Properties

Label 1690.2.d.l.1351.11
Level $1690$
Weight $2$
Character 1690.1351
Analytic conductor $13.495$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1351,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4,-12,0,0,0,0,32,-12,0,4,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 34x^{10} + 453x^{8} + 2990x^{6} + 10094x^{4} + 15876x^{2} + 8281 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.11
Root \(-2.23727i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1351
Dual form 1690.2.d.l.1351.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +2.23727 q^{3} -1.00000 q^{4} +1.00000i q^{5} +2.23727i q^{6} -1.43294i q^{7} -1.00000i q^{8} +2.00539 q^{9} -1.00000 q^{10} -0.315763i q^{11} -2.23727 q^{12} +1.43294 q^{14} +2.23727i q^{15} +1.00000 q^{16} +1.69981 q^{17} +2.00539i q^{18} +5.83768i q^{19} -1.00000i q^{20} -3.20587i q^{21} +0.315763 q^{22} +9.32839 q^{23} -2.23727i q^{24} -1.00000 q^{25} -2.22522 q^{27} +1.43294i q^{28} +7.09544 q^{29} -2.23727 q^{30} +4.69438i q^{31} +1.00000i q^{32} -0.706448i q^{33} +1.69981i q^{34} +1.43294 q^{35} -2.00539 q^{36} +11.6581i q^{37} -5.83768 q^{38} +1.00000 q^{40} +2.79223i q^{41} +3.20587 q^{42} +4.77478 q^{43} +0.315763i q^{44} +2.00539i q^{45} +9.32839i q^{46} -10.4362i q^{47} +2.23727 q^{48} +4.94669 q^{49} -1.00000i q^{50} +3.80293 q^{51} -1.48663 q^{53} -2.22522i q^{54} +0.315763 q^{55} -1.43294 q^{56} +13.0605i q^{57} +7.09544i q^{58} +3.93789i q^{59} -2.23727i q^{60} +0.971828 q^{61} -4.69438 q^{62} -2.87359i q^{63} -1.00000 q^{64} +0.706448 q^{66} -12.7810i q^{67} -1.69981 q^{68} +20.8701 q^{69} +1.43294i q^{70} +4.17629i q^{71} -2.00539i q^{72} -8.83875i q^{73} -11.6581 q^{74} -2.23727 q^{75} -5.83768i q^{76} -0.452469 q^{77} -6.80085 q^{79} +1.00000i q^{80} -10.9946 q^{81} -2.79223 q^{82} +11.1336i q^{83} +3.20587i q^{84} +1.69981i q^{85} +4.77478i q^{86} +15.8744 q^{87} -0.315763 q^{88} -1.48615i q^{89} -2.00539 q^{90} -9.32839 q^{92} +10.5026i q^{93} +10.4362 q^{94} -5.83768 q^{95} +2.23727i q^{96} -11.9669i q^{97} +4.94669i q^{98} -0.633227i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - 12 q^{4} + 32 q^{9} - 12 q^{10} + 4 q^{12} + 6 q^{14} + 12 q^{16} + 6 q^{17} + 30 q^{22} + 6 q^{23} - 12 q^{25} - 40 q^{27} + 14 q^{29} + 4 q^{30} + 6 q^{35} - 32 q^{36} - 2 q^{38} + 12 q^{40}+ \cdots - 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.23727 1.29169 0.645845 0.763469i \(-0.276505\pi\)
0.645845 + 0.763469i \(0.276505\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.00000i 0.447214i
\(6\) 2.23727i 0.913363i
\(7\) − 1.43294i − 0.541599i −0.962636 0.270800i \(-0.912712\pi\)
0.962636 0.270800i \(-0.0872881\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 2.00539 0.668462
\(10\) −1.00000 −0.316228
\(11\) − 0.315763i − 0.0952062i −0.998866 0.0476031i \(-0.984842\pi\)
0.998866 0.0476031i \(-0.0151583\pi\)
\(12\) −2.23727 −0.645845
\(13\) 0 0
\(14\) 1.43294 0.382969
\(15\) 2.23727i 0.577661i
\(16\) 1.00000 0.250000
\(17\) 1.69981 0.412264 0.206132 0.978524i \(-0.433912\pi\)
0.206132 + 0.978524i \(0.433912\pi\)
\(18\) 2.00539i 0.472674i
\(19\) 5.83768i 1.33926i 0.742696 + 0.669628i \(0.233547\pi\)
−0.742696 + 0.669628i \(0.766453\pi\)
\(20\) − 1.00000i − 0.223607i
\(21\) − 3.20587i − 0.699578i
\(22\) 0.315763 0.0673209
\(23\) 9.32839 1.94510 0.972552 0.232686i \(-0.0747516\pi\)
0.972552 + 0.232686i \(0.0747516\pi\)
\(24\) − 2.23727i − 0.456681i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −2.22522 −0.428244
\(28\) 1.43294i 0.270800i
\(29\) 7.09544 1.31759 0.658795 0.752323i \(-0.271067\pi\)
0.658795 + 0.752323i \(0.271067\pi\)
\(30\) −2.23727 −0.408468
\(31\) 4.69438i 0.843135i 0.906797 + 0.421568i \(0.138520\pi\)
−0.906797 + 0.421568i \(0.861480\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 0.706448i − 0.122977i
\(34\) 1.69981i 0.291514i
\(35\) 1.43294 0.242211
\(36\) −2.00539 −0.334231
\(37\) 11.6581i 1.91658i 0.285802 + 0.958289i \(0.407740\pi\)
−0.285802 + 0.958289i \(0.592260\pi\)
\(38\) −5.83768 −0.946997
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 2.79223i 0.436073i 0.975941 + 0.218037i \(0.0699652\pi\)
−0.975941 + 0.218037i \(0.930035\pi\)
\(42\) 3.20587 0.494677
\(43\) 4.77478 0.728147 0.364074 0.931370i \(-0.381386\pi\)
0.364074 + 0.931370i \(0.381386\pi\)
\(44\) 0.315763i 0.0476031i
\(45\) 2.00539i 0.298945i
\(46\) 9.32839i 1.37540i
\(47\) − 10.4362i − 1.52227i −0.648592 0.761136i \(-0.724642\pi\)
0.648592 0.761136i \(-0.275358\pi\)
\(48\) 2.23727 0.322922
\(49\) 4.94669 0.706670
\(50\) − 1.00000i − 0.141421i
\(51\) 3.80293 0.532517
\(52\) 0 0
\(53\) −1.48663 −0.204204 −0.102102 0.994774i \(-0.532557\pi\)
−0.102102 + 0.994774i \(0.532557\pi\)
\(54\) − 2.22522i − 0.302814i
\(55\) 0.315763 0.0425775
\(56\) −1.43294 −0.191484
\(57\) 13.0605i 1.72990i
\(58\) 7.09544i 0.931677i
\(59\) 3.93789i 0.512670i 0.966588 + 0.256335i \(0.0825150\pi\)
−0.966588 + 0.256335i \(0.917485\pi\)
\(60\) − 2.23727i − 0.288831i
\(61\) 0.971828 0.124430 0.0622149 0.998063i \(-0.480184\pi\)
0.0622149 + 0.998063i \(0.480184\pi\)
\(62\) −4.69438 −0.596186
\(63\) − 2.87359i − 0.362039i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0.706448 0.0869578
\(67\) − 12.7810i − 1.56144i −0.624879 0.780722i \(-0.714852\pi\)
0.624879 0.780722i \(-0.285148\pi\)
\(68\) −1.69981 −0.206132
\(69\) 20.8701 2.51247
\(70\) 1.43294i 0.171269i
\(71\) 4.17629i 0.495635i 0.968807 + 0.247817i \(0.0797133\pi\)
−0.968807 + 0.247817i \(0.920287\pi\)
\(72\) − 2.00539i − 0.236337i
\(73\) − 8.83875i − 1.03450i −0.855835 0.517249i \(-0.826956\pi\)
0.855835 0.517249i \(-0.173044\pi\)
\(74\) −11.6581 −1.35522
\(75\) −2.23727 −0.258338
\(76\) − 5.83768i − 0.669628i
\(77\) −0.452469 −0.0515636
\(78\) 0 0
\(79\) −6.80085 −0.765156 −0.382578 0.923923i \(-0.624964\pi\)
−0.382578 + 0.923923i \(0.624964\pi\)
\(80\) 1.00000i 0.111803i
\(81\) −10.9946 −1.22162
\(82\) −2.79223 −0.308350
\(83\) 11.1336i 1.22207i 0.791602 + 0.611037i \(0.209247\pi\)
−0.791602 + 0.611037i \(0.790753\pi\)
\(84\) 3.20587i 0.349789i
\(85\) 1.69981i 0.184370i
\(86\) 4.77478i 0.514878i
\(87\) 15.8744 1.70192
\(88\) −0.315763 −0.0336605
\(89\) − 1.48615i − 0.157532i −0.996893 0.0787659i \(-0.974902\pi\)
0.996893 0.0787659i \(-0.0250979\pi\)
\(90\) −2.00539 −0.211386
\(91\) 0 0
\(92\) −9.32839 −0.972552
\(93\) 10.5026i 1.08907i
\(94\) 10.4362 1.07641
\(95\) −5.83768 −0.598934
\(96\) 2.23727i 0.228341i
\(97\) − 11.9669i − 1.21506i −0.794298 0.607528i \(-0.792161\pi\)
0.794298 0.607528i \(-0.207839\pi\)
\(98\) 4.94669i 0.499691i
\(99\) − 0.633227i − 0.0636418i
\(100\) 1.00000 0.100000
\(101\) −16.6774 −1.65947 −0.829734 0.558159i \(-0.811508\pi\)
−0.829734 + 0.558159i \(0.811508\pi\)
\(102\) 3.80293i 0.376546i
\(103\) 7.91612 0.779999 0.389999 0.920815i \(-0.372475\pi\)
0.389999 + 0.920815i \(0.372475\pi\)
\(104\) 0 0
\(105\) 3.20587 0.312861
\(106\) − 1.48663i − 0.144394i
\(107\) −6.46441 −0.624939 −0.312469 0.949928i \(-0.601156\pi\)
−0.312469 + 0.949928i \(0.601156\pi\)
\(108\) 2.22522 0.214122
\(109\) − 16.6406i − 1.59388i −0.604059 0.796939i \(-0.706451\pi\)
0.604059 0.796939i \(-0.293549\pi\)
\(110\) 0.315763i 0.0301068i
\(111\) 26.0823i 2.47562i
\(112\) − 1.43294i − 0.135400i
\(113\) −14.2361 −1.33922 −0.669612 0.742711i \(-0.733540\pi\)
−0.669612 + 0.742711i \(0.733540\pi\)
\(114\) −13.0605 −1.22323
\(115\) 9.32839i 0.869877i
\(116\) −7.09544 −0.658795
\(117\) 0 0
\(118\) −3.93789 −0.362512
\(119\) − 2.43572i − 0.223282i
\(120\) 2.23727 0.204234
\(121\) 10.9003 0.990936
\(122\) 0.971828i 0.0879852i
\(123\) 6.24698i 0.563271i
\(124\) − 4.69438i − 0.421568i
\(125\) − 1.00000i − 0.0894427i
\(126\) 2.87359 0.256000
\(127\) −16.6911 −1.48109 −0.740546 0.672006i \(-0.765433\pi\)
−0.740546 + 0.672006i \(0.765433\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 10.6825 0.940540
\(130\) 0 0
\(131\) 5.22386 0.456411 0.228205 0.973613i \(-0.426714\pi\)
0.228205 + 0.973613i \(0.426714\pi\)
\(132\) 0.706448i 0.0614884i
\(133\) 8.36503 0.725340
\(134\) 12.7810 1.10411
\(135\) − 2.22522i − 0.191516i
\(136\) − 1.69981i − 0.145757i
\(137\) − 10.8426i − 0.926345i −0.886268 0.463173i \(-0.846711\pi\)
0.886268 0.463173i \(-0.153289\pi\)
\(138\) 20.8701i 1.77658i
\(139\) 12.7506 1.08149 0.540745 0.841187i \(-0.318142\pi\)
0.540745 + 0.841187i \(0.318142\pi\)
\(140\) −1.43294 −0.121105
\(141\) − 23.3486i − 1.96630i
\(142\) −4.17629 −0.350467
\(143\) 0 0
\(144\) 2.00539 0.167116
\(145\) 7.09544i 0.589244i
\(146\) 8.83875 0.731500
\(147\) 11.0671 0.912799
\(148\) − 11.6581i − 0.958289i
\(149\) − 2.68691i − 0.220120i −0.993925 0.110060i \(-0.964896\pi\)
0.993925 0.110060i \(-0.0351044\pi\)
\(150\) − 2.23727i − 0.182673i
\(151\) − 15.3443i − 1.24870i −0.781144 0.624351i \(-0.785363\pi\)
0.781144 0.624351i \(-0.214637\pi\)
\(152\) 5.83768 0.473499
\(153\) 3.40877 0.275583
\(154\) − 0.452469i − 0.0364610i
\(155\) −4.69438 −0.377061
\(156\) 0 0
\(157\) −5.59044 −0.446166 −0.223083 0.974799i \(-0.571612\pi\)
−0.223083 + 0.974799i \(0.571612\pi\)
\(158\) − 6.80085i − 0.541047i
\(159\) −3.32599 −0.263768
\(160\) −1.00000 −0.0790569
\(161\) − 13.3670i − 1.05347i
\(162\) − 10.9946i − 0.863816i
\(163\) − 4.33627i − 0.339643i −0.985475 0.169821i \(-0.945681\pi\)
0.985475 0.169821i \(-0.0543191\pi\)
\(164\) − 2.79223i − 0.218037i
\(165\) 0.706448 0.0549969
\(166\) −11.1336 −0.864137
\(167\) 21.8290i 1.68918i 0.535413 + 0.844590i \(0.320156\pi\)
−0.535413 + 0.844590i \(0.679844\pi\)
\(168\) −3.20587 −0.247338
\(169\) 0 0
\(170\) −1.69981 −0.130369
\(171\) 11.7068i 0.895243i
\(172\) −4.77478 −0.364074
\(173\) 4.20426 0.319644 0.159822 0.987146i \(-0.448908\pi\)
0.159822 + 0.987146i \(0.448908\pi\)
\(174\) 15.8744i 1.20344i
\(175\) 1.43294i 0.108320i
\(176\) − 0.315763i − 0.0238015i
\(177\) 8.81014i 0.662210i
\(178\) 1.48615 0.111392
\(179\) 23.5902 1.76322 0.881608 0.471983i \(-0.156462\pi\)
0.881608 + 0.471983i \(0.156462\pi\)
\(180\) − 2.00539i − 0.149473i
\(181\) −16.4103 −1.21976 −0.609882 0.792492i \(-0.708783\pi\)
−0.609882 + 0.792492i \(0.708783\pi\)
\(182\) 0 0
\(183\) 2.17424 0.160725
\(184\) − 9.32839i − 0.687698i
\(185\) −11.6581 −0.857120
\(186\) −10.5026 −0.770088
\(187\) − 0.536736i − 0.0392500i
\(188\) 10.4362i 0.761136i
\(189\) 3.18860i 0.231936i
\(190\) − 5.83768i − 0.423510i
\(191\) −21.8818 −1.58331 −0.791656 0.610967i \(-0.790781\pi\)
−0.791656 + 0.610967i \(0.790781\pi\)
\(192\) −2.23727 −0.161461
\(193\) 0.440205i 0.0316866i 0.999874 + 0.0158433i \(0.00504330\pi\)
−0.999874 + 0.0158433i \(0.994957\pi\)
\(194\) 11.9669 0.859175
\(195\) 0 0
\(196\) −4.94669 −0.353335
\(197\) 13.7762i 0.981516i 0.871296 + 0.490758i \(0.163280\pi\)
−0.871296 + 0.490758i \(0.836720\pi\)
\(198\) 0.633227 0.0450015
\(199\) −2.53270 −0.179539 −0.0897693 0.995963i \(-0.528613\pi\)
−0.0897693 + 0.995963i \(0.528613\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) − 28.5945i − 2.01690i
\(202\) − 16.6774i − 1.17342i
\(203\) − 10.1673i − 0.713606i
\(204\) −3.80293 −0.266258
\(205\) −2.79223 −0.195018
\(206\) 7.91612i 0.551542i
\(207\) 18.7070 1.30023
\(208\) 0 0
\(209\) 1.84333 0.127505
\(210\) 3.20587i 0.221226i
\(211\) 6.69030 0.460579 0.230290 0.973122i \(-0.426033\pi\)
0.230290 + 0.973122i \(0.426033\pi\)
\(212\) 1.48663 0.102102
\(213\) 9.34350i 0.640206i
\(214\) − 6.46441i − 0.441898i
\(215\) 4.77478i 0.325637i
\(216\) 2.22522i 0.151407i
\(217\) 6.72675 0.456641
\(218\) 16.6406 1.12704
\(219\) − 19.7747i − 1.33625i
\(220\) −0.315763 −0.0212888
\(221\) 0 0
\(222\) −26.0823 −1.75053
\(223\) − 1.36952i − 0.0917097i −0.998948 0.0458548i \(-0.985399\pi\)
0.998948 0.0458548i \(-0.0146012\pi\)
\(224\) 1.43294 0.0957421
\(225\) −2.00539 −0.133692
\(226\) − 14.2361i − 0.946974i
\(227\) 1.46657i 0.0973398i 0.998815 + 0.0486699i \(0.0154982\pi\)
−0.998815 + 0.0486699i \(0.984502\pi\)
\(228\) − 13.0605i − 0.864952i
\(229\) 7.36084i 0.486418i 0.969974 + 0.243209i \(0.0782001\pi\)
−0.969974 + 0.243209i \(0.921800\pi\)
\(230\) −9.32839 −0.615096
\(231\) −1.01230 −0.0666042
\(232\) − 7.09544i − 0.465838i
\(233\) −15.5806 −1.02072 −0.510359 0.859961i \(-0.670488\pi\)
−0.510359 + 0.859961i \(0.670488\pi\)
\(234\) 0 0
\(235\) 10.4362 0.680781
\(236\) − 3.93789i − 0.256335i
\(237\) −15.2154 −0.988344
\(238\) 2.43572 0.157884
\(239\) − 9.78398i − 0.632873i −0.948614 0.316436i \(-0.897514\pi\)
0.948614 0.316436i \(-0.102486\pi\)
\(240\) 2.23727i 0.144415i
\(241\) 11.7487i 0.756802i 0.925642 + 0.378401i \(0.123526\pi\)
−0.925642 + 0.378401i \(0.876474\pi\)
\(242\) 10.9003i 0.700697i
\(243\) −17.9222 −1.14971
\(244\) −0.971828 −0.0622149
\(245\) 4.94669i 0.316033i
\(246\) −6.24698 −0.398293
\(247\) 0 0
\(248\) 4.69438 0.298093
\(249\) 24.9089i 1.57854i
\(250\) 1.00000 0.0632456
\(251\) −29.0462 −1.83338 −0.916689 0.399602i \(-0.869148\pi\)
−0.916689 + 0.399602i \(0.869148\pi\)
\(252\) 2.87359i 0.181019i
\(253\) − 2.94556i − 0.185186i
\(254\) − 16.6911i − 1.04729i
\(255\) 3.80293i 0.238149i
\(256\) 1.00000 0.0625000
\(257\) 15.6549 0.976524 0.488262 0.872697i \(-0.337631\pi\)
0.488262 + 0.872697i \(0.337631\pi\)
\(258\) 10.6825i 0.665062i
\(259\) 16.7053 1.03802
\(260\) 0 0
\(261\) 14.2291 0.880759
\(262\) 5.22386i 0.322731i
\(263\) −11.7545 −0.724813 −0.362407 0.932020i \(-0.618045\pi\)
−0.362407 + 0.932020i \(0.618045\pi\)
\(264\) −0.706448 −0.0434789
\(265\) − 1.48663i − 0.0913227i
\(266\) 8.36503i 0.512893i
\(267\) − 3.32492i − 0.203482i
\(268\) 12.7810i 0.780722i
\(269\) −0.786410 −0.0479483 −0.0239741 0.999713i \(-0.507632\pi\)
−0.0239741 + 0.999713i \(0.507632\pi\)
\(270\) 2.22522 0.135423
\(271\) − 1.63501i − 0.0993200i −0.998766 0.0496600i \(-0.984186\pi\)
0.998766 0.0496600i \(-0.0158138\pi\)
\(272\) 1.69981 0.103066
\(273\) 0 0
\(274\) 10.8426 0.655025
\(275\) 0.315763i 0.0190412i
\(276\) −20.8701 −1.25624
\(277\) −0.567538 −0.0341000 −0.0170500 0.999855i \(-0.505427\pi\)
−0.0170500 + 0.999855i \(0.505427\pi\)
\(278\) 12.7506i 0.764729i
\(279\) 9.41404i 0.563604i
\(280\) − 1.43294i − 0.0856344i
\(281\) − 11.9390i − 0.712221i −0.934444 0.356111i \(-0.884103\pi\)
0.934444 0.356111i \(-0.115897\pi\)
\(282\) 23.3486 1.39039
\(283\) 14.0478 0.835054 0.417527 0.908664i \(-0.362897\pi\)
0.417527 + 0.908664i \(0.362897\pi\)
\(284\) − 4.17629i − 0.247817i
\(285\) −13.0605 −0.773636
\(286\) 0 0
\(287\) 4.00109 0.236177
\(288\) 2.00539i 0.118169i
\(289\) −14.1107 −0.830039
\(290\) −7.09544 −0.416658
\(291\) − 26.7733i − 1.56948i
\(292\) 8.83875i 0.517249i
\(293\) − 28.7352i − 1.67873i −0.543570 0.839364i \(-0.682928\pi\)
0.543570 0.839364i \(-0.317072\pi\)
\(294\) 11.0671i 0.645446i
\(295\) −3.93789 −0.229273
\(296\) 11.6581 0.677612
\(297\) 0.702643i 0.0407715i
\(298\) 2.68691 0.155649
\(299\) 0 0
\(300\) 2.23727 0.129169
\(301\) − 6.84196i − 0.394364i
\(302\) 15.3443 0.882966
\(303\) −37.3120 −2.14352
\(304\) 5.83768i 0.334814i
\(305\) 0.971828i 0.0556467i
\(306\) 3.40877i 0.194866i
\(307\) 8.72162i 0.497769i 0.968533 + 0.248885i \(0.0800640\pi\)
−0.968533 + 0.248885i \(0.919936\pi\)
\(308\) 0.452469 0.0257818
\(309\) 17.7105 1.00752
\(310\) − 4.69438i − 0.266623i
\(311\) −23.6123 −1.33893 −0.669466 0.742843i \(-0.733477\pi\)
−0.669466 + 0.742843i \(0.733477\pi\)
\(312\) 0 0
\(313\) 22.3185 1.26152 0.630759 0.775979i \(-0.282744\pi\)
0.630759 + 0.775979i \(0.282744\pi\)
\(314\) − 5.59044i − 0.315487i
\(315\) 2.87359 0.161909
\(316\) 6.80085 0.382578
\(317\) 22.3655i 1.25617i 0.778144 + 0.628086i \(0.216161\pi\)
−0.778144 + 0.628086i \(0.783839\pi\)
\(318\) − 3.32599i − 0.186512i
\(319\) − 2.24048i − 0.125443i
\(320\) − 1.00000i − 0.0559017i
\(321\) −14.4627 −0.807227
\(322\) 13.3670 0.744913
\(323\) 9.92293i 0.552127i
\(324\) 10.9946 0.610810
\(325\) 0 0
\(326\) 4.33627 0.240164
\(327\) − 37.2295i − 2.05880i
\(328\) 2.79223 0.154175
\(329\) −14.9544 −0.824461
\(330\) 0.706448i 0.0388887i
\(331\) 15.6598i 0.860740i 0.902653 + 0.430370i \(0.141617\pi\)
−0.902653 + 0.430370i \(0.858383\pi\)
\(332\) − 11.1336i − 0.611037i
\(333\) 23.3790i 1.28116i
\(334\) −21.8290 −1.19443
\(335\) 12.7810 0.698299
\(336\) − 3.20587i − 0.174895i
\(337\) 28.8471 1.57140 0.785701 0.618606i \(-0.212302\pi\)
0.785701 + 0.618606i \(0.212302\pi\)
\(338\) 0 0
\(339\) −31.8501 −1.72986
\(340\) − 1.69981i − 0.0921849i
\(341\) 1.48231 0.0802717
\(342\) −11.7068 −0.633032
\(343\) − 17.1189i − 0.924331i
\(344\) − 4.77478i − 0.257439i
\(345\) 20.8701i 1.12361i
\(346\) 4.20426i 0.226023i
\(347\) −6.44079 −0.345760 −0.172880 0.984943i \(-0.555307\pi\)
−0.172880 + 0.984943i \(0.555307\pi\)
\(348\) −15.8744 −0.850958
\(349\) 21.5301i 1.15248i 0.817281 + 0.576239i \(0.195480\pi\)
−0.817281 + 0.576239i \(0.804520\pi\)
\(350\) −1.43294 −0.0765937
\(351\) 0 0
\(352\) 0.315763 0.0168302
\(353\) 12.5441i 0.667657i 0.942634 + 0.333828i \(0.108341\pi\)
−0.942634 + 0.333828i \(0.891659\pi\)
\(354\) −8.81014 −0.468253
\(355\) −4.17629 −0.221655
\(356\) 1.48615i 0.0787659i
\(357\) − 5.44936i − 0.288411i
\(358\) 23.5902i 1.24678i
\(359\) 9.39258i 0.495721i 0.968796 + 0.247861i \(0.0797275\pi\)
−0.968796 + 0.247861i \(0.920272\pi\)
\(360\) 2.00539 0.105693
\(361\) −15.0785 −0.793608
\(362\) − 16.4103i − 0.862504i
\(363\) 24.3869 1.27998
\(364\) 0 0
\(365\) 8.83875 0.462641
\(366\) 2.17424i 0.113650i
\(367\) 9.41908 0.491672 0.245836 0.969311i \(-0.420938\pi\)
0.245836 + 0.969311i \(0.420938\pi\)
\(368\) 9.32839 0.486276
\(369\) 5.59950i 0.291498i
\(370\) − 11.6581i − 0.606075i
\(371\) 2.13024i 0.110597i
\(372\) − 10.5026i − 0.544534i
\(373\) 11.4780 0.594310 0.297155 0.954829i \(-0.403962\pi\)
0.297155 + 0.954829i \(0.403962\pi\)
\(374\) 0.536736 0.0277540
\(375\) − 2.23727i − 0.115532i
\(376\) −10.4362 −0.538204
\(377\) 0 0
\(378\) −3.18860 −0.164004
\(379\) − 17.6283i − 0.905505i −0.891636 0.452752i \(-0.850442\pi\)
0.891636 0.452752i \(-0.149558\pi\)
\(380\) 5.83768 0.299467
\(381\) −37.3424 −1.91311
\(382\) − 21.8818i − 1.11957i
\(383\) − 4.16819i − 0.212985i −0.994314 0.106492i \(-0.966038\pi\)
0.994314 0.106492i \(-0.0339619\pi\)
\(384\) − 2.23727i − 0.114170i
\(385\) − 0.452469i − 0.0230599i
\(386\) −0.440205 −0.0224058
\(387\) 9.57528 0.486739
\(388\) 11.9669i 0.607528i
\(389\) −35.7341 −1.81179 −0.905895 0.423503i \(-0.860800\pi\)
−0.905895 + 0.423503i \(0.860800\pi\)
\(390\) 0 0
\(391\) 15.8565 0.801895
\(392\) − 4.94669i − 0.249846i
\(393\) 11.6872 0.589541
\(394\) −13.7762 −0.694037
\(395\) − 6.80085i − 0.342188i
\(396\) 0.633227i 0.0318209i
\(397\) − 23.4645i − 1.17765i −0.808262 0.588824i \(-0.799591\pi\)
0.808262 0.588824i \(-0.200409\pi\)
\(398\) − 2.53270i − 0.126953i
\(399\) 18.7149 0.936915
\(400\) −1.00000 −0.0500000
\(401\) − 0.137896i − 0.00688618i −0.999994 0.00344309i \(-0.998904\pi\)
0.999994 0.00344309i \(-0.00109597\pi\)
\(402\) 28.5945 1.42616
\(403\) 0 0
\(404\) 16.6774 0.829734
\(405\) − 10.9946i − 0.546325i
\(406\) 10.1673 0.504595
\(407\) 3.68119 0.182470
\(408\) − 3.80293i − 0.188273i
\(409\) − 24.2501i − 1.19909i −0.800340 0.599546i \(-0.795348\pi\)
0.800340 0.599546i \(-0.204652\pi\)
\(410\) − 2.79223i − 0.137898i
\(411\) − 24.2578i − 1.19655i
\(412\) −7.91612 −0.389999
\(413\) 5.64275 0.277662
\(414\) 18.7070i 0.919400i
\(415\) −11.1336 −0.546528
\(416\) 0 0
\(417\) 28.5265 1.39695
\(418\) 1.84333i 0.0901600i
\(419\) 8.19191 0.400201 0.200100 0.979775i \(-0.435873\pi\)
0.200100 + 0.979775i \(0.435873\pi\)
\(420\) −3.20587 −0.156430
\(421\) − 24.7799i − 1.20770i −0.797099 0.603848i \(-0.793633\pi\)
0.797099 0.603848i \(-0.206367\pi\)
\(422\) 6.69030i 0.325679i
\(423\) − 20.9286i − 1.01758i
\(424\) 1.48663i 0.0721969i
\(425\) −1.69981 −0.0824527
\(426\) −9.34350 −0.452694
\(427\) − 1.39257i − 0.0673911i
\(428\) 6.46441 0.312469
\(429\) 0 0
\(430\) −4.77478 −0.230260
\(431\) − 1.94731i − 0.0937987i −0.998900 0.0468994i \(-0.985066\pi\)
0.998900 0.0468994i \(-0.0149340\pi\)
\(432\) −2.22522 −0.107061
\(433\) 23.7805 1.14282 0.571410 0.820665i \(-0.306397\pi\)
0.571410 + 0.820665i \(0.306397\pi\)
\(434\) 6.72675i 0.322894i
\(435\) 15.8744i 0.761120i
\(436\) 16.6406i 0.796939i
\(437\) 54.4562i 2.60499i
\(438\) 19.7747 0.944871
\(439\) −33.4007 −1.59413 −0.797063 0.603896i \(-0.793614\pi\)
−0.797063 + 0.603896i \(0.793614\pi\)
\(440\) − 0.315763i − 0.0150534i
\(441\) 9.92003 0.472382
\(442\) 0 0
\(443\) 15.5768 0.740075 0.370038 0.929017i \(-0.379345\pi\)
0.370038 + 0.929017i \(0.379345\pi\)
\(444\) − 26.0823i − 1.23781i
\(445\) 1.48615 0.0704503
\(446\) 1.36952 0.0648485
\(447\) − 6.01135i − 0.284327i
\(448\) 1.43294i 0.0676999i
\(449\) − 31.2239i − 1.47355i −0.676140 0.736773i \(-0.736348\pi\)
0.676140 0.736773i \(-0.263652\pi\)
\(450\) − 2.00539i − 0.0945349i
\(451\) 0.881684 0.0415169
\(452\) 14.2361 0.669612
\(453\) − 34.3294i − 1.61294i
\(454\) −1.46657 −0.0688296
\(455\) 0 0
\(456\) 13.0605 0.611613
\(457\) − 22.4950i − 1.05227i −0.850401 0.526135i \(-0.823641\pi\)
0.850401 0.526135i \(-0.176359\pi\)
\(458\) −7.36084 −0.343949
\(459\) −3.78244 −0.176549
\(460\) − 9.32839i − 0.434938i
\(461\) − 18.4663i − 0.860059i −0.902815 0.430030i \(-0.858503\pi\)
0.902815 0.430030i \(-0.141497\pi\)
\(462\) − 1.01230i − 0.0470963i
\(463\) − 20.3900i − 0.947602i −0.880632 0.473801i \(-0.842882\pi\)
0.880632 0.473801i \(-0.157118\pi\)
\(464\) 7.09544 0.329397
\(465\) −10.5026 −0.487046
\(466\) − 15.5806i − 0.721757i
\(467\) 28.0498 1.29799 0.648996 0.760792i \(-0.275189\pi\)
0.648996 + 0.760792i \(0.275189\pi\)
\(468\) 0 0
\(469\) −18.3143 −0.845676
\(470\) 10.4362i 0.481385i
\(471\) −12.5073 −0.576308
\(472\) 3.93789 0.181256
\(473\) − 1.50770i − 0.0693241i
\(474\) − 15.2154i − 0.698865i
\(475\) − 5.83768i − 0.267851i
\(476\) 2.43572i 0.111641i
\(477\) −2.98126 −0.136503
\(478\) 9.78398 0.447509
\(479\) 8.09122i 0.369697i 0.982767 + 0.184849i \(0.0591795\pi\)
−0.982767 + 0.184849i \(0.940820\pi\)
\(480\) −2.23727 −0.102117
\(481\) 0 0
\(482\) −11.7487 −0.535140
\(483\) − 29.9056i − 1.36075i
\(484\) −10.9003 −0.495468
\(485\) 11.9669 0.543390
\(486\) − 17.9222i − 0.812968i
\(487\) − 14.3897i − 0.652057i −0.945360 0.326029i \(-0.894289\pi\)
0.945360 0.326029i \(-0.105711\pi\)
\(488\) − 0.971828i − 0.0439926i
\(489\) − 9.70141i − 0.438713i
\(490\) −4.94669 −0.223469
\(491\) 10.2104 0.460789 0.230395 0.973097i \(-0.425998\pi\)
0.230395 + 0.973097i \(0.425998\pi\)
\(492\) − 6.24698i − 0.281636i
\(493\) 12.0609 0.543194
\(494\) 0 0
\(495\) 0.633227 0.0284615
\(496\) 4.69438i 0.210784i
\(497\) 5.98436 0.268435
\(498\) −24.9089 −1.11620
\(499\) 3.13991i 0.140562i 0.997527 + 0.0702809i \(0.0223896\pi\)
−0.997527 + 0.0702809i \(0.977610\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) 48.8375i 2.18190i
\(502\) − 29.0462i − 1.29639i
\(503\) 24.1794 1.07811 0.539054 0.842271i \(-0.318782\pi\)
0.539054 + 0.842271i \(0.318782\pi\)
\(504\) −2.87359 −0.128000
\(505\) − 16.6774i − 0.742137i
\(506\) 2.94556 0.130946
\(507\) 0 0
\(508\) 16.6911 0.740546
\(509\) − 15.4846i − 0.686343i −0.939273 0.343171i \(-0.888499\pi\)
0.939273 0.343171i \(-0.111501\pi\)
\(510\) −3.80293 −0.168397
\(511\) −12.6654 −0.560283
\(512\) 1.00000i 0.0441942i
\(513\) − 12.9901i − 0.573528i
\(514\) 15.6549i 0.690506i
\(515\) 7.91612i 0.348826i
\(516\) −10.6825 −0.470270
\(517\) −3.29536 −0.144930
\(518\) 16.7053i 0.733989i
\(519\) 9.40608 0.412881
\(520\) 0 0
\(521\) 8.76055 0.383807 0.191903 0.981414i \(-0.438534\pi\)
0.191903 + 0.981414i \(0.438534\pi\)
\(522\) 14.2291i 0.622791i
\(523\) −3.75051 −0.163999 −0.0819993 0.996632i \(-0.526131\pi\)
−0.0819993 + 0.996632i \(0.526131\pi\)
\(524\) −5.22386 −0.228205
\(525\) 3.20587i 0.139916i
\(526\) − 11.7545i − 0.512520i
\(527\) 7.97953i 0.347594i
\(528\) − 0.706448i − 0.0307442i
\(529\) 64.0188 2.78343
\(530\) 1.48663 0.0645749
\(531\) 7.89700i 0.342701i
\(532\) −8.36503 −0.362670
\(533\) 0 0
\(534\) 3.32492 0.143884
\(535\) − 6.46441i − 0.279481i
\(536\) −12.7810 −0.552053
\(537\) 52.7777 2.27753
\(538\) − 0.786410i − 0.0339046i
\(539\) − 1.56198i − 0.0672794i
\(540\) 2.22522i 0.0957582i
\(541\) 34.8297i 1.49745i 0.662883 + 0.748723i \(0.269333\pi\)
−0.662883 + 0.748723i \(0.730667\pi\)
\(542\) 1.63501 0.0702299
\(543\) −36.7142 −1.57556
\(544\) 1.69981i 0.0728786i
\(545\) 16.6406 0.712804
\(546\) 0 0
\(547\) −41.0027 −1.75315 −0.876575 0.481265i \(-0.840177\pi\)
−0.876575 + 0.481265i \(0.840177\pi\)
\(548\) 10.8426i 0.463173i
\(549\) 1.94889 0.0831766
\(550\) −0.315763 −0.0134642
\(551\) 41.4209i 1.76459i
\(552\) − 20.8701i − 0.888292i
\(553\) 9.74519i 0.414408i
\(554\) − 0.567538i − 0.0241124i
\(555\) −26.0823 −1.10713
\(556\) −12.7506 −0.540745
\(557\) − 12.9939i − 0.550569i −0.961363 0.275285i \(-0.911228\pi\)
0.961363 0.275285i \(-0.0887721\pi\)
\(558\) −9.41404 −0.398528
\(559\) 0 0
\(560\) 1.43294 0.0605526
\(561\) − 1.20083i − 0.0506989i
\(562\) 11.9390 0.503617
\(563\) −18.8597 −0.794840 −0.397420 0.917637i \(-0.630094\pi\)
−0.397420 + 0.917637i \(0.630094\pi\)
\(564\) 23.3486i 0.983152i
\(565\) − 14.2361i − 0.598919i
\(566\) 14.0478i 0.590472i
\(567\) 15.7545i 0.661629i
\(568\) 4.17629 0.175233
\(569\) 36.2095 1.51798 0.758991 0.651102i \(-0.225693\pi\)
0.758991 + 0.651102i \(0.225693\pi\)
\(570\) − 13.0605i − 0.547044i
\(571\) −13.5330 −0.566340 −0.283170 0.959070i \(-0.591386\pi\)
−0.283170 + 0.959070i \(0.591386\pi\)
\(572\) 0 0
\(573\) −48.9556 −2.04515
\(574\) 4.00109i 0.167002i
\(575\) −9.32839 −0.389021
\(576\) −2.00539 −0.0835578
\(577\) − 9.49114i − 0.395121i −0.980291 0.197561i \(-0.936698\pi\)
0.980291 0.197561i \(-0.0633020\pi\)
\(578\) − 14.1107i − 0.586926i
\(579\) 0.984858i 0.0409293i
\(580\) − 7.09544i − 0.294622i
\(581\) 15.9538 0.661874
\(582\) 26.7733 1.10979
\(583\) 0.469422i 0.0194415i
\(584\) −8.83875 −0.365750
\(585\) 0 0
\(586\) 28.7352 1.18704
\(587\) − 10.2761i − 0.424138i −0.977255 0.212069i \(-0.931980\pi\)
0.977255 0.212069i \(-0.0680202\pi\)
\(588\) −11.0671 −0.456399
\(589\) −27.4043 −1.12917
\(590\) − 3.93789i − 0.162120i
\(591\) 30.8212i 1.26781i
\(592\) 11.6581i 0.479144i
\(593\) − 36.5714i − 1.50181i −0.660411 0.750904i \(-0.729618\pi\)
0.660411 0.750904i \(-0.270382\pi\)
\(594\) −0.702643 −0.0288298
\(595\) 2.43572 0.0998546
\(596\) 2.68691i 0.110060i
\(597\) −5.66635 −0.231908
\(598\) 0 0
\(599\) −42.2976 −1.72823 −0.864116 0.503292i \(-0.832122\pi\)
−0.864116 + 0.503292i \(0.832122\pi\)
\(600\) 2.23727i 0.0913363i
\(601\) 17.6798 0.721173 0.360587 0.932726i \(-0.382576\pi\)
0.360587 + 0.932726i \(0.382576\pi\)
\(602\) 6.84196 0.278857
\(603\) − 25.6308i − 1.04377i
\(604\) 15.3443i 0.624351i
\(605\) 10.9003i 0.443160i
\(606\) − 37.3120i − 1.51570i
\(607\) −40.2686 −1.63445 −0.817227 0.576316i \(-0.804490\pi\)
−0.817227 + 0.576316i \(0.804490\pi\)
\(608\) −5.83768 −0.236749
\(609\) − 22.7471i − 0.921757i
\(610\) −0.971828 −0.0393482
\(611\) 0 0
\(612\) −3.40877 −0.137791
\(613\) 4.11330i 0.166135i 0.996544 + 0.0830673i \(0.0264716\pi\)
−0.996544 + 0.0830673i \(0.973528\pi\)
\(614\) −8.72162 −0.351976
\(615\) −6.24698 −0.251903
\(616\) 0.452469i 0.0182305i
\(617\) 28.2379i 1.13682i 0.822747 + 0.568408i \(0.192440\pi\)
−0.822747 + 0.568408i \(0.807560\pi\)
\(618\) 17.7105i 0.712422i
\(619\) 7.31241i 0.293911i 0.989143 + 0.146955i \(0.0469473\pi\)
−0.989143 + 0.146955i \(0.953053\pi\)
\(620\) 4.69438 0.188531
\(621\) −20.7577 −0.832978
\(622\) − 23.6123i − 0.946768i
\(623\) −2.12956 −0.0853191
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 22.3185i 0.892027i
\(627\) 4.12402 0.164698
\(628\) 5.59044 0.223083
\(629\) 19.8165i 0.790135i
\(630\) 2.87359i 0.114487i
\(631\) − 36.0224i − 1.43403i −0.697059 0.717014i \(-0.745508\pi\)
0.697059 0.717014i \(-0.254492\pi\)
\(632\) 6.80085i 0.270523i
\(633\) 14.9680 0.594926
\(634\) −22.3655 −0.888248
\(635\) − 16.6911i − 0.662364i
\(636\) 3.32599 0.131884
\(637\) 0 0
\(638\) 2.24048 0.0887014
\(639\) 8.37508i 0.331313i
\(640\) 1.00000 0.0395285
\(641\) −11.3889 −0.449835 −0.224917 0.974378i \(-0.572211\pi\)
−0.224917 + 0.974378i \(0.572211\pi\)
\(642\) − 14.4627i − 0.570795i
\(643\) − 14.2162i − 0.560630i −0.959908 0.280315i \(-0.909561\pi\)
0.959908 0.280315i \(-0.0904390\pi\)
\(644\) 13.3670i 0.526733i
\(645\) 10.6825i 0.420622i
\(646\) −9.92293 −0.390412
\(647\) 2.24397 0.0882198 0.0441099 0.999027i \(-0.485955\pi\)
0.0441099 + 0.999027i \(0.485955\pi\)
\(648\) 10.9946i 0.431908i
\(649\) 1.24344 0.0488093
\(650\) 0 0
\(651\) 15.0496 0.589839
\(652\) 4.33627i 0.169821i
\(653\) 21.9585 0.859301 0.429651 0.902995i \(-0.358637\pi\)
0.429651 + 0.902995i \(0.358637\pi\)
\(654\) 37.2295 1.45579
\(655\) 5.22386i 0.204113i
\(656\) 2.79223i 0.109018i
\(657\) − 17.7251i − 0.691523i
\(658\) − 14.9544i − 0.582982i
\(659\) −29.0740 −1.13256 −0.566281 0.824212i \(-0.691618\pi\)
−0.566281 + 0.824212i \(0.691618\pi\)
\(660\) −0.706448 −0.0274985
\(661\) − 35.2273i − 1.37018i −0.728457 0.685091i \(-0.759762\pi\)
0.728457 0.685091i \(-0.240238\pi\)
\(662\) −15.6598 −0.608635
\(663\) 0 0
\(664\) 11.1336 0.432068
\(665\) 8.36503i 0.324382i
\(666\) −23.3790 −0.905917
\(667\) 66.1890 2.56285
\(668\) − 21.8290i − 0.844590i
\(669\) − 3.06398i − 0.118460i
\(670\) 12.7810i 0.493772i
\(671\) − 0.306867i − 0.0118465i
\(672\) 3.20587 0.123669
\(673\) −13.7113 −0.528531 −0.264266 0.964450i \(-0.585130\pi\)
−0.264266 + 0.964450i \(0.585130\pi\)
\(674\) 28.8471i 1.11115i
\(675\) 2.22522 0.0856487
\(676\) 0 0
\(677\) 31.9818 1.22916 0.614581 0.788854i \(-0.289325\pi\)
0.614581 + 0.788854i \(0.289325\pi\)
\(678\) − 31.8501i − 1.22320i
\(679\) −17.1478 −0.658074
\(680\) 1.69981 0.0651846
\(681\) 3.28112i 0.125733i
\(682\) 1.48231i 0.0567606i
\(683\) 3.53220i 0.135156i 0.997714 + 0.0675779i \(0.0215271\pi\)
−0.997714 + 0.0675779i \(0.978473\pi\)
\(684\) − 11.7068i − 0.447621i
\(685\) 10.8426 0.414274
\(686\) 17.1189 0.653601
\(687\) 16.4682i 0.628301i
\(688\) 4.77478 0.182037
\(689\) 0 0
\(690\) −20.8701 −0.794513
\(691\) 39.4068i 1.49911i 0.661944 + 0.749553i \(0.269732\pi\)
−0.661944 + 0.749553i \(0.730268\pi\)
\(692\) −4.20426 −0.159822
\(693\) −0.907375 −0.0344683
\(694\) − 6.44079i − 0.244489i
\(695\) 12.7506i 0.483657i
\(696\) − 15.8744i − 0.601719i
\(697\) 4.74625i 0.179777i
\(698\) −21.5301 −0.814925
\(699\) −34.8580 −1.31845
\(700\) − 1.43294i − 0.0541599i
\(701\) −26.5304 −1.00204 −0.501020 0.865436i \(-0.667042\pi\)
−0.501020 + 0.865436i \(0.667042\pi\)
\(702\) 0 0
\(703\) −68.0562 −2.56679
\(704\) 0.315763i 0.0119008i
\(705\) 23.3486 0.879358
\(706\) −12.5441 −0.472105
\(707\) 23.8977i 0.898767i
\(708\) − 8.81014i − 0.331105i
\(709\) − 42.0988i − 1.58106i −0.612426 0.790528i \(-0.709806\pi\)
0.612426 0.790528i \(-0.290194\pi\)
\(710\) − 4.17629i − 0.156733i
\(711\) −13.6383 −0.511478
\(712\) −1.48615 −0.0556959
\(713\) 43.7910i 1.63998i
\(714\) 5.44936 0.203937
\(715\) 0 0
\(716\) −23.5902 −0.881608
\(717\) − 21.8894i − 0.817475i
\(718\) −9.39258 −0.350528
\(719\) −21.0467 −0.784911 −0.392455 0.919771i \(-0.628374\pi\)
−0.392455 + 0.919771i \(0.628374\pi\)
\(720\) 2.00539i 0.0747364i
\(721\) − 11.3433i − 0.422447i
\(722\) − 15.0785i − 0.561165i
\(723\) 26.2851i 0.977553i
\(724\) 16.4103 0.609882
\(725\) −7.09544 −0.263518
\(726\) 24.3869i 0.905084i
\(727\) 7.85688 0.291396 0.145698 0.989329i \(-0.453457\pi\)
0.145698 + 0.989329i \(0.453457\pi\)
\(728\) 0 0
\(729\) −7.11313 −0.263449
\(730\) 8.83875i 0.327137i
\(731\) 8.11620 0.300189
\(732\) −2.17424 −0.0803624
\(733\) 40.1151i 1.48168i 0.671679 + 0.740842i \(0.265573\pi\)
−0.671679 + 0.740842i \(0.734427\pi\)
\(734\) 9.41908i 0.347665i
\(735\) 11.0671i 0.408216i
\(736\) 9.32839i 0.343849i
\(737\) −4.03576 −0.148659
\(738\) −5.59950 −0.206121
\(739\) 34.1597i 1.25658i 0.777977 + 0.628292i \(0.216246\pi\)
−0.777977 + 0.628292i \(0.783754\pi\)
\(740\) 11.6581 0.428560
\(741\) 0 0
\(742\) −2.13024 −0.0782036
\(743\) 33.6854i 1.23580i 0.786258 + 0.617898i \(0.212016\pi\)
−0.786258 + 0.617898i \(0.787984\pi\)
\(744\) 10.5026 0.385044
\(745\) 2.68691 0.0984408
\(746\) 11.4780i 0.420241i
\(747\) 22.3272i 0.816910i
\(748\) 0.536736i 0.0196250i
\(749\) 9.26310i 0.338466i
\(750\) 2.23727 0.0816936
\(751\) −9.13590 −0.333374 −0.166687 0.986010i \(-0.553307\pi\)
−0.166687 + 0.986010i \(0.553307\pi\)
\(752\) − 10.4362i − 0.380568i
\(753\) −64.9842 −2.36816
\(754\) 0 0
\(755\) 15.3443 0.558437
\(756\) − 3.18860i − 0.115968i
\(757\) 47.3897 1.72241 0.861203 0.508261i \(-0.169711\pi\)
0.861203 + 0.508261i \(0.169711\pi\)
\(758\) 17.6283 0.640289
\(759\) − 6.59002i − 0.239203i
\(760\) 5.83768i 0.211755i
\(761\) 2.34689i 0.0850747i 0.999095 + 0.0425374i \(0.0135442\pi\)
−0.999095 + 0.0425374i \(0.986456\pi\)
\(762\) − 37.3424i − 1.35277i
\(763\) −23.8449 −0.863244
\(764\) 21.8818 0.791656
\(765\) 3.40877i 0.123244i
\(766\) 4.16819 0.150603
\(767\) 0 0
\(768\) 2.23727 0.0807306
\(769\) 40.3538i 1.45519i 0.686004 + 0.727597i \(0.259363\pi\)
−0.686004 + 0.727597i \(0.740637\pi\)
\(770\) 0.452469 0.0163058
\(771\) 35.0242 1.26137
\(772\) − 0.440205i − 0.0158433i
\(773\) 36.3971i 1.30911i 0.756013 + 0.654556i \(0.227144\pi\)
−0.756013 + 0.654556i \(0.772856\pi\)
\(774\) 9.57528i 0.344176i
\(775\) − 4.69438i − 0.168627i
\(776\) −11.9669 −0.429587
\(777\) 37.3743 1.34080
\(778\) − 35.7341i − 1.28113i
\(779\) −16.3002 −0.584014
\(780\) 0 0
\(781\) 1.31872 0.0471875
\(782\) 15.8565i 0.567026i
\(783\) −15.7889 −0.564249
\(784\) 4.94669 0.176668
\(785\) − 5.59044i − 0.199531i
\(786\) 11.6872i 0.416869i
\(787\) 18.5638i 0.661729i 0.943678 + 0.330864i \(0.107340\pi\)
−0.943678 + 0.330864i \(0.892660\pi\)
\(788\) − 13.7762i − 0.490758i
\(789\) −26.2980 −0.936234
\(790\) 6.80085 0.241963
\(791\) 20.3995i 0.725323i
\(792\) −0.633227 −0.0225008
\(793\) 0 0
\(794\) 23.4645 0.832722
\(795\) − 3.32599i − 0.117961i
\(796\) 2.53270 0.0897693
\(797\) −15.9864 −0.566268 −0.283134 0.959080i \(-0.591374\pi\)
−0.283134 + 0.959080i \(0.591374\pi\)
\(798\) 18.7149i 0.662499i
\(799\) − 17.7395i − 0.627577i
\(800\) − 1.00000i − 0.0353553i
\(801\) − 2.98031i − 0.105304i
\(802\) 0.137896 0.00486927
\(803\) −2.79095 −0.0984906
\(804\) 28.5945i 1.00845i
\(805\) 13.3670 0.471125
\(806\) 0 0
\(807\) −1.75941 −0.0619343
\(808\) 16.6774i 0.586711i
\(809\) 6.97062 0.245074 0.122537 0.992464i \(-0.460897\pi\)
0.122537 + 0.992464i \(0.460897\pi\)
\(810\) 10.9946 0.386310
\(811\) 24.0216i 0.843511i 0.906710 + 0.421755i \(0.138586\pi\)
−0.906710 + 0.421755i \(0.861414\pi\)
\(812\) 10.1673i 0.356803i
\(813\) − 3.65797i − 0.128291i
\(814\) 3.68119i 0.129026i
\(815\) 4.33627 0.151893
\(816\) 3.80293 0.133129
\(817\) 27.8737i 0.975176i
\(818\) 24.2501 0.847886
\(819\) 0 0
\(820\) 2.79223 0.0975089
\(821\) 27.7112i 0.967126i 0.875309 + 0.483563i \(0.160658\pi\)
−0.875309 + 0.483563i \(0.839342\pi\)
\(822\) 24.2578 0.846089
\(823\) 24.4911 0.853706 0.426853 0.904321i \(-0.359622\pi\)
0.426853 + 0.904321i \(0.359622\pi\)
\(824\) − 7.91612i − 0.275771i
\(825\) 0.706448i 0.0245954i
\(826\) 5.64275i 0.196336i
\(827\) 18.0841i 0.628846i 0.949283 + 0.314423i \(0.101811\pi\)
−0.949283 + 0.314423i \(0.898189\pi\)
\(828\) −18.7070 −0.650114
\(829\) −11.4496 −0.397661 −0.198831 0.980034i \(-0.563714\pi\)
−0.198831 + 0.980034i \(0.563714\pi\)
\(830\) − 11.1336i − 0.386454i
\(831\) −1.26974 −0.0440467
\(832\) 0 0
\(833\) 8.40842 0.291334
\(834\) 28.5265i 0.987792i
\(835\) −21.8290 −0.755425
\(836\) −1.84333 −0.0637527
\(837\) − 10.4460i − 0.361067i
\(838\) 8.19191i 0.282985i
\(839\) − 28.4327i − 0.981605i −0.871271 0.490803i \(-0.836704\pi\)
0.871271 0.490803i \(-0.163296\pi\)
\(840\) − 3.20587i − 0.110613i
\(841\) 21.3452 0.736042
\(842\) 24.7799 0.853971
\(843\) − 26.7108i − 0.919969i
\(844\) −6.69030 −0.230290
\(845\) 0 0
\(846\) 20.9286 0.719539
\(847\) − 15.6194i − 0.536690i
\(848\) −1.48663 −0.0510510
\(849\) 31.4287 1.07863
\(850\) − 1.69981i − 0.0583029i
\(851\) 108.751i 3.72794i
\(852\) − 9.34350i − 0.320103i
\(853\) 7.19717i 0.246426i 0.992380 + 0.123213i \(0.0393199\pi\)
−0.992380 + 0.123213i \(0.960680\pi\)
\(854\) 1.39257 0.0476527
\(855\) −11.7068 −0.400365
\(856\) 6.46441i 0.220949i
\(857\) −30.2786 −1.03430 −0.517148 0.855896i \(-0.673006\pi\)
−0.517148 + 0.855896i \(0.673006\pi\)
\(858\) 0 0
\(859\) −11.0133 −0.375769 −0.187884 0.982191i \(-0.560163\pi\)
−0.187884 + 0.982191i \(0.560163\pi\)
\(860\) − 4.77478i − 0.162819i
\(861\) 8.95153 0.305067
\(862\) 1.94731 0.0663257
\(863\) − 22.5488i − 0.767571i −0.923422 0.383786i \(-0.874620\pi\)
0.923422 0.383786i \(-0.125380\pi\)
\(864\) − 2.22522i − 0.0757035i
\(865\) 4.20426i 0.142949i
\(866\) 23.7805i 0.808095i
\(867\) −31.5694 −1.07215
\(868\) −6.72675 −0.228321
\(869\) 2.14746i 0.0728476i
\(870\) −15.8744 −0.538193
\(871\) 0 0
\(872\) −16.6406 −0.563521
\(873\) − 23.9983i − 0.812220i
\(874\) −54.4562 −1.84201
\(875\) −1.43294 −0.0484421
\(876\) 19.7747i 0.668125i
\(877\) 55.2018i 1.86403i 0.362418 + 0.932016i \(0.381951\pi\)
−0.362418 + 0.932016i \(0.618049\pi\)
\(878\) − 33.4007i − 1.12722i
\(879\) − 64.2885i − 2.16840i
\(880\) 0.315763 0.0106444
\(881\) 1.80062 0.0606644 0.0303322 0.999540i \(-0.490343\pi\)
0.0303322 + 0.999540i \(0.490343\pi\)
\(882\) 9.92003i 0.334025i
\(883\) 28.0786 0.944919 0.472459 0.881352i \(-0.343366\pi\)
0.472459 + 0.881352i \(0.343366\pi\)
\(884\) 0 0
\(885\) −8.81014 −0.296150
\(886\) 15.5768i 0.523312i
\(887\) −3.74577 −0.125771 −0.0628854 0.998021i \(-0.520030\pi\)
−0.0628854 + 0.998021i \(0.520030\pi\)
\(888\) 26.0823 0.875265
\(889\) 23.9172i 0.802158i
\(890\) 1.48615i 0.0498159i
\(891\) 3.47169i 0.116306i
\(892\) 1.36952i 0.0458548i
\(893\) 60.9231 2.03871
\(894\) 6.01135 0.201050
\(895\) 23.5902i 0.788534i
\(896\) −1.43294 −0.0478711
\(897\) 0 0
\(898\) 31.2239 1.04195
\(899\) 33.3087i 1.11091i
\(900\) 2.00539 0.0668462
\(901\) −2.52698 −0.0841858
\(902\) 0.881684i 0.0293569i
\(903\) − 15.3073i − 0.509396i
\(904\) 14.2361i 0.473487i
\(905\) − 16.4103i − 0.545495i
\(906\) 34.3294 1.14052
\(907\) −26.8418 −0.891269 −0.445634 0.895215i \(-0.647022\pi\)
−0.445634 + 0.895215i \(0.647022\pi\)
\(908\) − 1.46657i − 0.0486699i
\(909\) −33.4447 −1.10929
\(910\) 0 0
\(911\) −22.6354 −0.749945 −0.374972 0.927036i \(-0.622348\pi\)
−0.374972 + 0.927036i \(0.622348\pi\)
\(912\) 13.0605i 0.432476i
\(913\) 3.51559 0.116349
\(914\) 22.4950 0.744067
\(915\) 2.17424i 0.0718783i
\(916\) − 7.36084i − 0.243209i
\(917\) − 7.48546i − 0.247192i
\(918\) − 3.78244i − 0.124839i
\(919\) 5.61518 0.185228 0.0926138 0.995702i \(-0.470478\pi\)
0.0926138 + 0.995702i \(0.470478\pi\)
\(920\) 9.32839 0.307548
\(921\) 19.5126i 0.642963i
\(922\) 18.4663 0.608154
\(923\) 0 0
\(924\) 1.01230 0.0333021
\(925\) − 11.6581i − 0.383315i
\(926\) 20.3900 0.670056
\(927\) 15.8749 0.521400
\(928\) 7.09544i 0.232919i
\(929\) 10.9655i 0.359766i 0.983688 + 0.179883i \(0.0575719\pi\)
−0.983688 + 0.179883i \(0.942428\pi\)
\(930\) − 10.5026i − 0.344394i
\(931\) 28.8772i 0.946413i
\(932\) 15.5806 0.510359
\(933\) −52.8272 −1.72949
\(934\) 28.0498i 0.917819i
\(935\) 0.536736 0.0175532
\(936\) 0 0
\(937\) 53.8795 1.76017 0.880083 0.474820i \(-0.157487\pi\)
0.880083 + 0.474820i \(0.157487\pi\)
\(938\) − 18.3143i − 0.597984i
\(939\) 49.9326 1.62949
\(940\) −10.4362 −0.340390
\(941\) 7.42918i 0.242184i 0.992641 + 0.121092i \(0.0386396\pi\)
−0.992641 + 0.121092i \(0.961360\pi\)
\(942\) − 12.5073i − 0.407511i
\(943\) 26.0470i 0.848207i
\(944\) 3.93789i 0.128167i
\(945\) −3.18860 −0.103725
\(946\) 1.50770 0.0490196
\(947\) − 15.5223i − 0.504407i −0.967674 0.252204i \(-0.918845\pi\)
0.967674 0.252204i \(-0.0811553\pi\)
\(948\) 15.2154 0.494172
\(949\) 0 0
\(950\) 5.83768 0.189399
\(951\) 50.0377i 1.62258i
\(952\) −2.43572 −0.0789420
\(953\) 13.4032 0.434171 0.217085 0.976153i \(-0.430345\pi\)
0.217085 + 0.976153i \(0.430345\pi\)
\(954\) − 2.98126i − 0.0965219i
\(955\) − 21.8818i − 0.708079i
\(956\) 9.78398i 0.316436i
\(957\) − 5.01256i − 0.162033i
\(958\) −8.09122 −0.261416
\(959\) −15.5368 −0.501708
\(960\) − 2.23727i − 0.0722077i
\(961\) 8.96282 0.289123
\(962\) 0 0
\(963\) −12.9637 −0.417748
\(964\) − 11.7487i − 0.378401i
\(965\) −0.440205 −0.0141707
\(966\) 29.9056 0.962197
\(967\) 27.1373i 0.872677i 0.899783 + 0.436338i \(0.143725\pi\)
−0.899783 + 0.436338i \(0.856275\pi\)
\(968\) − 10.9003i − 0.350349i
\(969\) 22.2003i 0.713176i
\(970\) 11.9669i 0.384235i
\(971\) −54.9714 −1.76411 −0.882057 0.471142i \(-0.843842\pi\)
−0.882057 + 0.471142i \(0.843842\pi\)
\(972\) 17.9222 0.574855
\(973\) − 18.2708i − 0.585734i
\(974\) 14.3897 0.461074
\(975\) 0 0
\(976\) 0.971828 0.0311075
\(977\) 58.0043i 1.85572i 0.372928 + 0.927860i \(0.378354\pi\)
−0.372928 + 0.927860i \(0.621646\pi\)
\(978\) 9.70141 0.310217
\(979\) −0.469272 −0.0149980
\(980\) − 4.94669i − 0.158016i
\(981\) − 33.3708i − 1.06545i
\(982\) 10.2104i 0.325827i
\(983\) 26.4277i 0.842914i 0.906848 + 0.421457i \(0.138481\pi\)
−0.906848 + 0.421457i \(0.861519\pi\)
\(984\) 6.24698 0.199146
\(985\) −13.7762 −0.438947
\(986\) 12.0609i 0.384096i
\(987\) −33.4570 −1.06495
\(988\) 0 0
\(989\) 44.5410 1.41632
\(990\) 0.633227i 0.0201253i
\(991\) −18.2519 −0.579790 −0.289895 0.957059i \(-0.593620\pi\)
−0.289895 + 0.957059i \(0.593620\pi\)
\(992\) −4.69438 −0.149047
\(993\) 35.0352i 1.11181i
\(994\) 5.98436i 0.189812i
\(995\) − 2.53270i − 0.0802921i
\(996\) − 24.9089i − 0.789270i
\(997\) −9.13634 −0.289351 −0.144675 0.989479i \(-0.546214\pi\)
−0.144675 + 0.989479i \(0.546214\pi\)
\(998\) −3.13991 −0.0993922
\(999\) − 25.9418i − 0.820762i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.d.l.1351.11 12
13.2 odd 12 1690.2.e.u.191.2 12
13.3 even 3 1690.2.l.n.1161.5 24
13.4 even 6 1690.2.l.n.361.5 24
13.5 odd 4 1690.2.a.w.1.5 yes 6
13.6 odd 12 1690.2.e.u.991.2 12
13.7 odd 12 1690.2.e.v.991.2 12
13.8 odd 4 1690.2.a.v.1.5 6
13.9 even 3 1690.2.l.n.361.11 24
13.10 even 6 1690.2.l.n.1161.11 24
13.11 odd 12 1690.2.e.v.191.2 12
13.12 even 2 inner 1690.2.d.l.1351.5 12
65.34 odd 4 8450.2.a.cq.1.2 6
65.44 odd 4 8450.2.a.cp.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.v.1.5 6 13.8 odd 4
1690.2.a.w.1.5 yes 6 13.5 odd 4
1690.2.d.l.1351.5 12 13.12 even 2 inner
1690.2.d.l.1351.11 12 1.1 even 1 trivial
1690.2.e.u.191.2 12 13.2 odd 12
1690.2.e.u.991.2 12 13.6 odd 12
1690.2.e.v.191.2 12 13.11 odd 12
1690.2.e.v.991.2 12 13.7 odd 12
1690.2.l.n.361.5 24 13.4 even 6
1690.2.l.n.361.11 24 13.9 even 3
1690.2.l.n.1161.5 24 13.3 even 3
1690.2.l.n.1161.11 24 13.10 even 6
8450.2.a.cp.1.2 6 65.44 odd 4
8450.2.a.cq.1.2 6 65.34 odd 4