Properties

Label 1690.2.d.l.1351.12
Level $1690$
Weight $2$
Character 1690.1351
Analytic conductor $13.495$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1351,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4,-12,0,0,0,0,32,-12,0,4,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 34x^{10} + 453x^{8} + 2990x^{6} + 10094x^{4} + 15876x^{2} + 8281 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.12
Root \(-2.57254i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1351
Dual form 1690.2.d.l.1351.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +2.57254 q^{3} -1.00000 q^{4} +1.00000i q^{5} +2.57254i q^{6} -1.90403i q^{7} -1.00000i q^{8} +3.61798 q^{9} -1.00000 q^{10} -5.17658i q^{11} -2.57254 q^{12} +1.90403 q^{14} +2.57254i q^{15} +1.00000 q^{16} +5.89037 q^{17} +3.61798i q^{18} -8.09045i q^{19} -1.00000i q^{20} -4.89819i q^{21} +5.17658 q^{22} +0.908568 q^{23} -2.57254i q^{24} -1.00000 q^{25} +1.58977 q^{27} +1.90403i q^{28} -5.29954 q^{29} -2.57254 q^{30} -0.0626650i q^{31} +1.00000i q^{32} -13.3170i q^{33} +5.89037i q^{34} +1.90403 q^{35} -3.61798 q^{36} -1.63865i q^{37} +8.09045 q^{38} +1.00000 q^{40} +1.77061i q^{41} +4.89819 q^{42} +8.58977 q^{43} +5.17658i q^{44} +3.61798i q^{45} +0.908568i q^{46} +11.2024i q^{47} +2.57254 q^{48} +3.37468 q^{49} -1.00000i q^{50} +15.1532 q^{51} -8.92525 q^{53} +1.58977i q^{54} +5.17658 q^{55} -1.90403 q^{56} -20.8130i q^{57} -5.29954i q^{58} -10.6767i q^{59} -2.57254i q^{60} -0.681193 q^{61} +0.0626650 q^{62} -6.88873i q^{63} -1.00000 q^{64} +13.3170 q^{66} +14.1492i q^{67} -5.89037 q^{68} +2.33733 q^{69} +1.90403i q^{70} +15.7017i q^{71} -3.61798i q^{72} -0.163089i q^{73} +1.63865 q^{74} -2.57254 q^{75} +8.09045i q^{76} -9.85635 q^{77} +14.7178 q^{79} +1.00000i q^{80} -6.76417 q^{81} -1.77061 q^{82} -1.89246i q^{83} +4.89819i q^{84} +5.89037i q^{85} +8.58977i q^{86} -13.6333 q^{87} -5.17658 q^{88} +0.541298i q^{89} -3.61798 q^{90} -0.908568 q^{92} -0.161208i q^{93} -11.2024 q^{94} +8.09045 q^{95} +2.57254i q^{96} +12.8001i q^{97} +3.37468i q^{98} -18.7287i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - 12 q^{4} + 32 q^{9} - 12 q^{10} + 4 q^{12} + 6 q^{14} + 12 q^{16} + 6 q^{17} + 30 q^{22} + 6 q^{23} - 12 q^{25} - 40 q^{27} + 14 q^{29} + 4 q^{30} + 6 q^{35} - 32 q^{36} - 2 q^{38} + 12 q^{40}+ \cdots - 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.57254 1.48526 0.742629 0.669703i \(-0.233579\pi\)
0.742629 + 0.669703i \(0.233579\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.00000i 0.447214i
\(6\) 2.57254i 1.05024i
\(7\) − 1.90403i − 0.719655i −0.933019 0.359827i \(-0.882836\pi\)
0.933019 0.359827i \(-0.117164\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 3.61798 1.20599
\(10\) −1.00000 −0.316228
\(11\) − 5.17658i − 1.56080i −0.625283 0.780398i \(-0.715016\pi\)
0.625283 0.780398i \(-0.284984\pi\)
\(12\) −2.57254 −0.742629
\(13\) 0 0
\(14\) 1.90403 0.508873
\(15\) 2.57254i 0.664228i
\(16\) 1.00000 0.250000
\(17\) 5.89037 1.42862 0.714312 0.699827i \(-0.246740\pi\)
0.714312 + 0.699827i \(0.246740\pi\)
\(18\) 3.61798i 0.852765i
\(19\) − 8.09045i − 1.85608i −0.372485 0.928038i \(-0.621494\pi\)
0.372485 0.928038i \(-0.378506\pi\)
\(20\) − 1.00000i − 0.223607i
\(21\) − 4.89819i − 1.06887i
\(22\) 5.17658 1.10365
\(23\) 0.908568 0.189449 0.0947247 0.995504i \(-0.469803\pi\)
0.0947247 + 0.995504i \(0.469803\pi\)
\(24\) − 2.57254i − 0.525118i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.58977 0.305952
\(28\) 1.90403i 0.359827i
\(29\) −5.29954 −0.984099 −0.492050 0.870567i \(-0.663752\pi\)
−0.492050 + 0.870567i \(0.663752\pi\)
\(30\) −2.57254 −0.469680
\(31\) − 0.0626650i − 0.0112550i −0.999984 0.00562748i \(-0.998209\pi\)
0.999984 0.00562748i \(-0.00179129\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 13.3170i − 2.31819i
\(34\) 5.89037i 1.01019i
\(35\) 1.90403 0.321839
\(36\) −3.61798 −0.602996
\(37\) − 1.63865i − 0.269393i −0.990887 0.134696i \(-0.956994\pi\)
0.990887 0.134696i \(-0.0430059\pi\)
\(38\) 8.09045 1.31244
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 1.77061i 0.276522i 0.990396 + 0.138261i \(0.0441513\pi\)
−0.990396 + 0.138261i \(0.955849\pi\)
\(42\) 4.89819 0.755808
\(43\) 8.58977 1.30993 0.654964 0.755660i \(-0.272684\pi\)
0.654964 + 0.755660i \(0.272684\pi\)
\(44\) 5.17658i 0.780398i
\(45\) 3.61798i 0.539336i
\(46\) 0.908568i 0.133961i
\(47\) 11.2024i 1.63404i 0.576612 + 0.817018i \(0.304374\pi\)
−0.576612 + 0.817018i \(0.695626\pi\)
\(48\) 2.57254 0.371315
\(49\) 3.37468 0.482097
\(50\) − 1.00000i − 0.141421i
\(51\) 15.1532 2.12188
\(52\) 0 0
\(53\) −8.92525 −1.22598 −0.612989 0.790092i \(-0.710033\pi\)
−0.612989 + 0.790092i \(0.710033\pi\)
\(54\) 1.58977i 0.216341i
\(55\) 5.17658 0.698009
\(56\) −1.90403 −0.254436
\(57\) − 20.8130i − 2.75675i
\(58\) − 5.29954i − 0.695863i
\(59\) − 10.6767i − 1.38999i −0.719013 0.694997i \(-0.755406\pi\)
0.719013 0.694997i \(-0.244594\pi\)
\(60\) − 2.57254i − 0.332114i
\(61\) −0.681193 −0.0872179 −0.0436089 0.999049i \(-0.513886\pi\)
−0.0436089 + 0.999049i \(0.513886\pi\)
\(62\) 0.0626650 0.00795846
\(63\) − 6.88873i − 0.867898i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 13.3170 1.63921
\(67\) 14.1492i 1.72860i 0.502975 + 0.864301i \(0.332239\pi\)
−0.502975 + 0.864301i \(0.667761\pi\)
\(68\) −5.89037 −0.714312
\(69\) 2.33733 0.281381
\(70\) 1.90403i 0.227575i
\(71\) 15.7017i 1.86345i 0.363164 + 0.931725i \(0.381696\pi\)
−0.363164 + 0.931725i \(0.618304\pi\)
\(72\) − 3.61798i − 0.426383i
\(73\) − 0.163089i − 0.0190881i −0.999954 0.00954407i \(-0.996962\pi\)
0.999954 0.00954407i \(-0.00303802\pi\)
\(74\) 1.63865 0.190489
\(75\) −2.57254 −0.297052
\(76\) 8.09045i 0.928038i
\(77\) −9.85635 −1.12323
\(78\) 0 0
\(79\) 14.7178 1.65589 0.827943 0.560813i \(-0.189511\pi\)
0.827943 + 0.560813i \(0.189511\pi\)
\(80\) 1.00000i 0.111803i
\(81\) −6.76417 −0.751575
\(82\) −1.77061 −0.195531
\(83\) − 1.89246i − 0.207724i −0.994592 0.103862i \(-0.966880\pi\)
0.994592 0.103862i \(-0.0331201\pi\)
\(84\) 4.89819i 0.534437i
\(85\) 5.89037i 0.638900i
\(86\) 8.58977i 0.926259i
\(87\) −13.6333 −1.46164
\(88\) −5.17658 −0.551825
\(89\) 0.541298i 0.0573775i 0.999588 + 0.0286887i \(0.00913316\pi\)
−0.999588 + 0.0286887i \(0.990867\pi\)
\(90\) −3.61798 −0.381368
\(91\) 0 0
\(92\) −0.908568 −0.0947247
\(93\) − 0.161208i − 0.0167165i
\(94\) −11.2024 −1.15544
\(95\) 8.09045 0.830063
\(96\) 2.57254i 0.262559i
\(97\) 12.8001i 1.29966i 0.760081 + 0.649829i \(0.225159\pi\)
−0.760081 + 0.649829i \(0.774841\pi\)
\(98\) 3.37468i 0.340894i
\(99\) − 18.7287i − 1.88231i
\(100\) 1.00000 0.100000
\(101\) −2.59059 −0.257773 −0.128886 0.991659i \(-0.541140\pi\)
−0.128886 + 0.991659i \(0.541140\pi\)
\(102\) 15.1532i 1.50039i
\(103\) 1.77799 0.175191 0.0875953 0.996156i \(-0.472082\pi\)
0.0875953 + 0.996156i \(0.472082\pi\)
\(104\) 0 0
\(105\) 4.89819 0.478015
\(106\) − 8.92525i − 0.866897i
\(107\) 3.56829 0.344959 0.172480 0.985013i \(-0.444822\pi\)
0.172480 + 0.985013i \(0.444822\pi\)
\(108\) −1.58977 −0.152976
\(109\) − 11.4449i − 1.09622i −0.836405 0.548112i \(-0.815347\pi\)
0.836405 0.548112i \(-0.184653\pi\)
\(110\) 5.17658i 0.493567i
\(111\) − 4.21550i − 0.400118i
\(112\) − 1.90403i − 0.179914i
\(113\) 11.2334 1.05675 0.528373 0.849012i \(-0.322802\pi\)
0.528373 + 0.849012i \(0.322802\pi\)
\(114\) 20.8130 1.94932
\(115\) 0.908568i 0.0847244i
\(116\) 5.29954 0.492050
\(117\) 0 0
\(118\) 10.6767 0.982874
\(119\) − 11.2154i − 1.02812i
\(120\) 2.57254 0.234840
\(121\) −15.7969 −1.43609
\(122\) − 0.681193i − 0.0616724i
\(123\) 4.55496i 0.410707i
\(124\) 0.0626650i 0.00562748i
\(125\) − 1.00000i − 0.0894427i
\(126\) 6.88873 0.613697
\(127\) −10.8735 −0.964870 −0.482435 0.875932i \(-0.660248\pi\)
−0.482435 + 0.875932i \(0.660248\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 22.0976 1.94558
\(130\) 0 0
\(131\) 1.13042 0.0987653 0.0493827 0.998780i \(-0.484275\pi\)
0.0493827 + 0.998780i \(0.484275\pi\)
\(132\) 13.3170i 1.15909i
\(133\) −15.4044 −1.33573
\(134\) −14.1492 −1.22231
\(135\) 1.58977i 0.136826i
\(136\) − 5.89037i − 0.505095i
\(137\) 10.9390i 0.934584i 0.884103 + 0.467292i \(0.154770\pi\)
−0.884103 + 0.467292i \(0.845230\pi\)
\(138\) 2.33733i 0.198967i
\(139\) −4.30562 −0.365198 −0.182599 0.983188i \(-0.558451\pi\)
−0.182599 + 0.983188i \(0.558451\pi\)
\(140\) −1.90403 −0.160920
\(141\) 28.8186i 2.42697i
\(142\) −15.7017 −1.31766
\(143\) 0 0
\(144\) 3.61798 0.301498
\(145\) − 5.29954i − 0.440103i
\(146\) 0.163089 0.0134974
\(147\) 8.68150 0.716038
\(148\) 1.63865i 0.134696i
\(149\) − 19.2499i − 1.57701i −0.615029 0.788505i \(-0.710856\pi\)
0.615029 0.788505i \(-0.289144\pi\)
\(150\) − 2.57254i − 0.210047i
\(151\) 7.91349i 0.643990i 0.946741 + 0.321995i \(0.104354\pi\)
−0.946741 + 0.321995i \(0.895646\pi\)
\(152\) −8.09045 −0.656222
\(153\) 21.3112 1.72291
\(154\) − 9.85635i − 0.794247i
\(155\) 0.0626650 0.00503337
\(156\) 0 0
\(157\) −0.946176 −0.0755131 −0.0377565 0.999287i \(-0.512021\pi\)
−0.0377565 + 0.999287i \(0.512021\pi\)
\(158\) 14.7178i 1.17089i
\(159\) −22.9606 −1.82089
\(160\) −1.00000 −0.0790569
\(161\) − 1.72994i − 0.136338i
\(162\) − 6.76417i − 0.531444i
\(163\) − 4.51269i − 0.353461i −0.984259 0.176731i \(-0.943448\pi\)
0.984259 0.176731i \(-0.0565521\pi\)
\(164\) − 1.77061i − 0.138261i
\(165\) 13.3170 1.03672
\(166\) 1.89246 0.146883
\(167\) 1.96336i 0.151929i 0.997111 + 0.0759647i \(0.0242036\pi\)
−0.997111 + 0.0759647i \(0.975796\pi\)
\(168\) −4.89819 −0.377904
\(169\) 0 0
\(170\) −5.89037 −0.451771
\(171\) − 29.2711i − 2.23841i
\(172\) −8.58977 −0.654964
\(173\) −10.2747 −0.781171 −0.390585 0.920567i \(-0.627727\pi\)
−0.390585 + 0.920567i \(0.627727\pi\)
\(174\) − 13.6333i − 1.03354i
\(175\) 1.90403i 0.143931i
\(176\) − 5.17658i − 0.390199i
\(177\) − 27.4664i − 2.06450i
\(178\) −0.541298 −0.0405720
\(179\) −11.3293 −0.846790 −0.423395 0.905945i \(-0.639162\pi\)
−0.423395 + 0.905945i \(0.639162\pi\)
\(180\) − 3.61798i − 0.269668i
\(181\) −16.6110 −1.23468 −0.617342 0.786695i \(-0.711791\pi\)
−0.617342 + 0.786695i \(0.711791\pi\)
\(182\) 0 0
\(183\) −1.75240 −0.129541
\(184\) − 0.908568i − 0.0669805i
\(185\) 1.63865 0.120476
\(186\) 0.161208 0.0118204
\(187\) − 30.4919i − 2.22979i
\(188\) − 11.2024i − 0.817018i
\(189\) − 3.02697i − 0.220180i
\(190\) 8.09045i 0.586943i
\(191\) 21.7130 1.57110 0.785550 0.618798i \(-0.212380\pi\)
0.785550 + 0.618798i \(0.212380\pi\)
\(192\) −2.57254 −0.185657
\(193\) − 11.3641i − 0.818006i −0.912533 0.409003i \(-0.865877\pi\)
0.912533 0.409003i \(-0.134123\pi\)
\(194\) −12.8001 −0.918997
\(195\) 0 0
\(196\) −3.37468 −0.241048
\(197\) 17.6398i 1.25678i 0.777898 + 0.628390i \(0.216286\pi\)
−0.777898 + 0.628390i \(0.783714\pi\)
\(198\) 18.7287 1.33099
\(199\) 23.6305 1.67512 0.837562 0.546342i \(-0.183980\pi\)
0.837562 + 0.546342i \(0.183980\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 36.3995i 2.56742i
\(202\) − 2.59059i − 0.182273i
\(203\) 10.0905i 0.708212i
\(204\) −15.1532 −1.06094
\(205\) −1.77061 −0.123664
\(206\) 1.77799i 0.123878i
\(207\) 3.28718 0.228475
\(208\) 0 0
\(209\) −41.8808 −2.89696
\(210\) 4.89819i 0.338007i
\(211\) −15.2360 −1.04889 −0.524445 0.851444i \(-0.675727\pi\)
−0.524445 + 0.851444i \(0.675727\pi\)
\(212\) 8.92525 0.612989
\(213\) 40.3933i 2.76770i
\(214\) 3.56829i 0.243923i
\(215\) 8.58977i 0.585818i
\(216\) − 1.58977i − 0.108170i
\(217\) −0.119316 −0.00809969
\(218\) 11.4449 0.775148
\(219\) − 0.419554i − 0.0283508i
\(220\) −5.17658 −0.349005
\(221\) 0 0
\(222\) 4.21550 0.282926
\(223\) − 2.78265i − 0.186340i −0.995650 0.0931699i \(-0.970300\pi\)
0.995650 0.0931699i \(-0.0297000\pi\)
\(224\) 1.90403 0.127218
\(225\) −3.61798 −0.241198
\(226\) 11.2334i 0.747232i
\(227\) − 3.94347i − 0.261737i −0.991400 0.130869i \(-0.958223\pi\)
0.991400 0.130869i \(-0.0417766\pi\)
\(228\) 20.8130i 1.37838i
\(229\) − 10.3809i − 0.685986i −0.939338 0.342993i \(-0.888559\pi\)
0.939338 0.342993i \(-0.111441\pi\)
\(230\) −0.908568 −0.0599092
\(231\) −25.3559 −1.66829
\(232\) 5.29954i 0.347932i
\(233\) 13.2410 0.867449 0.433725 0.901045i \(-0.357199\pi\)
0.433725 + 0.901045i \(0.357199\pi\)
\(234\) 0 0
\(235\) −11.2024 −0.730763
\(236\) 10.6767i 0.694997i
\(237\) 37.8623 2.45942
\(238\) 11.2154 0.726988
\(239\) 24.3290i 1.57371i 0.617137 + 0.786856i \(0.288292\pi\)
−0.617137 + 0.786856i \(0.711708\pi\)
\(240\) 2.57254i 0.166057i
\(241\) 11.1983i 0.721349i 0.932692 + 0.360674i \(0.117453\pi\)
−0.932692 + 0.360674i \(0.882547\pi\)
\(242\) − 15.7969i − 1.01547i
\(243\) −22.1704 −1.42223
\(244\) 0.681193 0.0436089
\(245\) 3.37468i 0.215600i
\(246\) −4.55496 −0.290414
\(247\) 0 0
\(248\) −0.0626650 −0.00397923
\(249\) − 4.86843i − 0.308524i
\(250\) 1.00000 0.0632456
\(251\) −5.81385 −0.366967 −0.183483 0.983023i \(-0.558737\pi\)
−0.183483 + 0.983023i \(0.558737\pi\)
\(252\) 6.88873i 0.433949i
\(253\) − 4.70327i − 0.295692i
\(254\) − 10.8735i − 0.682266i
\(255\) 15.1532i 0.948932i
\(256\) 1.00000 0.0625000
\(257\) 29.1850 1.82051 0.910254 0.414050i \(-0.135886\pi\)
0.910254 + 0.414050i \(0.135886\pi\)
\(258\) 22.0976i 1.37573i
\(259\) −3.12004 −0.193870
\(260\) 0 0
\(261\) −19.1736 −1.18682
\(262\) 1.13042i 0.0698376i
\(263\) 27.5544 1.69908 0.849538 0.527527i \(-0.176881\pi\)
0.849538 + 0.527527i \(0.176881\pi\)
\(264\) −13.3170 −0.819603
\(265\) − 8.92525i − 0.548274i
\(266\) − 15.4044i − 0.944507i
\(267\) 1.39251i 0.0852204i
\(268\) − 14.1492i − 0.864301i
\(269\) 3.97887 0.242596 0.121298 0.992616i \(-0.461294\pi\)
0.121298 + 0.992616i \(0.461294\pi\)
\(270\) −1.58977 −0.0967505
\(271\) − 13.6399i − 0.828567i −0.910148 0.414283i \(-0.864032\pi\)
0.910148 0.414283i \(-0.135968\pi\)
\(272\) 5.89037 0.357156
\(273\) 0 0
\(274\) −10.9390 −0.660851
\(275\) 5.17658i 0.312159i
\(276\) −2.33733 −0.140691
\(277\) 2.30543 0.138520 0.0692600 0.997599i \(-0.477936\pi\)
0.0692600 + 0.997599i \(0.477936\pi\)
\(278\) − 4.30562i − 0.258234i
\(279\) − 0.226720i − 0.0135734i
\(280\) − 1.90403i − 0.113787i
\(281\) 21.0557i 1.25608i 0.778183 + 0.628038i \(0.216142\pi\)
−0.778183 + 0.628038i \(0.783858\pi\)
\(282\) −28.8186 −1.71612
\(283\) 2.60164 0.154652 0.0773258 0.997006i \(-0.475362\pi\)
0.0773258 + 0.997006i \(0.475362\pi\)
\(284\) − 15.7017i − 0.931725i
\(285\) 20.8130 1.23286
\(286\) 0 0
\(287\) 3.37128 0.199000
\(288\) 3.61798i 0.213191i
\(289\) 17.6964 1.04097
\(290\) 5.29954 0.311200
\(291\) 32.9289i 1.93033i
\(292\) 0.163089i 0.00954407i
\(293\) − 6.46826i − 0.377880i −0.981989 0.188940i \(-0.939495\pi\)
0.981989 0.188940i \(-0.0605052\pi\)
\(294\) 8.68150i 0.506316i
\(295\) 10.6767 0.621624
\(296\) −1.63865 −0.0952447
\(297\) − 8.22958i − 0.477529i
\(298\) 19.2499 1.11511
\(299\) 0 0
\(300\) 2.57254 0.148526
\(301\) − 16.3552i − 0.942696i
\(302\) −7.91349 −0.455370
\(303\) −6.66439 −0.382859
\(304\) − 8.09045i − 0.464019i
\(305\) − 0.681193i − 0.0390050i
\(306\) 21.3112i 1.21828i
\(307\) 11.7707i 0.671789i 0.941900 + 0.335894i \(0.109039\pi\)
−0.941900 + 0.335894i \(0.890961\pi\)
\(308\) 9.85635 0.561617
\(309\) 4.57395 0.260203
\(310\) 0.0626650i 0.00355913i
\(311\) −2.09362 −0.118718 −0.0593591 0.998237i \(-0.518906\pi\)
−0.0593591 + 0.998237i \(0.518906\pi\)
\(312\) 0 0
\(313\) −24.7645 −1.39977 −0.699885 0.714256i \(-0.746765\pi\)
−0.699885 + 0.714256i \(0.746765\pi\)
\(314\) − 0.946176i − 0.0533958i
\(315\) 6.88873 0.388136
\(316\) −14.7178 −0.827943
\(317\) 20.9473i 1.17652i 0.808672 + 0.588259i \(0.200186\pi\)
−0.808672 + 0.588259i \(0.799814\pi\)
\(318\) − 22.9606i − 1.28757i
\(319\) 27.4335i 1.53598i
\(320\) − 1.00000i − 0.0559017i
\(321\) 9.17957 0.512354
\(322\) 1.72994 0.0964057
\(323\) − 47.6557i − 2.65164i
\(324\) 6.76417 0.375787
\(325\) 0 0
\(326\) 4.51269 0.249935
\(327\) − 29.4426i − 1.62818i
\(328\) 1.77061 0.0977653
\(329\) 21.3297 1.17594
\(330\) 13.3170i 0.733075i
\(331\) − 21.2478i − 1.16789i −0.811794 0.583944i \(-0.801509\pi\)
0.811794 0.583944i \(-0.198491\pi\)
\(332\) 1.89246i 0.103862i
\(333\) − 5.92861i − 0.324886i
\(334\) −1.96336 −0.107430
\(335\) −14.1492 −0.773054
\(336\) − 4.89819i − 0.267218i
\(337\) −11.8333 −0.644603 −0.322301 0.946637i \(-0.604456\pi\)
−0.322301 + 0.946637i \(0.604456\pi\)
\(338\) 0 0
\(339\) 28.8983 1.56954
\(340\) − 5.89037i − 0.319450i
\(341\) −0.324390 −0.0175667
\(342\) 29.2711 1.58280
\(343\) − 19.7537i − 1.06660i
\(344\) − 8.58977i − 0.463130i
\(345\) 2.33733i 0.125838i
\(346\) − 10.2747i − 0.552371i
\(347\) −21.3904 −1.14830 −0.574149 0.818751i \(-0.694667\pi\)
−0.574149 + 0.818751i \(0.694667\pi\)
\(348\) 13.6333 0.730821
\(349\) 18.5446i 0.992670i 0.868131 + 0.496335i \(0.165321\pi\)
−0.868131 + 0.496335i \(0.834679\pi\)
\(350\) −1.90403 −0.101775
\(351\) 0 0
\(352\) 5.17658 0.275912
\(353\) 11.2265i 0.597527i 0.954327 + 0.298764i \(0.0965742\pi\)
−0.954327 + 0.298764i \(0.903426\pi\)
\(354\) 27.4664 1.45982
\(355\) −15.7017 −0.833360
\(356\) − 0.541298i − 0.0286887i
\(357\) − 28.8522i − 1.52702i
\(358\) − 11.3293i − 0.598771i
\(359\) 7.97148i 0.420719i 0.977624 + 0.210359i \(0.0674634\pi\)
−0.977624 + 0.210359i \(0.932537\pi\)
\(360\) 3.61798 0.190684
\(361\) −46.4554 −2.44502
\(362\) − 16.6110i − 0.873054i
\(363\) −40.6383 −2.13296
\(364\) 0 0
\(365\) 0.163089 0.00853648
\(366\) − 1.75240i − 0.0915994i
\(367\) −20.4864 −1.06938 −0.534690 0.845048i \(-0.679572\pi\)
−0.534690 + 0.845048i \(0.679572\pi\)
\(368\) 0.908568 0.0473624
\(369\) 6.40601i 0.333484i
\(370\) 1.63865i 0.0851895i
\(371\) 16.9939i 0.882281i
\(372\) 0.161208i 0.00835826i
\(373\) 14.4319 0.747254 0.373627 0.927579i \(-0.378114\pi\)
0.373627 + 0.927579i \(0.378114\pi\)
\(374\) 30.4919 1.57670
\(375\) − 2.57254i − 0.132846i
\(376\) 11.2024 0.577719
\(377\) 0 0
\(378\) 3.02697 0.155691
\(379\) 0.607528i 0.0312066i 0.999878 + 0.0156033i \(0.00496689\pi\)
−0.999878 + 0.0156033i \(0.995033\pi\)
\(380\) −8.09045 −0.415031
\(381\) −27.9726 −1.43308
\(382\) 21.7130i 1.11094i
\(383\) 14.6778i 0.749998i 0.927025 + 0.374999i \(0.122357\pi\)
−0.927025 + 0.374999i \(0.877643\pi\)
\(384\) − 2.57254i − 0.131280i
\(385\) − 9.85635i − 0.502326i
\(386\) 11.3641 0.578418
\(387\) 31.0776 1.57976
\(388\) − 12.8001i − 0.649829i
\(389\) −18.6299 −0.944572 −0.472286 0.881445i \(-0.656571\pi\)
−0.472286 + 0.881445i \(0.656571\pi\)
\(390\) 0 0
\(391\) 5.35180 0.270652
\(392\) − 3.37468i − 0.170447i
\(393\) 2.90806 0.146692
\(394\) −17.6398 −0.888678
\(395\) 14.7178i 0.740535i
\(396\) 18.7287i 0.941154i
\(397\) − 7.96619i − 0.399811i −0.979815 0.199906i \(-0.935936\pi\)
0.979815 0.199906i \(-0.0640636\pi\)
\(398\) 23.6305i 1.18449i
\(399\) −39.6286 −1.98391
\(400\) −1.00000 −0.0500000
\(401\) 4.76351i 0.237878i 0.992902 + 0.118939i \(0.0379493\pi\)
−0.992902 + 0.118939i \(0.962051\pi\)
\(402\) −36.3995 −1.81544
\(403\) 0 0
\(404\) 2.59059 0.128886
\(405\) − 6.76417i − 0.336114i
\(406\) −10.0905 −0.500782
\(407\) −8.48261 −0.420467
\(408\) − 15.1532i − 0.750196i
\(409\) − 9.59521i − 0.474452i −0.971454 0.237226i \(-0.923762\pi\)
0.971454 0.237226i \(-0.0762383\pi\)
\(410\) − 1.77061i − 0.0874440i
\(411\) 28.1411i 1.38810i
\(412\) −1.77799 −0.0875953
\(413\) −20.3288 −1.00032
\(414\) 3.28718i 0.161556i
\(415\) 1.89246 0.0928971
\(416\) 0 0
\(417\) −11.0764 −0.542413
\(418\) − 41.8808i − 2.04846i
\(419\) 17.0041 0.830707 0.415353 0.909660i \(-0.363658\pi\)
0.415353 + 0.909660i \(0.363658\pi\)
\(420\) −4.89819 −0.239007
\(421\) − 11.3647i − 0.553882i −0.960887 0.276941i \(-0.910679\pi\)
0.960887 0.276941i \(-0.0893207\pi\)
\(422\) − 15.2360i − 0.741677i
\(423\) 40.5300i 1.97064i
\(424\) 8.92525i 0.433449i
\(425\) −5.89037 −0.285725
\(426\) −40.3933 −1.95706
\(427\) 1.29701i 0.0627668i
\(428\) −3.56829 −0.172480
\(429\) 0 0
\(430\) −8.58977 −0.414236
\(431\) 22.6058i 1.08888i 0.838799 + 0.544441i \(0.183258\pi\)
−0.838799 + 0.544441i \(0.816742\pi\)
\(432\) 1.58977 0.0764880
\(433\) −2.99497 −0.143929 −0.0719645 0.997407i \(-0.522927\pi\)
−0.0719645 + 0.997407i \(0.522927\pi\)
\(434\) − 0.119316i − 0.00572734i
\(435\) − 13.6333i − 0.653666i
\(436\) 11.4449i 0.548112i
\(437\) − 7.35072i − 0.351633i
\(438\) 0.419554 0.0200471
\(439\) −13.4489 −0.641881 −0.320940 0.947099i \(-0.603999\pi\)
−0.320940 + 0.947099i \(0.603999\pi\)
\(440\) − 5.17658i − 0.246784i
\(441\) 12.2095 0.581405
\(442\) 0 0
\(443\) −16.6206 −0.789671 −0.394835 0.918752i \(-0.629198\pi\)
−0.394835 + 0.918752i \(0.629198\pi\)
\(444\) 4.21550i 0.200059i
\(445\) −0.541298 −0.0256600
\(446\) 2.78265 0.131762
\(447\) − 49.5211i − 2.34227i
\(448\) 1.90403i 0.0899569i
\(449\) − 14.0974i − 0.665298i −0.943051 0.332649i \(-0.892058\pi\)
0.943051 0.332649i \(-0.107942\pi\)
\(450\) − 3.61798i − 0.170553i
\(451\) 9.16567 0.431595
\(452\) −11.2334 −0.528373
\(453\) 20.3578i 0.956492i
\(454\) 3.94347 0.185076
\(455\) 0 0
\(456\) −20.8130 −0.974660
\(457\) − 26.2785i − 1.22926i −0.788817 0.614628i \(-0.789306\pi\)
0.788817 0.614628i \(-0.210694\pi\)
\(458\) 10.3809 0.485066
\(459\) 9.36435 0.437090
\(460\) − 0.908568i − 0.0423622i
\(461\) − 2.52721i − 0.117704i −0.998267 0.0588520i \(-0.981256\pi\)
0.998267 0.0588520i \(-0.0187440\pi\)
\(462\) − 25.3559i − 1.17966i
\(463\) − 20.9477i − 0.973522i −0.873535 0.486761i \(-0.838178\pi\)
0.873535 0.486761i \(-0.161822\pi\)
\(464\) −5.29954 −0.246025
\(465\) 0.161208 0.00747586
\(466\) 13.2410i 0.613379i
\(467\) 19.2552 0.891023 0.445511 0.895276i \(-0.353022\pi\)
0.445511 + 0.895276i \(0.353022\pi\)
\(468\) 0 0
\(469\) 26.9405 1.24400
\(470\) − 11.2024i − 0.516728i
\(471\) −2.43408 −0.112156
\(472\) −10.6767 −0.491437
\(473\) − 44.4656i − 2.04453i
\(474\) 37.8623i 1.73907i
\(475\) 8.09045i 0.371215i
\(476\) 11.2154i 0.514058i
\(477\) −32.2914 −1.47852
\(478\) −24.3290 −1.11278
\(479\) 22.9230i 1.04738i 0.851910 + 0.523689i \(0.175445\pi\)
−0.851910 + 0.523689i \(0.824555\pi\)
\(480\) −2.57254 −0.117420
\(481\) 0 0
\(482\) −11.1983 −0.510071
\(483\) − 4.45034i − 0.202498i
\(484\) 15.7969 0.718043
\(485\) −12.8001 −0.581225
\(486\) − 22.1704i − 1.00567i
\(487\) − 27.0722i − 1.22676i −0.789789 0.613379i \(-0.789810\pi\)
0.789789 0.613379i \(-0.210190\pi\)
\(488\) 0.681193i 0.0308362i
\(489\) − 11.6091i − 0.524981i
\(490\) −3.37468 −0.152452
\(491\) 14.7213 0.664363 0.332182 0.943215i \(-0.392215\pi\)
0.332182 + 0.943215i \(0.392215\pi\)
\(492\) − 4.55496i − 0.205353i
\(493\) −31.2162 −1.40591
\(494\) 0 0
\(495\) 18.7287 0.841794
\(496\) − 0.0626650i − 0.00281374i
\(497\) 29.8965 1.34104
\(498\) 4.86843 0.218160
\(499\) − 4.24391i − 0.189984i −0.995478 0.0949918i \(-0.969718\pi\)
0.995478 0.0949918i \(-0.0302825\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) 5.05083i 0.225654i
\(502\) − 5.81385i − 0.259485i
\(503\) −9.57492 −0.426925 −0.213462 0.976951i \(-0.568474\pi\)
−0.213462 + 0.976951i \(0.568474\pi\)
\(504\) −6.88873 −0.306848
\(505\) − 2.59059i − 0.115280i
\(506\) 4.70327 0.209086
\(507\) 0 0
\(508\) 10.8735 0.482435
\(509\) 33.5783i 1.48833i 0.667995 + 0.744165i \(0.267153\pi\)
−0.667995 + 0.744165i \(0.732847\pi\)
\(510\) −15.1532 −0.670996
\(511\) −0.310526 −0.0137369
\(512\) 1.00000i 0.0441942i
\(513\) − 12.8620i − 0.567870i
\(514\) 29.1850i 1.28729i
\(515\) 1.77799i 0.0783476i
\(516\) −22.0976 −0.972791
\(517\) 57.9900 2.55040
\(518\) − 3.12004i − 0.137087i
\(519\) −26.4321 −1.16024
\(520\) 0 0
\(521\) 2.45328 0.107480 0.0537400 0.998555i \(-0.482886\pi\)
0.0537400 + 0.998555i \(0.482886\pi\)
\(522\) − 19.1736i − 0.839206i
\(523\) −28.1579 −1.23126 −0.615630 0.788035i \(-0.711098\pi\)
−0.615630 + 0.788035i \(0.711098\pi\)
\(524\) −1.13042 −0.0493827
\(525\) 4.89819i 0.213775i
\(526\) 27.5544i 1.20143i
\(527\) − 0.369120i − 0.0160791i
\(528\) − 13.3170i − 0.579546i
\(529\) −22.1745 −0.964109
\(530\) 8.92525 0.387688
\(531\) − 38.6282i − 1.67632i
\(532\) 15.4044 0.667867
\(533\) 0 0
\(534\) −1.39251 −0.0602599
\(535\) 3.56829i 0.154271i
\(536\) 14.1492 0.611153
\(537\) −29.1450 −1.25770
\(538\) 3.97887i 0.171541i
\(539\) − 17.4693i − 0.752455i
\(540\) − 1.58977i − 0.0684130i
\(541\) − 21.4643i − 0.922820i −0.887187 0.461410i \(-0.847344\pi\)
0.887187 0.461410i \(-0.152656\pi\)
\(542\) 13.6399 0.585885
\(543\) −42.7325 −1.83383
\(544\) 5.89037i 0.252547i
\(545\) 11.4449 0.490247
\(546\) 0 0
\(547\) 17.0076 0.727192 0.363596 0.931557i \(-0.381549\pi\)
0.363596 + 0.931557i \(0.381549\pi\)
\(548\) − 10.9390i − 0.467292i
\(549\) −2.46454 −0.105184
\(550\) −5.17658 −0.220730
\(551\) 42.8756i 1.82656i
\(552\) − 2.33733i − 0.0994834i
\(553\) − 28.0232i − 1.19167i
\(554\) 2.30543i 0.0979484i
\(555\) 4.21550 0.178938
\(556\) 4.30562 0.182599
\(557\) − 3.62480i − 0.153588i −0.997047 0.0767938i \(-0.975532\pi\)
0.997047 0.0767938i \(-0.0244683\pi\)
\(558\) 0.226720 0.00959784
\(559\) 0 0
\(560\) 1.90403 0.0804599
\(561\) − 78.4418i − 3.31182i
\(562\) −21.0557 −0.888180
\(563\) 40.7538 1.71757 0.858783 0.512339i \(-0.171221\pi\)
0.858783 + 0.512339i \(0.171221\pi\)
\(564\) − 28.8186i − 1.21348i
\(565\) 11.2334i 0.472591i
\(566\) 2.60164i 0.109355i
\(567\) 12.8792i 0.540874i
\(568\) 15.7017 0.658829
\(569\) −31.7297 −1.33018 −0.665089 0.746764i \(-0.731606\pi\)
−0.665089 + 0.746764i \(0.731606\pi\)
\(570\) 20.8130i 0.871762i
\(571\) 14.5697 0.609722 0.304861 0.952397i \(-0.401390\pi\)
0.304861 + 0.952397i \(0.401390\pi\)
\(572\) 0 0
\(573\) 55.8577 2.33349
\(574\) 3.37128i 0.140715i
\(575\) −0.908568 −0.0378899
\(576\) −3.61798 −0.150749
\(577\) − 5.78013i − 0.240630i −0.992736 0.120315i \(-0.961610\pi\)
0.992736 0.120315i \(-0.0383905\pi\)
\(578\) 17.6964i 0.736075i
\(579\) − 29.2347i − 1.21495i
\(580\) 5.29954i 0.220051i
\(581\) −3.60329 −0.149490
\(582\) −32.9289 −1.36495
\(583\) 46.2023i 1.91350i
\(584\) −0.163089 −0.00674868
\(585\) 0 0
\(586\) 6.46826 0.267201
\(587\) − 1.46614i − 0.0605139i −0.999542 0.0302570i \(-0.990367\pi\)
0.999542 0.0302570i \(-0.00963256\pi\)
\(588\) −8.68150 −0.358019
\(589\) −0.506988 −0.0208901
\(590\) 10.6767i 0.439554i
\(591\) 45.3790i 1.86664i
\(592\) − 1.63865i − 0.0673482i
\(593\) − 25.7264i − 1.05646i −0.849103 0.528228i \(-0.822857\pi\)
0.849103 0.528228i \(-0.177143\pi\)
\(594\) 8.22958 0.337664
\(595\) 11.2154 0.459788
\(596\) 19.2499i 0.788505i
\(597\) 60.7906 2.48799
\(598\) 0 0
\(599\) −26.7207 −1.09178 −0.545890 0.837857i \(-0.683808\pi\)
−0.545890 + 0.837857i \(0.683808\pi\)
\(600\) 2.57254i 0.105024i
\(601\) 26.9562 1.09956 0.549782 0.835308i \(-0.314711\pi\)
0.549782 + 0.835308i \(0.314711\pi\)
\(602\) 16.3552 0.666587
\(603\) 51.1915i 2.08468i
\(604\) − 7.91349i − 0.321995i
\(605\) − 15.7969i − 0.642237i
\(606\) − 6.66439i − 0.270722i
\(607\) −32.3286 −1.31218 −0.656088 0.754684i \(-0.727790\pi\)
−0.656088 + 0.754684i \(0.727790\pi\)
\(608\) 8.09045 0.328111
\(609\) 25.9582i 1.05188i
\(610\) 0.681193 0.0275807
\(611\) 0 0
\(612\) −21.3112 −0.861455
\(613\) 10.2117i 0.412447i 0.978505 + 0.206224i \(0.0661174\pi\)
−0.978505 + 0.206224i \(0.933883\pi\)
\(614\) −11.7707 −0.475027
\(615\) −4.55496 −0.183674
\(616\) 9.85635i 0.397123i
\(617\) − 32.6071i − 1.31271i −0.754452 0.656356i \(-0.772097\pi\)
0.754452 0.656356i \(-0.227903\pi\)
\(618\) 4.57395i 0.183991i
\(619\) 8.49492i 0.341440i 0.985320 + 0.170720i \(0.0546093\pi\)
−0.985320 + 0.170720i \(0.945391\pi\)
\(620\) −0.0626650 −0.00251669
\(621\) 1.44442 0.0579625
\(622\) − 2.09362i − 0.0839465i
\(623\) 1.03065 0.0412920
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) − 24.7645i − 0.989787i
\(627\) −107.740 −4.30273
\(628\) 0.946176 0.0377565
\(629\) − 9.65226i − 0.384861i
\(630\) 6.88873i 0.274454i
\(631\) − 41.4992i − 1.65206i −0.563628 0.826029i \(-0.690595\pi\)
0.563628 0.826029i \(-0.309405\pi\)
\(632\) − 14.7178i − 0.585444i
\(633\) −39.1953 −1.55787
\(634\) −20.9473 −0.831924
\(635\) − 10.8735i − 0.431503i
\(636\) 22.9606 0.910447
\(637\) 0 0
\(638\) −27.4335 −1.08610
\(639\) 56.8084i 2.24731i
\(640\) 1.00000 0.0395285
\(641\) −17.9976 −0.710862 −0.355431 0.934703i \(-0.615666\pi\)
−0.355431 + 0.934703i \(0.615666\pi\)
\(642\) 9.17957i 0.362289i
\(643\) 24.9350i 0.983342i 0.870781 + 0.491671i \(0.163614\pi\)
−0.870781 + 0.491671i \(0.836386\pi\)
\(644\) 1.72994i 0.0681691i
\(645\) 22.0976i 0.870091i
\(646\) 47.6557 1.87499
\(647\) 31.5515 1.24042 0.620209 0.784437i \(-0.287048\pi\)
0.620209 + 0.784437i \(0.287048\pi\)
\(648\) 6.76417i 0.265722i
\(649\) −55.2690 −2.16950
\(650\) 0 0
\(651\) −0.306945 −0.0120301
\(652\) 4.51269i 0.176731i
\(653\) 8.31180 0.325266 0.162633 0.986687i \(-0.448001\pi\)
0.162633 + 0.986687i \(0.448001\pi\)
\(654\) 29.4426 1.15130
\(655\) 1.13042i 0.0441692i
\(656\) 1.77061i 0.0691305i
\(657\) − 0.590053i − 0.0230202i
\(658\) 21.3297i 0.831517i
\(659\) −4.11647 −0.160355 −0.0801774 0.996781i \(-0.525549\pi\)
−0.0801774 + 0.996781i \(0.525549\pi\)
\(660\) −13.3170 −0.518362
\(661\) 39.4880i 1.53591i 0.640506 + 0.767953i \(0.278724\pi\)
−0.640506 + 0.767953i \(0.721276\pi\)
\(662\) 21.2478 0.825821
\(663\) 0 0
\(664\) −1.89246 −0.0734416
\(665\) − 15.4044i − 0.597359i
\(666\) 5.92861 0.229729
\(667\) −4.81499 −0.186437
\(668\) − 1.96336i − 0.0759647i
\(669\) − 7.15847i − 0.276763i
\(670\) − 14.1492i − 0.546632i
\(671\) 3.52625i 0.136129i
\(672\) 4.89819 0.188952
\(673\) 30.1004 1.16028 0.580142 0.814515i \(-0.302997\pi\)
0.580142 + 0.814515i \(0.302997\pi\)
\(674\) − 11.8333i − 0.455803i
\(675\) −1.58977 −0.0611904
\(676\) 0 0
\(677\) 15.8446 0.608959 0.304479 0.952519i \(-0.401518\pi\)
0.304479 + 0.952519i \(0.401518\pi\)
\(678\) 28.8983i 1.10983i
\(679\) 24.3718 0.935305
\(680\) 5.89037 0.225885
\(681\) − 10.1447i − 0.388747i
\(682\) − 0.324390i − 0.0124215i
\(683\) − 3.74741i − 0.143391i −0.997427 0.0716954i \(-0.977159\pi\)
0.997427 0.0716954i \(-0.0228409\pi\)
\(684\) 29.2711i 1.11921i
\(685\) −10.9390 −0.417959
\(686\) 19.7537 0.754199
\(687\) − 26.7052i − 1.01887i
\(688\) 8.58977 0.327482
\(689\) 0 0
\(690\) −2.33733 −0.0889806
\(691\) 49.7932i 1.89422i 0.320905 + 0.947111i \(0.396013\pi\)
−0.320905 + 0.947111i \(0.603987\pi\)
\(692\) 10.2747 0.390585
\(693\) −35.6600 −1.35461
\(694\) − 21.3904i − 0.811969i
\(695\) − 4.30562i − 0.163321i
\(696\) 13.6333i 0.516768i
\(697\) 10.4295i 0.395046i
\(698\) −18.5446 −0.701924
\(699\) 34.0631 1.28839
\(700\) − 1.90403i − 0.0719655i
\(701\) −32.9089 −1.24295 −0.621476 0.783434i \(-0.713466\pi\)
−0.621476 + 0.783434i \(0.713466\pi\)
\(702\) 0 0
\(703\) −13.2574 −0.500014
\(704\) 5.17658i 0.195100i
\(705\) −28.8186 −1.08537
\(706\) −11.2265 −0.422515
\(707\) 4.93255i 0.185508i
\(708\) 27.4664i 1.03225i
\(709\) 23.1678i 0.870083i 0.900410 + 0.435042i \(0.143266\pi\)
−0.900410 + 0.435042i \(0.856734\pi\)
\(710\) − 15.7017i − 0.589275i
\(711\) 53.2488 1.99699
\(712\) 0.541298 0.0202860
\(713\) − 0.0569354i − 0.00213225i
\(714\) 28.8522 1.07977
\(715\) 0 0
\(716\) 11.3293 0.423395
\(717\) 62.5874i 2.33737i
\(718\) −7.97148 −0.297493
\(719\) −4.76483 −0.177698 −0.0888491 0.996045i \(-0.528319\pi\)
−0.0888491 + 0.996045i \(0.528319\pi\)
\(720\) 3.61798i 0.134834i
\(721\) − 3.38534i − 0.126077i
\(722\) − 46.4554i − 1.72889i
\(723\) 28.8082i 1.07139i
\(724\) 16.6110 0.617342
\(725\) 5.29954 0.196820
\(726\) − 40.6383i − 1.50823i
\(727\) −42.5004 −1.57625 −0.788127 0.615513i \(-0.788949\pi\)
−0.788127 + 0.615513i \(0.788949\pi\)
\(728\) 0 0
\(729\) −36.7419 −1.36081
\(730\) 0.163089i 0.00603620i
\(731\) 50.5969 1.87139
\(732\) 1.75240 0.0647705
\(733\) − 10.3609i − 0.382689i −0.981523 0.191345i \(-0.938715\pi\)
0.981523 0.191345i \(-0.0612848\pi\)
\(734\) − 20.4864i − 0.756166i
\(735\) 8.68150i 0.320222i
\(736\) 0.908568i 0.0334903i
\(737\) 73.2445 2.69800
\(738\) −6.40601 −0.235808
\(739\) 25.9157i 0.953324i 0.879087 + 0.476662i \(0.158154\pi\)
−0.879087 + 0.476662i \(0.841846\pi\)
\(740\) −1.63865 −0.0602380
\(741\) 0 0
\(742\) −16.9939 −0.623867
\(743\) 9.84397i 0.361140i 0.983562 + 0.180570i \(0.0577943\pi\)
−0.983562 + 0.180570i \(0.942206\pi\)
\(744\) −0.161208 −0.00591018
\(745\) 19.2499 0.705260
\(746\) 14.4319i 0.528388i
\(747\) − 6.84687i − 0.250514i
\(748\) 30.4919i 1.11490i
\(749\) − 6.79412i − 0.248252i
\(750\) 2.57254 0.0939360
\(751\) 48.3807 1.76544 0.882718 0.469903i \(-0.155711\pi\)
0.882718 + 0.469903i \(0.155711\pi\)
\(752\) 11.2024i 0.408509i
\(753\) −14.9564 −0.545041
\(754\) 0 0
\(755\) −7.91349 −0.288001
\(756\) 3.02697i 0.110090i
\(757\) −10.3630 −0.376649 −0.188324 0.982107i \(-0.560306\pi\)
−0.188324 + 0.982107i \(0.560306\pi\)
\(758\) −0.607528 −0.0220664
\(759\) − 12.0994i − 0.439179i
\(760\) − 8.09045i − 0.293471i
\(761\) 24.0420i 0.871521i 0.900063 + 0.435760i \(0.143520\pi\)
−0.900063 + 0.435760i \(0.856480\pi\)
\(762\) − 27.9726i − 1.01334i
\(763\) −21.7915 −0.788904
\(764\) −21.7130 −0.785550
\(765\) 21.3112i 0.770509i
\(766\) −14.6778 −0.530329
\(767\) 0 0
\(768\) 2.57254 0.0928286
\(769\) 11.4605i 0.413277i 0.978417 + 0.206639i \(0.0662524\pi\)
−0.978417 + 0.206639i \(0.933748\pi\)
\(770\) 9.85635 0.355198
\(771\) 75.0796 2.70393
\(772\) 11.3641i 0.409003i
\(773\) − 0.507988i − 0.0182711i −0.999958 0.00913553i \(-0.997092\pi\)
0.999958 0.00913553i \(-0.00290797\pi\)
\(774\) 31.0776i 1.11706i
\(775\) 0.0626650i 0.00225099i
\(776\) 12.8001 0.459498
\(777\) −8.02643 −0.287947
\(778\) − 18.6299i − 0.667914i
\(779\) 14.3250 0.513246
\(780\) 0 0
\(781\) 81.2811 2.90847
\(782\) 5.35180i 0.191380i
\(783\) −8.42506 −0.301087
\(784\) 3.37468 0.120524
\(785\) − 0.946176i − 0.0337705i
\(786\) 2.90806i 0.103727i
\(787\) 27.4018i 0.976769i 0.872629 + 0.488384i \(0.162414\pi\)
−0.872629 + 0.488384i \(0.837586\pi\)
\(788\) − 17.6398i − 0.628390i
\(789\) 70.8849 2.52357
\(790\) −14.7178 −0.523637
\(791\) − 21.3886i − 0.760493i
\(792\) −18.7287 −0.665497
\(793\) 0 0
\(794\) 7.96619 0.282709
\(795\) − 22.9606i − 0.814328i
\(796\) −23.6305 −0.837562
\(797\) 2.46568 0.0873388 0.0436694 0.999046i \(-0.486095\pi\)
0.0436694 + 0.999046i \(0.486095\pi\)
\(798\) − 39.6286i − 1.40284i
\(799\) 65.9862i 2.33442i
\(800\) − 1.00000i − 0.0353553i
\(801\) 1.95840i 0.0691968i
\(802\) −4.76351 −0.168205
\(803\) −0.844244 −0.0297927
\(804\) − 36.3995i − 1.28371i
\(805\) 1.72994 0.0609723
\(806\) 0 0
\(807\) 10.2358 0.360318
\(808\) 2.59059i 0.0911365i
\(809\) 1.54477 0.0543112 0.0271556 0.999631i \(-0.491355\pi\)
0.0271556 + 0.999631i \(0.491355\pi\)
\(810\) 6.76417 0.237669
\(811\) 26.1714i 0.919003i 0.888177 + 0.459502i \(0.151972\pi\)
−0.888177 + 0.459502i \(0.848028\pi\)
\(812\) − 10.0905i − 0.354106i
\(813\) − 35.0893i − 1.23064i
\(814\) − 8.48261i − 0.297315i
\(815\) 4.51269 0.158073
\(816\) 15.1532 0.530469
\(817\) − 69.4951i − 2.43133i
\(818\) 9.59521 0.335489
\(819\) 0 0
\(820\) 1.77061 0.0618322
\(821\) 41.5128i 1.44881i 0.689377 + 0.724403i \(0.257884\pi\)
−0.689377 + 0.724403i \(0.742116\pi\)
\(822\) −28.1411 −0.981534
\(823\) 17.6447 0.615056 0.307528 0.951539i \(-0.400498\pi\)
0.307528 + 0.951539i \(0.400498\pi\)
\(824\) − 1.77799i − 0.0619392i
\(825\) 13.3170i 0.463637i
\(826\) − 20.3288i − 0.707330i
\(827\) − 30.1723i − 1.04919i −0.851351 0.524596i \(-0.824216\pi\)
0.851351 0.524596i \(-0.175784\pi\)
\(828\) −3.28718 −0.114237
\(829\) −19.3250 −0.671185 −0.335593 0.942007i \(-0.608937\pi\)
−0.335593 + 0.942007i \(0.608937\pi\)
\(830\) 1.89246i 0.0656882i
\(831\) 5.93082 0.205738
\(832\) 0 0
\(833\) 19.8781 0.688735
\(834\) − 11.0764i − 0.383544i
\(835\) −1.96336 −0.0679449
\(836\) 41.8808 1.44848
\(837\) − 0.0996231i − 0.00344348i
\(838\) 17.0041i 0.587398i
\(839\) 3.98927i 0.137725i 0.997626 + 0.0688625i \(0.0219370\pi\)
−0.997626 + 0.0688625i \(0.978063\pi\)
\(840\) − 4.89819i − 0.169004i
\(841\) −0.914902 −0.0315483
\(842\) 11.3647 0.391654
\(843\) 54.1666i 1.86560i
\(844\) 15.2360 0.524445
\(845\) 0 0
\(846\) −40.5300 −1.39345
\(847\) 30.0778i 1.03349i
\(848\) −8.92525 −0.306494
\(849\) 6.69283 0.229697
\(850\) − 5.89037i − 0.202038i
\(851\) − 1.48883i − 0.0510363i
\(852\) − 40.3933i − 1.38385i
\(853\) − 0.0825760i − 0.00282735i −0.999999 0.00141367i \(-0.999550\pi\)
0.999999 0.00141367i \(-0.000449986\pi\)
\(854\) −1.29701 −0.0443828
\(855\) 29.2711 1.00105
\(856\) − 3.56829i − 0.121962i
\(857\) 33.2315 1.13517 0.567584 0.823316i \(-0.307878\pi\)
0.567584 + 0.823316i \(0.307878\pi\)
\(858\) 0 0
\(859\) −11.0394 −0.376658 −0.188329 0.982106i \(-0.560307\pi\)
−0.188329 + 0.982106i \(0.560307\pi\)
\(860\) − 8.58977i − 0.292909i
\(861\) 8.67277 0.295567
\(862\) −22.6058 −0.769957
\(863\) 22.7798i 0.775432i 0.921779 + 0.387716i \(0.126736\pi\)
−0.921779 + 0.387716i \(0.873264\pi\)
\(864\) 1.58977i 0.0540852i
\(865\) − 10.2747i − 0.349350i
\(866\) − 2.99497i − 0.101773i
\(867\) 45.5248 1.54610
\(868\) 0.119316 0.00404984
\(869\) − 76.1880i − 2.58450i
\(870\) 13.6333 0.462212
\(871\) 0 0
\(872\) −11.4449 −0.387574
\(873\) 46.3106i 1.56738i
\(874\) 7.35072 0.248642
\(875\) −1.90403 −0.0643679
\(876\) 0.419554i 0.0141754i
\(877\) − 33.3282i − 1.12541i −0.826657 0.562706i \(-0.809760\pi\)
0.826657 0.562706i \(-0.190240\pi\)
\(878\) − 13.4489i − 0.453878i
\(879\) − 16.6399i − 0.561249i
\(880\) 5.17658 0.174502
\(881\) −20.8588 −0.702750 −0.351375 0.936235i \(-0.614286\pi\)
−0.351375 + 0.936235i \(0.614286\pi\)
\(882\) 12.2095i 0.411115i
\(883\) 38.2565 1.28743 0.643716 0.765264i \(-0.277392\pi\)
0.643716 + 0.765264i \(0.277392\pi\)
\(884\) 0 0
\(885\) 27.4664 0.923272
\(886\) − 16.6206i − 0.558382i
\(887\) 42.9534 1.44223 0.721117 0.692814i \(-0.243629\pi\)
0.721117 + 0.692814i \(0.243629\pi\)
\(888\) −4.21550 −0.141463
\(889\) 20.7035i 0.694373i
\(890\) − 0.541298i − 0.0181444i
\(891\) 35.0152i 1.17305i
\(892\) 2.78265i 0.0931699i
\(893\) 90.6324 3.03290
\(894\) 49.5211 1.65623
\(895\) − 11.3293i − 0.378696i
\(896\) −1.90403 −0.0636091
\(897\) 0 0
\(898\) 14.0974 0.470437
\(899\) 0.332095i 0.0110760i
\(900\) 3.61798 0.120599
\(901\) −52.5730 −1.75146
\(902\) 9.16567i 0.305184i
\(903\) − 42.0744i − 1.40015i
\(904\) − 11.2334i − 0.373616i
\(905\) − 16.6110i − 0.552168i
\(906\) −20.3578 −0.676342
\(907\) 15.3490 0.509656 0.254828 0.966986i \(-0.417981\pi\)
0.254828 + 0.966986i \(0.417981\pi\)
\(908\) 3.94347i 0.130869i
\(909\) −9.37268 −0.310872
\(910\) 0 0
\(911\) −7.48652 −0.248040 −0.124020 0.992280i \(-0.539579\pi\)
−0.124020 + 0.992280i \(0.539579\pi\)
\(912\) − 20.8130i − 0.689188i
\(913\) −9.79646 −0.324215
\(914\) 26.2785 0.869216
\(915\) − 1.75240i − 0.0579325i
\(916\) 10.3809i 0.342993i
\(917\) − 2.15235i − 0.0710769i
\(918\) 9.36435i 0.309070i
\(919\) −12.4412 −0.410396 −0.205198 0.978720i \(-0.565784\pi\)
−0.205198 + 0.978720i \(0.565784\pi\)
\(920\) 0.908568 0.0299546
\(921\) 30.2806i 0.997780i
\(922\) 2.52721 0.0832293
\(923\) 0 0
\(924\) 25.3559 0.834147
\(925\) 1.63865i 0.0538785i
\(926\) 20.9477 0.688384
\(927\) 6.43273 0.211278
\(928\) − 5.29954i − 0.173966i
\(929\) 22.5855i 0.741007i 0.928831 + 0.370504i \(0.120815\pi\)
−0.928831 + 0.370504i \(0.879185\pi\)
\(930\) 0.161208i 0.00528623i
\(931\) − 27.3027i − 0.894809i
\(932\) −13.2410 −0.433725
\(933\) −5.38592 −0.176327
\(934\) 19.2552i 0.630048i
\(935\) 30.4919 0.997193
\(936\) 0 0
\(937\) −20.5615 −0.671714 −0.335857 0.941913i \(-0.609026\pi\)
−0.335857 + 0.941913i \(0.609026\pi\)
\(938\) 26.9405i 0.879639i
\(939\) −63.7076 −2.07902
\(940\) 11.2024 0.365382
\(941\) 35.6763i 1.16301i 0.813542 + 0.581506i \(0.197536\pi\)
−0.813542 + 0.581506i \(0.802464\pi\)
\(942\) − 2.43408i − 0.0793066i
\(943\) 1.60871i 0.0523870i
\(944\) − 10.6767i − 0.347498i
\(945\) 3.02697 0.0984674
\(946\) 44.4656 1.44570
\(947\) 16.0381i 0.521167i 0.965451 + 0.260584i \(0.0839150\pi\)
−0.965451 + 0.260584i \(0.916085\pi\)
\(948\) −37.8623 −1.22971
\(949\) 0 0
\(950\) −8.09045 −0.262489
\(951\) 53.8879i 1.74743i
\(952\) −11.2154 −0.363494
\(953\) 35.6022 1.15327 0.576634 0.817002i \(-0.304366\pi\)
0.576634 + 0.817002i \(0.304366\pi\)
\(954\) − 32.2914i − 1.04547i
\(955\) 21.7130i 0.702617i
\(956\) − 24.3290i − 0.786856i
\(957\) 70.5738i 2.28133i
\(958\) −22.9230 −0.740608
\(959\) 20.8282 0.672578
\(960\) − 2.57254i − 0.0830285i
\(961\) 30.9961 0.999873
\(962\) 0 0
\(963\) 12.9100 0.416018
\(964\) − 11.1983i − 0.360674i
\(965\) 11.3641 0.365824
\(966\) 4.45034 0.143187
\(967\) 8.36719i 0.269071i 0.990909 + 0.134535i \(0.0429542\pi\)
−0.990909 + 0.134535i \(0.957046\pi\)
\(968\) 15.7969i 0.507733i
\(969\) − 122.596i − 3.93836i
\(970\) − 12.8001i − 0.410988i
\(971\) 29.0504 0.932270 0.466135 0.884714i \(-0.345646\pi\)
0.466135 + 0.884714i \(0.345646\pi\)
\(972\) 22.1704 0.711117
\(973\) 8.19802i 0.262816i
\(974\) 27.0722 0.867449
\(975\) 0 0
\(976\) −0.681193 −0.0218045
\(977\) − 14.1557i − 0.452880i −0.974025 0.226440i \(-0.927291\pi\)
0.974025 0.226440i \(-0.0727087\pi\)
\(978\) 11.6091 0.371218
\(979\) 2.80207 0.0895546
\(980\) − 3.37468i − 0.107800i
\(981\) − 41.4075i − 1.32204i
\(982\) 14.7213i 0.469776i
\(983\) 7.74156i 0.246917i 0.992350 + 0.123459i \(0.0393986\pi\)
−0.992350 + 0.123459i \(0.960601\pi\)
\(984\) 4.55496 0.145207
\(985\) −17.6398 −0.562049
\(986\) − 31.2162i − 0.994127i
\(987\) 54.8715 1.74658
\(988\) 0 0
\(989\) 7.80439 0.248165
\(990\) 18.7287i 0.595238i
\(991\) −20.8876 −0.663517 −0.331759 0.943364i \(-0.607642\pi\)
−0.331759 + 0.943364i \(0.607642\pi\)
\(992\) 0.0626650 0.00198961
\(993\) − 54.6610i − 1.73461i
\(994\) 29.8965i 0.948259i
\(995\) 23.6305i 0.749138i
\(996\) 4.86843i 0.154262i
\(997\) −33.3691 −1.05681 −0.528406 0.848992i \(-0.677210\pi\)
−0.528406 + 0.848992i \(0.677210\pi\)
\(998\) 4.24391 0.134339
\(999\) − 2.60509i − 0.0824213i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.d.l.1351.12 12
13.2 odd 12 1690.2.e.u.191.1 12
13.3 even 3 1690.2.l.n.1161.6 24
13.4 even 6 1690.2.l.n.361.6 24
13.5 odd 4 1690.2.a.w.1.6 yes 6
13.6 odd 12 1690.2.e.u.991.1 12
13.7 odd 12 1690.2.e.v.991.1 12
13.8 odd 4 1690.2.a.v.1.6 6
13.9 even 3 1690.2.l.n.361.10 24
13.10 even 6 1690.2.l.n.1161.10 24
13.11 odd 12 1690.2.e.v.191.1 12
13.12 even 2 inner 1690.2.d.l.1351.6 12
65.34 odd 4 8450.2.a.cq.1.1 6
65.44 odd 4 8450.2.a.cp.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.v.1.6 6 13.8 odd 4
1690.2.a.w.1.6 yes 6 13.5 odd 4
1690.2.d.l.1351.6 12 13.12 even 2 inner
1690.2.d.l.1351.12 12 1.1 even 1 trivial
1690.2.e.u.191.1 12 13.2 odd 12
1690.2.e.u.991.1 12 13.6 odd 12
1690.2.e.v.191.1 12 13.11 odd 12
1690.2.e.v.991.1 12 13.7 odd 12
1690.2.l.n.361.6 24 13.4 even 6
1690.2.l.n.361.10 24 13.9 even 3
1690.2.l.n.1161.6 24 13.3 even 3
1690.2.l.n.1161.10 24 13.10 even 6
8450.2.a.cp.1.1 6 65.44 odd 4
8450.2.a.cq.1.1 6 65.34 odd 4