −0.163419
\(483\) −23.7089 13.6883i −1.07879 0.622840i
\(484\) −12.7560 + 22.0940i −0.579816 + 1.00427i
\(485\) −2.91261 5.04478i −0.132255 0.229072i
\(486\) 16.0427i 0.727713i
\(487\) 27.1309 15.6640i 1.22942 0.709804i 0.262509 0.964929i \(-0.415450\pi\)
0.966908 + 0.255125i \(0.0821166\pi\)
\(488\) 11.3001 6.52411i 0.511531 0.295333i
\(489\) 8.67404i 0.392254i
\(490\) −2.53138 4.38447i −0.114356 0.198070i
\(491\) −3.63614 + 6.29798i −0.164097 + 0.284224i −0.936334 0.351110i \(-0.885804\pi\)
0.772237 + 0.635334i \(0.219138\pi\)
\(492\) −2.76960 1.59903i −0.124863 0.0720899i
\(493\) 13.8331 0.623010
\(494\) 0 0
\(495\) −12.2238 −0.549418
\(496\) 7.76376 + 4.48241i 0.348603 + 0.201266i
\(497\) 0.211858 0.366949i 0.00950314 0.0164599i
\(498\) −1.50170 2.60102i −0.0672928 0.116555i
\(499\) 9.57876i 0.428804i −0.976745 0.214402i \(-0.931220\pi\)
0.976745 0.214402i \(-0.0687803\pi\)
\(500\) −0.866025 + 0.500000i −0.0387298 + 0.0223607i
\(501\) −8.27600 + 4.77815i −0.369744 + 0.213472i
\(502\) 15.0726i 0.672722i
\(503\) −3.22712 5.58954i −0.143890 0.249225i 0.785068 0.619409i \(-0.212628\pi\)
−0.928958 + 0.370184i \(0.879295\pi\)
\(504\) 3.51303 6.08475i 0.156483 0.271036i
\(505\) 7.34278 + 4.23936i 0.326750 + 0.188649i
\(506\) −48.1858 −2.14212
\(507\) 0 0
\(508\) 0.289626 0.0128501
\(509\) 2.69443 + 1.55563i 0.119429 + 0.0689521i 0.558524 0.829488i \(-0.311368\pi\)
−0.439096 + 0.898440i \(0.644701\pi\)
\(510\) −1.01579 + 1.75941i −0.0449801 + 0.0779079i
\(511\) 0.239685 + 0.415147i 0.0106031 + 0.0183650i
\(512\) 1.00000i 0.0441942i
\(513\) 13.4046 7.73917i 0.591829 0.341693i
\(514\) 19.3820 11.1902i 0.854904 0.493579i
\(515\) 4.96891i 0.218956i
\(516\) 1.00577 + 1.74205i 0.0442766 + 0.0766894i
\(517\) 27.2836 47.2567i 1.19993 2.07835i
\(518\) 8.10692 + 4.68053i 0.356198 + 0.205651i
\(519\) 8.89678 0.390525
\(520\) 0 0
\(521\) 42.6003 1.86635 0.933177 0.359416i \(-0.117024\pi\)
0.933177 + 0.359416i \(0.117024\pi\)
\(522\) 11.7912 + 6.80763i 0.516085 + 0.297962i
\(523\) 0.673013 1.16569i 0.0294288 0.0509722i −0.850936 0.525270i \(-0.823964\pi\)
0.880365 + 0.474297i \(0.157298\pi\)
\(524\) −9.74570 16.8800i −0.425743 0.737408i
\(525\) 3.43303i 0.149830i
\(526\) −16.2208 + 9.36507i −0.707260 + 0.408337i
\(527\) 15.9571 9.21282i 0.695101 0.401317i
\(528\) 5.97272i 0.259929i
\(529\) −20.2961 35.1539i −0.882440 1.52843i
\(530\) −5.59233 + 9.68619i −0.242915 + 0.420741i
\(531\) −11.2157 6.47538i −0.486719 0.281008i
\(532\) 10.8276 0.469436
\(533\) 0 0
\(534\) 3.34503 0.144754
\(535\) −4.47685 2.58471i −0.193551 0.111747i
\(536\) 4.24821 7.35812i 0.183495 0.317822i
\(537\) −5.50296 9.53141i −0.237470 0.411311i
\(538\) 6.53932i 0.281930i
\(539\) −26.4932 + 15.2959i −1.14114 + 0.658840i
\(540\) −4.29978 + 2.48248i −0.185033 + 0.106829i
\(541\) 21.9468i 0.943567i −0.881714 0.471784i \(-0.843610\pi\)
0.881714 0.471784i \(-0.156390\pi\)
\(542\) −1.43222 2.48068i −0.0615192 0.106554i
\(543\) 0.808110 1.39969i 0.0346793 0.0600664i
\(544\) −1.77997 1.02766i −0.0763154 0.0440607i
\(545\) −8.09832 −0.346894
\(546\) 0 0
\(547\) −26.7344 −1.14308 −0.571540 0.820574i \(-0.693654\pi\)
−0.571540 + 0.820574i \(0.693654\pi\)
\(548\) −3.20947 1.85299i −0.137102 0.0791558i
\(549\) 13.1980 22.8597i 0.563279 0.975628i
\(550\) 3.02125 + 5.23297i 0.128827 + 0.223134i
\(551\) 20.9820i 0.893863i
\(552\) −6.82634 + 3.94119i −0.290548 + 0.167748i
\(553\) 20.2012 11.6631i 0.859041 0.495967i
\(554\) 2.80684i 0.119251i
\(555\) −1.33207 2.30721i −0.0565432 0.0979357i
\(556\) −5.19164 + 8.99218i −0.220174 + 0.381353i
\(557\) 14.9708 + 8.64340i 0.634333 + 0.366233i 0.782428 0.622741i \(-0.213981\pi\)
−0.148095 + 0.988973i \(0.547314\pi\)
\(558\) 18.1355 0.767738
\(559\) 0 0
\(560\) −3.47315 −0.146767
\(561\) 10.6312 + 6.13795i 0.448851 + 0.259144i
\(562\) 12.9487 22.4278i 0.546207 0.946058i
\(563\) −18.1162 31.3782i −0.763508 1.32243i −0.941032 0.338318i \(-0.890142\pi\)
0.177524 0.984117i \(-0.443191\pi\)
\(564\) 8.92627i 0.375864i
\(565\) 15.8108 9.12839i 0.665167 0.384034i
\(566\) −25.0086 + 14.4387i −1.05119 + 0.606904i
\(567\) 4.03332i 0.169384i
\(568\) −0.0609989 0.105653i −0.00255946 0.00443311i
\(569\) 10.7431 18.6076i 0.450375 0.780072i −0.548034 0.836456i \(-0.684624\pi\)
0.998409 + 0.0563839i \(0.0179571\pi\)
\(570\) −2.66867 1.54076i −0.111778 0.0645352i
\(571\) −16.8212 −0.703944 −0.351972 0.936011i \(-0.614489\pi\)
−0.351972 + 0.936011i \(0.614489\pi\)
\(572\) 0 0
\(573\) 9.13177 0.381485
\(574\) −9.73164 5.61856i −0.406191 0.234514i
\(575\) −3.98724 + 6.90610i −0.166279 + 0.288004i
\(576\) −1.01148 1.75194i −0.0421451 0.0729975i
\(577\) 33.5996i 1.39877i −0.714746 0.699384i \(-0.753458\pi\)
0.714746 0.699384i \(-0.246542\pi\)
\(578\) 11.0640 6.38782i 0.460203 0.265698i
\(579\) 6.23434 3.59940i 0.259090 0.149586i
\(580\) 6.73035i 0.279462i
\(581\) −5.27657 9.13928i −0.218909 0.379161i
\(582\) −2.87897 + 4.98652i −0.119337 + 0.206698i
\(583\) 58.5289 + 33.7917i 2.42402 + 1.39951i
\(584\) 0.138022 0.00571139
\(585\) 0 0
\(586\) −11.0820 −0.457792
\(587\) 22.9482 + 13.2491i 0.947172 + 0.546850i 0.892201 0.451638i \(-0.149160\pi\)
0.0549709 + 0.998488i \(0.482493\pi\)
\(588\) −2.50214 + 4.33384i −0.103187 + 0.178724i
\(589\) 13.9740 + 24.2037i 0.575789 + 0.997296i
\(590\) 6.40187i 0.263561i
\(591\) −17.6122 + 10.1684i −0.724468 + 0.418272i
\(592\) 2.33417 1.34763i 0.0959338 0.0553874i
\(593\) 33.8602i 1.39047i −0.718783 0.695235i \(-0.755300\pi\)
0.718783 0.695235i \(-0.244700\pi\)
\(594\) 15.0004 + 25.9814i 0.615473 + 1.06603i
\(595\) −3.56923 + 6.18208i −0.146324 + 0.253441i
\(596\) −17.9543 10.3659i −0.735436 0.424604i
\(597\) 2.73906 0.112102
\(598\) 0 0
\(599\) 15.5745 0.636358 0.318179 0.948031i \(-0.396929\pi\)
0.318179 + 0.948031i \(0.396929\pi\)
\(600\) 0.856023 + 0.494225i 0.0349470 + 0.0201767i
\(601\) 16.8801 29.2372i 0.688555 1.19261i −0.283751 0.958898i \(-0.591579\pi\)
0.972305 0.233714i \(-0.0750879\pi\)
\(602\) 3.53401 + 6.12108i 0.144035 + 0.249477i
\(603\) 17.1880i 0.699948i
\(604\) 17.7540 10.2503i 0.722399 0.417077i
\(605\) 22.0940 12.7560i 0.898247 0.518603i
\(606\) 8.38079i 0.340446i
\(607\) 3.55160 + 6.15154i 0.144155 + 0.249683i 0.929057 0.369936i \(-0.120620\pi\)
−0.784902 + 0.619619i \(0.787287\pi\)
\(608\) 1.55876 2.69985i 0.0632161 0.109493i
\(609\) −20.0100 11.5528i −0.810845 0.468141i
\(610\) −13.0482 −0.528307
\(611\) 0 0
\(612\) −4.15786 −0.168071
\(613\) −14.8367 8.56598i −0.599249 0.345976i 0.169497 0.985531i \(-0.445786\pi\)
−0.768746 + 0.639554i \(0.779119\pi\)
\(614\) 3.19023 5.52563i 0.128747 0.222996i
\(615\) 1.59903 + 2.76960i 0.0644792 + 0.111681i
\(616\) 20.9865i 0.845571i
\(617\) −18.3916 + 10.6184i −0.740416 + 0.427479i −0.822221 0.569169i \(-0.807265\pi\)
0.0818045 + 0.996648i \(0.473932\pi\)
\(618\) −4.25350 + 2.45576i −0.171101 + 0.0987851i
\(619\) 23.8169i 0.957284i 0.878010 + 0.478642i \(0.158871\pi\)
−0.878010 + 0.478642i \(0.841129\pi\)
\(620\) −4.48241 7.76376i −0.180018 0.311800i
\(621\) −19.7964 + 34.2884i −0.794404 + 1.37595i
\(622\) −16.4062 9.47213i −0.657829 0.379798i
\(623\) 11.7535 0.470896
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −15.1560 8.75033i −0.605756 0.349734i
\(627\) −9.31004 + 16.1255i −0.371807 + 0.643989i
\(628\) 5.80409 + 10.0530i 0.231608 + 0.401158i
\(629\) 5.53966i 0.220881i
\(630\) −6.08475 + 3.51303i −0.242422 + 0.139962i
\(631\) 9.64325 5.56753i 0.383892 0.221640i −0.295619 0.955306i \(-0.595526\pi\)
0.679510 + 0.733666i \(0.262192\pi\)
\(632\) 6.71618i 0.267155i
\(633\) −10.5149 18.2123i −0.417929 0.723874i
\(634\) −17.1225 + 29.6570i −0.680021 + 1.17783i
\(635\) −0.250823 0.144813i −0.00995362 0.00574672i
\(636\) 11.0555 0.438378
\(637\) 0 0
\(638\) −40.6682 −1.61007
\(639\) −0.213733 0.123399i −0.00845514 0.00488158i
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) −0.521743 0.903685i −0.0206076 0.0356934i 0.855538 0.517741i \(-0.173227\pi\)
−0.876145 + 0.482047i \(0.839893\pi\)
\(642\) 5.10972i 0.201665i
\(643\) 5.87873 3.39409i 0.231835 0.133850i −0.379583 0.925157i \(-0.623933\pi\)
0.611418 + 0.791308i \(0.290599\pi\)
\(644\) −23.9859 + 13.8483i −0.945177 + 0.545698i
\(645\) 2.01154i 0.0792044i
\(646\) −3.20376 5.54908i −0.126050 0.218326i
\(647\) −5.50186 + 9.52950i −0.216300 + 0.374643i −0.953674 0.300842i \(-0.902732\pi\)
0.737374 + 0.675485i \(0.236066\pi\)
\(648\) −1.00570 0.580644i −0.0395078 0.0228098i
\(649\) 38.6833 1.51845
\(650\) 0 0
\(651\) −30.7765 −1.20623
\(652\) −7.59971 4.38770i −0.297628 0.171835i
\(653\) 1.67573 2.90244i 0.0655762 0.113581i −0.831373 0.555714i \(-0.812445\pi\)
0.896949 + 0.442133i \(0.145778\pi\)
\(654\) 4.00239 + 6.93235i 0.156506 + 0.271076i
\(655\) 19.4914i 0.761592i
\(656\) −2.80196 + 1.61772i −0.109398 + 0.0631612i
\(657\) 0.241806 0.139607i 0.00943376 0.00544658i
\(658\) 31.3645i 1.22272i
\(659\) 2.23147 + 3.86501i 0.0869256 + 0.150560i 0.906210 0.422828i \(-0.138962\pi\)
−0.819285 + 0.573387i \(0.805629\pi\)
\(660\) 2.98636 5.17253i 0.116244 0.201340i
\(661\) 9.26094 + 5.34681i 0.360209 + 0.207967i 0.669172 0.743107i \(-0.266649\pi\)
−0.308963 + 0.951074i \(0.599982\pi\)
\(662\) −8.24786 −0.320562
\(663\) 0 0
\(664\) −3.03849 −0.117916
\(665\) −9.37699 5.41381i −0.363624 0.209938i
\(666\) 2.72622 4.72195i 0.105639 0.182972i
\(667\) −26.8355 46.4804i −1.03907 1.79973i
\(668\) 9.66796i 0.374065i
\(669\) −6.29945 + 3.63699i −0.243551 + 0.140614i
\(670\) −7.35812 + 4.24821i −0.284269 + 0.164123i
\(671\) 78.8440i 3.04374i
\(672\) 1.71652 + 2.97309i 0.0662161 + 0.114690i
\(673\) 4.16705 7.21754i 0.160628 0.278216i −0.774466 0.632615i \(-0.781981\pi\)
0.935094 + 0.354400i \(0.115315\pi\)
\(674\) −10.5230 6.07545i −0.405330 0.234018i
\(675\) 4.96495 0.191101
\(676\) 0 0
\(677\) −10.4945 −0.403338 −0.201669 0.979454i \(-0.564637\pi\)
−0.201669 + 0.979454i \(0.564637\pi\)
\(678\) −15.6282 9.02296i −0.600198 0.346525i
\(679\) −10.1159 + 17.5213i −0.388213 + 0.672405i
\(680\) 1.02766 + 1.77997i 0.0394091 + 0.0682586i
\(681\) 21.0770i 0.807671i
\(682\) −46.9126 + 27.0850i −1.79638 + 1.03714i
\(683\) −3.71581 + 2.14532i −0.142182 + 0.0820886i −0.569403 0.822058i \(-0.692826\pi\)
0.427222 + 0.904147i \(0.359492\pi\)
\(684\) 6.30664i 0.241140i
\(685\) 1.85299 + 3.20947i 0.0707991 + 0.122628i
\(686\) 3.36417 5.82691i 0.128445 0.222473i
\(687\) −13.5191 7.80527i −0.515787 0.297790i
\(688\) 2.03505 0.0775855
\(689\) 0 0
\(690\) 7.88237 0.300077
\(691\) −26.5236 15.3134i −1.00901 0.582550i −0.0981061 0.995176i \(-0.531278\pi\)
−0.910901 + 0.412626i \(0.864612\pi\)
\(692\) 4.50037 7.79487i 0.171078 0.296316i
\(693\) 21.2275 + 36.7671i 0.806366 + 1.39667i
\(694\) 14.7075i 0.558290i
\(695\) 8.99218 5.19164i 0.341093 0.196930i
\(696\) −5.76133 + 3.32631i −0.218383 + 0.126083i
\(697\) 6.64987i 0.251882i
\(698\) 13.8226 + 23.9415i 0.523194 + 0.906198i
\(699\) 4.01825 6.95981i 0.151984 0.263244i
\(700\) 3.00783 + 1.73657i 0.113685 + 0.0656363i
\(701\) −8.16045 −0.308216 −0.154108 0.988054i \(-0.549250\pi\)
−0.154108 + 0.988054i \(0.549250\pi\)
\(702\) 0 0
\(703\) 8.40255 0.316908
\(704\) 5.23297 + 3.02125i 0.197225 + 0.113868i
\(705\) −4.46314 + 7.73038i −0.168091 + 0.291143i
\(706\) 7.54512 + 13.0685i 0.283964 + 0.491841i
\(707\) 29.4478i 1.10750i
\(708\) 5.48015 3.16396i 0.205957 0.118909i
\(709\) 27.8250 16.0648i 1.04499 0.603325i 0.123747 0.992314i \(-0.460509\pi\)
0.921243 + 0.388989i \(0.127175\pi\)
\(710\) 0.121998i 0.00457850i
\(711\) −6.79330 11.7663i −0.254769 0.441272i
\(712\) 1.69206 2.93073i 0.0634126 0.109834i
\(713\) −61.9119 35.7449i −2.31862 1.33866i
\(714\) 7.05601 0.264064
\(715\) 0 0
\(716\) −11.1345 −0.416117
\(717\) 10.7214 + 6.19001i 0.400399 + 0.231170i
\(718\) −5.01901 + 8.69318i −0.187308 + 0.324427i
\(719\) 0.414515 + 0.717961i 0.0154588 + 0.0267754i 0.873651 0.486553i \(-0.161746\pi\)
−0.858193 + 0.513328i \(0.828412\pi\)
\(720\) 2.02297i 0.0753915i
\(721\) −14.9457 + 8.62888i −0.556605 + 0.321356i
\(722\) −8.03763 + 4.64053i −0.299130 + 0.172703i
\(723\) 3.54634i 0.131890i
\(724\) −0.817553 1.41604i −0.0303841 0.0526268i
\(725\) −3.36517 + 5.82865i −0.124979 + 0.216471i
\(726\) −21.8388 12.6086i −0.810513 0.467950i
\(727\) 42.6451 1.58162 0.790810 0.612061i \(-0.209659\pi\)
0.790810 + 0.612061i \(0.209659\pi\)
\(728\) 0 0
\(729\) 12.3736 0.458281
\(730\) −0.119531 0.0690110i −0.00442403 0.00255421i
\(731\) 2.09134 3.62231i 0.0773511 0.133976i
\(732\) 6.44876 + 11.1696i 0.238353 + 0.412839i
\(733\) 30.2477i 1.11722i −0.829429 0.558612i \(-0.811334\pi\)
0.829429 0.558612i \(-0.188666\pi\)
\(734\) 21.2482 12.2676i 0.784284 0.452807i
\(735\) 4.33384 2.50214i 0.159856 0.0922929i
\(736\) 7.97448i 0.293943i
\(737\) 25.6699 + 44.4615i 0.945561 + 1.63776i
\(738\) −3.27258 + 5.66828i −0.120465 + 0.208652i
\(739\) −13.7656 7.94757i −0.506376 0.292356i 0.224967 0.974366i \(-0.427773\pi\)
−0.731343 + 0.682010i \(0.761106\pi\)
\(740\) −2.69527 −0.0990800
\(741\) 0 0
\(742\) 38.8459 1.42608
\(743\) 6.62750 + 3.82639i 0.243139 + 0.140377i 0.616619 0.787262i \(-0.288502\pi\)
−0.373479 + 0.927638i \(0.621835\pi\)
\(744\) −4.43064 + 7.67409i −0.162435 + 0.281346i
\(745\) 10.3659 + 17.9543i 0.379778 + 0.657794i
\(746\) 1.24367i 0.0455340i
\(747\) −5.32326 + 3.07338i −0.194768 + 0.112449i
\(748\) 10.7555 6.20966i 0.393258 0.227048i
\(749\) 17.9542i 0.656031i
\(750\) −0.494225 0.856023i −0.0180466 0.0312575i
\(751\) 15.1630 26.2631i 0.553305 0.958352i −0.444728 0.895666i \(-0.646700\pi\)
0.998033 0.0626868i \(-0.0199669\pi\)
\(752\) −7.82070 4.51529i −0.285192 0.164656i
\(753\) 14.8985 0.542931
\(754\) 0 0
\(755\) −20.5005 −0.746090
\(756\) 14.9338 + 8.62201i 0.543135 + 0.313579i
\(757\) 10.4654 18.1266i 0.380372 0.658823i −0.610744 0.791828i \(-0.709129\pi\)
0.991115 + 0.133005i \(0.0424628\pi\)
\(758\) 9.21560 + 15.9619i 0.334726 + 0.579762i
\(759\) 47.6293i 1.72883i
\(760\) −2.69985 + 1.55876i −0.0979339 + 0.0565422i
\(761\) 13.2186 7.63175i 0.479173 0.276651i −0.240899 0.970550i \(-0.577442\pi\)
0.720072 + 0.693900i \(0.244109\pi\)
\(762\) 0.286281i 0.0103709i
\(763\) 14.0633 + 24.3584i 0.509127 + 0.881833i
\(764\) 4.61924 8.00075i 0.167118 0.289457i
\(765\) 3.60081 + 2.07893i 0.130188 + 0.0751638i
\(766\) 25.8315 0.933329
\(767\) 0 0
\(768\) 0.988450 0.0356676
\(769\) 14.1819 + 8.18791i 0.511411 + 0.295263i 0.733414 0.679783i \(-0.237926\pi\)
−0.222002 + 0.975046i \(0.571259\pi\)
\(770\) 10.4933 18.1749i 0.378151 0.654977i
\(771\) 11.0610 + 19.1582i 0.398351 + 0.689964i
\(772\) 7.28291i 0.262118i
\(773\) 4.66097 2.69101i 0.167643 0.0967890i −0.413831 0.910354i \(-0.635809\pi\)
0.581474 + 0.813565i \(0.302476\pi\)
\(774\) 3.56528 2.05842i 0.128151 0.0739882i
\(775\) 8.96482i 0.322026i
\(776\) 2.91261 + 5.04478i 0.104557 + 0.181097i
\(777\) −4.62647 + 8.01329i −0.165974 + 0.287475i
\(778\) −27.0485 15.6164i −0.969734 0.559876i
\(779\) −10.0865 −0.361387
\(780\) 0 0
\(781\) 0.737173 0.0263781
\(782\) 14.1943 + 8.19508i 0.507587 + 0.293055i
\(783\) −16.7079 + 28.9390i −0.597093 + 1.03419i
\(784\) 2.53138 + 4.38447i 0.0904063 + 0.156588i
\(785\) 11.6082i 0.414314i
\(786\) 16.6851 9.63314i 0.595137 0.343603i
\(787\) 22.7928 13.1594i 0.812477 0.469084i −0.0353385 0.999375i \(-0.511251\pi\)
0.847815 + 0.530292i \(0.177918\pi\)
\(788\) 20.5744i 0.732933i
\(789\) −9.25691 16.0334i −0.329555 0.570806i
\(790\) −3.35809 + 5.81638i −0.119476 + 0.206938i
\(791\) −54.9133 31.7042i −1.95249 1.12727i
\(792\) 12.2238 0.434353
\(793\) 0 0
\(794\) −28.1161 −0.997802
\(795\) −9.57432 5.52774i −0.339566 0.196049i
\(796\) 1.38553 2.39981i 0.0491089 0.0850592i
\(797\) −11.4362 19.8081i −0.405091 0.701639i 0.589241 0.807957i \(-0.299427\pi\)
−0.994332 + 0.106319i \(0.966094\pi\)
\(798\) 10.7026i 0.378866i
\(799\) −16.0741 + 9.28039i −0.568661 + 0.328317i
\(800\) 0.866025 0.500000i 0.0306186 0.0176777i
\(801\) 6.84595i 0.241890i
\(802\) −3.07863 5.33234i −0.108710 0.188291i
\(803\) −0.417000 + 0.722264i −0.0147156 + 0.0254882i
\(804\) 7.27314 + 4.19915i 0.256504 + 0.148093i
\(805\) 27.6965 0.976174
\(806\) 0 0
\(807\) 6.46379 0.227536
\(808\) −7.34278 4.23936i −0.258318 0.149140i
\(809\) 9.56123 16.5605i 0.336155 0.582238i −0.647551 0.762022i \(-0.724207\pi\)
0.983706 + 0.179785i \(0.0575401\pi\)
\(810\) 0.580644 + 1.00570i 0.0204017 + 0.0353369i
\(811\) 13.2144i 0.464019i 0.972714 + 0.232009i \(0.0745300\pi\)
−0.972714 + 0.232009i \(0.925470\pi\)
\(812\) −20.2438 + 11.6877i −0.710417 + 0.410159i
\(813\) 2.45203 1.41568i 0.0859965 0.0496501i
\(814\) 16.2862i 0.570830i
\(815\) 4.38770 + 7.59971i 0.153694 + 0.266206i
\(816\) 1.01579 1.75941i 0.0355599 0.0615916i
\(817\) 5.49433 + 3.17215i 0.192222 + 0.110980i
\(818\) 26.4807 0.925876
\(819\) 0 0
\(820\) 3.23543 0.112986
\(821\) −8.10356 4.67859i −0.282816 0.163284i 0.351881 0.936045i \(-0.385542\pi\)
−0.634698 + 0.772761i \(0.718875\pi\)
\(822\) 1.83159 3.17240i 0.0638840 0.110650i
\(823\) 5.27953 + 9.14441i 0.184033 + 0.318754i 0.943250 0.332083i \(-0.107751\pi\)
−0.759217 + 0.650837i \(0.774418\pi\)
\(824\) 4.96891i 0.173100i
\(825\) −5.17253 + 2.98636i −0.180084 + 0.103972i
\(826\) 19.2558 11.1173i 0.669994 0.386821i
\(827\) 12.6564i 0.440107i 0.975488 + 0.220054i \(0.0706232\pi\)
−0.975488 + 0.220054i \(0.929377\pi\)
\(828\) 8.06604 + 13.9708i 0.280314 + 0.485519i
\(829\) 27.2877 47.2636i 0.947740 1.64153i 0.197570 0.980289i \(-0.436695\pi\)
0.750170 0.661245i \(-0.229972\pi\)
\(830\) 2.63141 + 1.51925i 0.0913376 + 0.0527338i
\(831\) 2.77442 0.0962436
\(832\) 0 0
\(833\) 10.4056 0.360533
\(834\) −8.88832 5.13168i −0.307777 0.177695i
\(835\) 4.83398 8.37270i 0.167287 0.289749i
\(836\) 9.41882 + 16.3139i 0.325757 + 0.564227i
\(837\) 44.5099i 1.53849i
\(838\) 10.2659 5.92699i 0.354628 0.204745i
\(839\) 10.4662 6.04265i 0.361333 0.208616i −0.308333 0.951279i \(-0.599771\pi\)
0.669665 + 0.742663i \(0.266438\pi\)
\(840\) 3.43303i 0.118451i
\(841\) −8.14879 14.1141i −0.280993 0.486694i
\(842\) 4.74218 8.21370i 0.163426 0.283063i
\(843\) 22.1687 + 12.7991i 0.763532 + 0.440825i
\(844\) −21.2755 −0.732332
\(845\) 0 0
\(846\) −18.2685 −0.628085
\(847\) −76.7356 44.3033i −2.63667 1.52228i
\(848\) 5.59233 9.68619i 0.192041 0.332625i
\(849\) −14.2719 24.7197i −0.489812 0.848379i
\(850\) 2.05533i 0.0704971i
\(851\) −18.6138 + 10.7467i −0.638072 + 0.368391i
\(852\) 0.104433 0.0602944i 0.00357782 0.00206565i
\(853\) 16.2371i 0.555947i −0.960589 0.277973i \(-0.910337\pi\)
0.960589 0.277973i \(-0.0896627\pi\)
\(854\) 22.6592 + 39.2469i 0.775382 + 1.34300i
\(855\) −3.15332 + 5.46171i −0.107841 + 0.186787i
\(856\) 4.47685 + 2.58471i 0.153016 + 0.0883436i
\(857\) −30.2096 −1.03194 −0.515970 0.856607i \(-0.672568\pi\)
−0.515970 + 0.856607i \(0.672568\pi\)
\(858\) 0 0
\(859\) 18.9280 0.645814 0.322907 0.946431i \(-0.395340\pi\)
0.322907 + 0.946431i \(0.395340\pi\)
\(860\) −1.76240 1.01752i −0.0600974 0.0346973i
\(861\) 5.55367 9.61924i 0.189269 0.327823i
\(862\) −7.05875 12.2261i −0.240422 0.416423i
\(863\) 9.02786i 0.307312i 0.988124 + 0.153656i \(0.0491048\pi\)
−0.988124 + 0.153656i \(0.950895\pi\)
\(864\) 4.29978 2.48248i 0.146281 0.0844556i
\(865\) −7.79487 + 4.50037i −0.265033 + 0.153017i
\(866\) 26.3194i 0.894368i
\(867\) 6.31404 + 10.9362i 0.214436 + 0.371414i
\(868\) −15.5681 + 26.9647i −0.528415 + 0.915241i
\(869\) 35.1456 + 20.2913i 1.19223 + 0.688335i
\(870\) 6.65262 0.225545
\(871\) 0 0
\(872\) 8.09832 0.274244
\(873\) 10.2054 + 5.89210i 0.345401 + 0.199418i
\(874\) −12.4303 + 21.5299i −0.420461 + 0.728260i
\(875\) −1.73657 3.00783i −0.0587069 0.101683i
\(876\) 0.136428i 0.00460947i
\(877\) 36.8628 21.2827i 1.24477 0.718667i 0.274707 0.961528i \(-0.411419\pi\)
0.970061 + 0.242861i \(0.0780860\pi\)
\(878\) −23.0336 + 13.2985i −0.777348 + 0.448802i
\(879\) 10.9540i 0.369468i
\(880\) −3.02125 5.23297i −0.101846 0.176403i
\(881\) 19.9663 34.5826i 0.672680 1.16512i −0.304461 0.952525i \(-0.598476\pi\)
0.977141 0.212591i \(-0.0681903\pi\)
\(882\) 8.86964 + 5.12089i 0.298656 + 0.172429i
\(883\) 26.1186 0.878962 0.439481 0.898252i \(-0.355162\pi\)
0.439481 + 0.898252i \(0.355162\pi\)
\(884\) 0 0
\(885\) −6.32793 −0.212711
\(886\) 13.7842 + 7.95831i 0.463089 + 0.267365i
\(887\) −11.6005 + 20.0926i −0.389506 + 0.674644i −0.992383 0.123190i \(-0.960687\pi\)
0.602877 + 0.797834i \(0.294021\pi\)
\(888\) 1.33207 + 2.30721i 0.0447013 + 0.0774250i
\(889\) 1.00591i 0.0337372i
\(890\) −2.93073 + 1.69206i −0.0982383 + 0.0567179i
\(891\) 6.07698 3.50854i 0.203586 0.117541i
\(892\) 7.35898i 0.246397i
\(893\) −14.0765 24.3812i −0.471052 0.815886i
\(894\) 10.2462 17.7469i 0.342684 0.593546i
\(895\) 9.64278 + 5.56726i 0.322323 + 0.186093i
\(896\) 3.47315 0.116030
\(897\) 0 0
\(898\) −38.7349 −1.29260
\(899\) −52.2528 30.1682i −1.74273 1.00617i
\(900\) 1.01148 1.75194i 0.0337161 0.0583980i
\(901\) −11.4941 19.9083i −0.382923 0.663241i
\(902\) 19.5501i 0.650948i
\(903\) −6.05039 + 3.49319i −0.201344 + 0.116246i
\(904\) −15.8108 + 9.12839i −0.525860 + 0.303606i
\(905\) 1.63511i 0.0543527i
\(906\) 10.1319 + 17.5489i 0.336609 + 0.583024i
\(907\) 11.0787 19.1889i 0.367862 0.637156i −0.621369 0.783518i \(-0.713423\pi\)
0.989231 + 0.146362i \(0.0467566\pi\)
\(908\) 18.4665 + 10.6616i 0.612831 + 0.353818i
\(909\) −17.1521 −0.568901
\(910\) 0 0
\(911\) −10.5539 −0.349666 −0.174833 0.984598i \(-0.555939\pi\)
−0.174833 + 0.984598i \(0.555939\pi\)
\(912\) 2.66867 + 1.54076i 0.0883685 + 0.0510196i
\(913\) 9.18006 15.9003i 0.303816 0.526224i
\(914\) −7.01701 12.1538i −0.232102 0.402013i
\(915\) 12.8975i 0.426379i
\(916\) −13.6771 + 7.89647i −0.451904 + 0.260907i
\(917\) 58.6269 33.8483i 1.93603 1.11777i
\(918\) 10.2046i 0.336802i
\(919\) −14.9497 25.8937i −0.493146 0.854153i 0.506823 0.862050i \(-0.330820\pi\)
−0.999969 + 0.00789664i \(0.997486\pi\)
\(920\) 3.98724 6.90610i 0.131455 0.227687i
\(921\) 5.46182 + 3.15338i 0.179973 + 0.103907i
\(922\) −9.00148 −0.296448
\(923\) 0 0
\(924\) −20.7441 −0.682432
\(925\) 2.33417 + 1.34763i 0.0767470 + 0.0443099i
\(926\) −17.3890 + 30.1186i −0.571438 + 0.989759i
\(927\) 5.02597 + 8.70523i 0.165074 + 0.285917i
\(928\) 6.73035i 0.220934i
\(929\) −49.0656 + 28.3280i −1.60979 + 0.929413i −0.620374 + 0.784306i \(0.713019\pi\)
−0.989416 + 0.145107i \(0.953647\pi\)
\(930\) 7.67409 4.43064i 0.251643 0.145286i
\(931\) 15.7832i 0.517275i
\(932\) −4.06520 7.04113i −0.133160 0.230640i
\(933\) 9.36273 16.2167i 0.306522 0.530912i
\(934\) −15.7499 9.09322i −0.515353 0.297539i
\(935\) −12.4193 −0.406155
\(936\) 0 0
\(937\) −37.4212 −1.22250 −0.611249 0.791439i \(-0.709332\pi\)
−0.611249 + 0.791439i \(0.709332\pi\)
\(938\) 25.5558 + 14.7547i 0.834428 + 0.481757i
\(939\) 8.64927 14.9810i 0.282258 0.488886i
\(940\) 4.51529 + 7.82070i 0.147272 + 0.255083i
\(941\) 0.100449i 0.00327454i −0.999999 0.00163727i \(-0.999479\pi\)
0.999999 0.00163727i \(-0.000521159\pi\)
\(942\) −9.93687 + 5.73706i −0.323761 + 0.186923i
\(943\) 22.3442 12.9004i 0.727627 0.420096i
\(944\) 6.40187i 0.208363i
\(945\) −8.62201 14.9338i −0.280474 0.485795i
\(946\) −6.14839 + 10.6493i −0.199902 + 0.346240i
\(947\) −24.1724 13.9559i −0.785497 0.453507i 0.0528777 0.998601i \(-0.483161\pi\)
−0.838375 + 0.545094i \(0.816494\pi\)
\(948\) 6.63861 0.215612
\(949\) 0 0
\(950\) 3.11752 0.101146
\(951\) −29.3145 16.9247i −0.950588 0.548822i
\(952\) 3.56923 6.18208i 0.115679 0.200362i
\(953\) 2.14253 + 3.71097i 0.0694033 + 0.120210i 0.898639 0.438689i \(-0.144557\pi\)
−0.829235 + 0.558899i \(0.811224\pi\)
\(954\) 22.6262i 0.732549i
\(955\) −8.00075 + 4.61924i −0.258898 + 0.149475i
\(956\) 10.8467 6.26234i 0.350807 0.202539i
\(957\) 40.1985i 1.29943i
\(958\) −16.0477 27.7954i −0.518477 0.898029i
\(959\) 6.43571 11.1470i 0.207820 0.359954i
\(960\) −0.856023 0.494225i −0.0276280 0.0159511i
\(961\) −49.3680 −1.59252
\(962\) 0 0
\(963\) 10.4576 0.336990
\(964\) −3.10711 1.79389i −0.100073 0.0577773i
\(965\) −3.64146 + 6.30719i −0.117223 + 0.203036i
\(966\) −13.6883 23.7089i −0.440415 0.762820i
\(967\) 28.0511i 0.902062i 0.892508 + 0.451031i \(0.148944\pi\)
−0.892508 + 0.451031i \(0.851056\pi\)
\(968\) −22.0940 + 12.7560i −0.710127 + 0.409992i
\(969\) 5.48499 3.16676i 0.176203 0.101731i
\(970\) 5.82521i 0.187036i
\(971\) 14.6521 + 25.3782i 0.470209 + 0.814426i 0.999420 0.0340646i \(-0.0108452\pi\)
−0.529211 + 0.848491i \(0.677512\pi\)
\(972\) 8.02137 13.8934i 0.257285 0.445631i
\(973\) −31.2312 18.0313i −1.00123 0.578058i
\(974\) 31.3280 1.00382
\(975\) 0 0
\(976\) 13.0482 0.417663
\(977\) −18.3016 10.5664i −0.585519 0.338049i 0.177805 0.984066i \(-0.443100\pi\)
−0.763324 + 0.646016i \(0.776434\pi\)
\(978\) 4.33702 7.51194i 0.138683 0.240205i
\(979\) 10.2243 + 17.7090i 0.326769 + 0.565981i
\(980\) 5.06275i 0.161724i
\(981\) 14.1878 8.19131i 0.452981 0.261528i
\(982\) −6.29798 + 3.63614i −0.200977 + 0.116034i
\(983\) 30.8904i 0.985250i −0.870242 0.492625i \(-0.836037\pi\)
0.870242 0.492625i \(-0.163963\pi\)
\(984\) −1.59903 2.76960i −0.0509753 0.0882917i
\(985\) 10.2872 17.8180i 0.327777 0.567727i
\(986\) 11.9798 + 6.91653i 0.381514 + 0.220267i
\(987\) 31.0023 0.986813
\(988\) 0 0
\(989\) −16.2284 −0.516034
\(990\) −10.5861 6.11189i −0.336449 0.194249i
\(991\) −9.98310 + 17.2912i −0.317124 + 0.549274i −0.979887 0.199555i \(-0.936050\pi\)
0.662763 + 0.748829i \(0.269384\pi\)
\(992\) 4.48241 + 7.76376i 0.142317 + 0.246500i
\(993\) 8.15260i 0.258715i
\(994\) 0.366949 0.211858i 0.0116389 0.00671974i
\(995\) −2.39981 + 1.38553i −0.0760792 + 0.0439244i
\(996\) 3.00340i 0.0951664i
\(997\) −0.779576 1.35027i −0.0246894 0.0427633i 0.853417 0.521229i \(-0.174526\pi\)
−0.878106 + 0.478466i \(0.841193\pi\)
\(998\) 4.78938 8.29545i 0.151605 0.262588i
\(999\) 11.5890 + 6.69094i 0.366661 + 0.211692i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.l.n.1161.8 24
13.2 odd 12 1690.2.e.v.991.3 12
13.3 even 3 inner 1690.2.l.n.361.3 24
13.4 even 6 1690.2.d.l.1351.10 12
13.5 odd 4 1690.2.e.v.191.3 12
13.6 odd 12 1690.2.a.v.1.4 6
13.7 odd 12 1690.2.a.w.1.4 yes 6
13.8 odd 4 1690.2.e.u.191.3 12
13.9 even 3 1690.2.d.l.1351.4 12
13.10 even 6 inner 1690.2.l.n.361.8 24
13.11 odd 12 1690.2.e.u.991.3 12
13.12 even 2 inner 1690.2.l.n.1161.3 24
65.19 odd 12 8450.2.a.cq.1.3 6
65.59 odd 12 8450.2.a.cp.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.v.1.4 6 13.6 odd 12
1690.2.a.w.1.4 yes 6 13.7 odd 12
1690.2.d.l.1351.4 12 13.9 even 3
1690.2.d.l.1351.10 12 13.4 even 6
1690.2.e.u.191.3 12 13.8 odd 4
1690.2.e.u.991.3 12 13.11 odd 12
1690.2.e.v.191.3 12 13.5 odd 4
1690.2.e.v.991.3 12 13.2 odd 12
1690.2.l.n.361.3 24 13.3 even 3 inner
1690.2.l.n.361.8 24 13.10 even 6 inner
1690.2.l.n.1161.3 24 13.12 even 2 inner
1690.2.l.n.1161.8 24 1.1 even 1 trivial
8450.2.a.cp.1.3 6 65.59 odd 12
8450.2.a.cq.1.3 6 65.19 odd 12