Properties

Label 1690.2.b.g.339.8
Level $1690$
Weight $2$
Character 1690.339
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(339,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.339"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,-18,0,14,0,0,-16,2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.8
Root \(0.0982708i\) of defining polynomial
Character \(\chi\) \(=\) 1690.339
Dual form 1690.2.b.g.339.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +3.06821i q^{3} -1.00000 q^{4} +(-2.23031 - 0.160405i) q^{5} +3.06821 q^{6} -3.06611i q^{7} +1.00000i q^{8} -6.41393 q^{9} +(-0.160405 + 2.23031i) q^{10} +5.86077 q^{11} -3.06821i q^{12} -3.06611 q^{14} +(0.492158 - 6.84306i) q^{15} +1.00000 q^{16} +3.26418i q^{17} +6.41393i q^{18} +0.146777 q^{19} +(2.23031 + 0.160405i) q^{20} +9.40747 q^{21} -5.86077i q^{22} +0.0169460i q^{23} -3.06821 q^{24} +(4.94854 + 0.715507i) q^{25} -10.4747i q^{27} +3.06611i q^{28} +2.35939 q^{29} +(-6.84306 - 0.492158i) q^{30} -5.33352 q^{31} -1.00000i q^{32} +17.9821i q^{33} +3.26418 q^{34} +(-0.491820 + 6.83836i) q^{35} +6.41393 q^{36} +10.2495i q^{37} -0.146777i q^{38} +(0.160405 - 2.23031i) q^{40} +2.25139 q^{41} -9.40747i q^{42} +6.21583i q^{43} -5.86077 q^{44} +(14.3050 + 1.02883i) q^{45} +0.0169460 q^{46} -4.28931i q^{47} +3.06821i q^{48} -2.40101 q^{49} +(0.715507 - 4.94854i) q^{50} -10.0152 q^{51} +5.54859i q^{53} -10.4747 q^{54} +(-13.0713 - 0.940099i) q^{55} +3.06611 q^{56} +0.450342i q^{57} -2.35939i q^{58} +11.2873 q^{59} +(-0.492158 + 6.84306i) q^{60} -4.21282 q^{61} +5.33352i q^{62} +19.6658i q^{63} -1.00000 q^{64} +17.9821 q^{66} +9.43931i q^{67} -3.26418i q^{68} -0.0519941 q^{69} +(6.83836 + 0.491820i) q^{70} -11.2140 q^{71} -6.41393i q^{72} -3.17785i q^{73} +10.2495 q^{74} +(-2.19533 + 15.1832i) q^{75} -0.146777 q^{76} -17.9697i q^{77} -4.50128 q^{79} +(-2.23031 - 0.160405i) q^{80} +12.8967 q^{81} -2.25139i q^{82} -1.11696i q^{83} -9.40747 q^{84} +(0.523593 - 7.28013i) q^{85} +6.21583 q^{86} +7.23910i q^{87} +5.86077i q^{88} -7.13294 q^{89} +(1.02883 - 14.3050i) q^{90} -0.0169460i q^{92} -16.3644i q^{93} -4.28931 q^{94} +(-0.327357 - 0.0235438i) q^{95} +3.06821 q^{96} +10.0240i q^{97} +2.40101i q^{98} -37.5905 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{4} + 14 q^{6} - 16 q^{9} + 2 q^{10} + 8 q^{11} - 2 q^{14} + 8 q^{15} + 18 q^{16} - 12 q^{19} + 16 q^{21} - 14 q^{24} + 22 q^{25} - 30 q^{29} - 14 q^{30} - 12 q^{31} - 24 q^{34} - 4 q^{35} + 16 q^{36}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 3.06821i 1.77143i 0.464226 + 0.885717i \(0.346332\pi\)
−0.464226 + 0.885717i \(0.653668\pi\)
\(4\) −1.00000 −0.500000
\(5\) −2.23031 0.160405i −0.997424 0.0717355i
\(6\) 3.06821 1.25259
\(7\) 3.06611i 1.15888i −0.815015 0.579440i \(-0.803271\pi\)
0.815015 0.579440i \(-0.196729\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −6.41393 −2.13798
\(10\) −0.160405 + 2.23031i −0.0507247 + 0.705285i
\(11\) 5.86077 1.76709 0.883544 0.468348i \(-0.155151\pi\)
0.883544 + 0.468348i \(0.155151\pi\)
\(12\) 3.06821i 0.885717i
\(13\) 0 0
\(14\) −3.06611 −0.819451
\(15\) 0.492158 6.84306i 0.127075 1.76687i
\(16\) 1.00000 0.250000
\(17\) 3.26418i 0.791680i 0.918319 + 0.395840i \(0.129547\pi\)
−0.918319 + 0.395840i \(0.870453\pi\)
\(18\) 6.41393i 1.51178i
\(19\) 0.146777 0.0336729 0.0168365 0.999858i \(-0.494641\pi\)
0.0168365 + 0.999858i \(0.494641\pi\)
\(20\) 2.23031 + 0.160405i 0.498712 + 0.0358678i
\(21\) 9.40747 2.05288
\(22\) 5.86077i 1.24952i
\(23\) 0.0169460i 0.00353349i 0.999998 + 0.00176675i \(0.000562373\pi\)
−0.999998 + 0.00176675i \(0.999438\pi\)
\(24\) −3.06821 −0.626296
\(25\) 4.94854 + 0.715507i 0.989708 + 0.143101i
\(26\) 0 0
\(27\) 10.4747i 2.01585i
\(28\) 3.06611i 0.579440i
\(29\) 2.35939 0.438127 0.219064 0.975711i \(-0.429700\pi\)
0.219064 + 0.975711i \(0.429700\pi\)
\(30\) −6.84306 0.492158i −1.24937 0.0898554i
\(31\) −5.33352 −0.957929 −0.478965 0.877834i \(-0.658988\pi\)
−0.478965 + 0.877834i \(0.658988\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 17.9821i 3.13028i
\(34\) 3.26418 0.559802
\(35\) −0.491820 + 6.83836i −0.0831328 + 1.15589i
\(36\) 6.41393 1.06899
\(37\) 10.2495i 1.68501i 0.538692 + 0.842503i \(0.318919\pi\)
−0.538692 + 0.842503i \(0.681081\pi\)
\(38\) 0.146777i 0.0238103i
\(39\) 0 0
\(40\) 0.160405 2.23031i 0.0253623 0.352643i
\(41\) 2.25139 0.351608 0.175804 0.984425i \(-0.443748\pi\)
0.175804 + 0.984425i \(0.443748\pi\)
\(42\) 9.40747i 1.45160i
\(43\) 6.21583i 0.947905i 0.880550 + 0.473952i \(0.157173\pi\)
−0.880550 + 0.473952i \(0.842827\pi\)
\(44\) −5.86077 −0.883544
\(45\) 14.3050 + 1.02883i 2.13247 + 0.153369i
\(46\) 0.0169460 0.00249856
\(47\) 4.28931i 0.625660i −0.949809 0.312830i \(-0.898723\pi\)
0.949809 0.312830i \(-0.101277\pi\)
\(48\) 3.06821i 0.442858i
\(49\) −2.40101 −0.343001
\(50\) 0.715507 4.94854i 0.101188 0.699829i
\(51\) −10.0152 −1.40241
\(52\) 0 0
\(53\) 5.54859i 0.762158i 0.924543 + 0.381079i \(0.124447\pi\)
−0.924543 + 0.381079i \(0.875553\pi\)
\(54\) −10.4747 −1.42542
\(55\) −13.0713 0.940099i −1.76254 0.126763i
\(56\) 3.06611 0.409726
\(57\) 0.450342i 0.0596493i
\(58\) 2.35939i 0.309803i
\(59\) 11.2873 1.46948 0.734740 0.678349i \(-0.237304\pi\)
0.734740 + 0.678349i \(0.237304\pi\)
\(60\) −0.492158 + 6.84306i −0.0635373 + 0.883435i
\(61\) −4.21282 −0.539396 −0.269698 0.962945i \(-0.586924\pi\)
−0.269698 + 0.962945i \(0.586924\pi\)
\(62\) 5.33352i 0.677358i
\(63\) 19.6658i 2.47766i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 17.9821 2.21344
\(67\) 9.43931i 1.15320i 0.817028 + 0.576598i \(0.195620\pi\)
−0.817028 + 0.576598i \(0.804380\pi\)
\(68\) 3.26418i 0.395840i
\(69\) −0.0519941 −0.00625935
\(70\) 6.83836 + 0.491820i 0.817340 + 0.0587838i
\(71\) −11.2140 −1.33086 −0.665429 0.746461i \(-0.731751\pi\)
−0.665429 + 0.746461i \(0.731751\pi\)
\(72\) 6.41393i 0.755889i
\(73\) 3.17785i 0.371939i −0.982556 0.185970i \(-0.940457\pi\)
0.982556 0.185970i \(-0.0595426\pi\)
\(74\) 10.2495 1.19148
\(75\) −2.19533 + 15.1832i −0.253495 + 1.75320i
\(76\) −0.146777 −0.0168365
\(77\) 17.9697i 2.04784i
\(78\) 0 0
\(79\) −4.50128 −0.506433 −0.253217 0.967410i \(-0.581489\pi\)
−0.253217 + 0.967410i \(0.581489\pi\)
\(80\) −2.23031 0.160405i −0.249356 0.0179339i
\(81\) 12.8967 1.43297
\(82\) 2.25139i 0.248624i
\(83\) 1.11696i 0.122602i −0.998119 0.0613011i \(-0.980475\pi\)
0.998119 0.0613011i \(-0.0195250\pi\)
\(84\) −9.40747 −1.02644
\(85\) 0.523593 7.28013i 0.0567916 0.789640i
\(86\) 6.21583 0.670270
\(87\) 7.23910i 0.776113i
\(88\) 5.86077i 0.624760i
\(89\) −7.13294 −0.756090 −0.378045 0.925787i \(-0.623404\pi\)
−0.378045 + 0.925787i \(0.623404\pi\)
\(90\) 1.02883 14.3050i 0.108448 1.50788i
\(91\) 0 0
\(92\) 0.0169460i 0.00176675i
\(93\) 16.3644i 1.69691i
\(94\) −4.28931 −0.442409
\(95\) −0.327357 0.0235438i −0.0335862 0.00241554i
\(96\) 3.06821 0.313148
\(97\) 10.0240i 1.01778i 0.860831 + 0.508892i \(0.169945\pi\)
−0.860831 + 0.508892i \(0.830055\pi\)
\(98\) 2.40101i 0.242538i
\(99\) −37.5905 −3.77799
\(100\) −4.94854 0.715507i −0.494854 0.0715507i
\(101\) −11.3356 −1.12794 −0.563968 0.825796i \(-0.690726\pi\)
−0.563968 + 0.825796i \(0.690726\pi\)
\(102\) 10.0152i 0.991653i
\(103\) 12.1963i 1.20173i 0.799349 + 0.600866i \(0.205178\pi\)
−0.799349 + 0.600866i \(0.794822\pi\)
\(104\) 0 0
\(105\) −20.9815 1.50901i −2.04759 0.147264i
\(106\) 5.54859 0.538927
\(107\) 8.60404i 0.831784i 0.909414 + 0.415892i \(0.136531\pi\)
−0.909414 + 0.415892i \(0.863469\pi\)
\(108\) 10.4747i 1.00792i
\(109\) 16.5382 1.58407 0.792035 0.610475i \(-0.209021\pi\)
0.792035 + 0.610475i \(0.209021\pi\)
\(110\) −0.940099 + 13.0713i −0.0896349 + 1.24630i
\(111\) −31.4476 −2.98487
\(112\) 3.06611i 0.289720i
\(113\) 4.79844i 0.451400i 0.974197 + 0.225700i \(0.0724668\pi\)
−0.974197 + 0.225700i \(0.927533\pi\)
\(114\) 0.450342 0.0421784
\(115\) 0.00271824 0.0377949i 0.000253477 0.00352439i
\(116\) −2.35939 −0.219064
\(117\) 0 0
\(118\) 11.2873i 1.03908i
\(119\) 10.0083 0.917462
\(120\) 6.84306 + 0.492158i 0.624683 + 0.0449277i
\(121\) 23.3486 2.12260
\(122\) 4.21282i 0.381410i
\(123\) 6.90773i 0.622849i
\(124\) 5.33352 0.478965
\(125\) −10.9220 2.38957i −0.976893 0.213730i
\(126\) 19.6658 1.75197
\(127\) 10.1167i 0.897711i 0.893604 + 0.448855i \(0.148168\pi\)
−0.893604 + 0.448855i \(0.851832\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −19.0715 −1.67915
\(130\) 0 0
\(131\) 14.8793 1.30001 0.650006 0.759929i \(-0.274766\pi\)
0.650006 + 0.759929i \(0.274766\pi\)
\(132\) 17.9821i 1.56514i
\(133\) 0.450033i 0.0390228i
\(134\) 9.43931 0.815432
\(135\) −1.68019 + 23.3617i −0.144608 + 2.01066i
\(136\) −3.26418 −0.279901
\(137\) 19.1887i 1.63940i 0.572792 + 0.819701i \(0.305860\pi\)
−0.572792 + 0.819701i \(0.694140\pi\)
\(138\) 0.0519941i 0.00442603i
\(139\) 5.83295 0.494745 0.247372 0.968921i \(-0.420433\pi\)
0.247372 + 0.968921i \(0.420433\pi\)
\(140\) 0.491820 6.83836i 0.0415664 0.577947i
\(141\) 13.1605 1.10832
\(142\) 11.2140i 0.941058i
\(143\) 0 0
\(144\) −6.41393 −0.534494
\(145\) −5.26216 0.378459i −0.436998 0.0314293i
\(146\) −3.17785 −0.263001
\(147\) 7.36680i 0.607603i
\(148\) 10.2495i 0.842503i
\(149\) −3.08843 −0.253014 −0.126507 0.991966i \(-0.540377\pi\)
−0.126507 + 0.991966i \(0.540377\pi\)
\(150\) 15.1832 + 2.19533i 1.23970 + 0.179248i
\(151\) 7.40695 0.602769 0.301385 0.953503i \(-0.402551\pi\)
0.301385 + 0.953503i \(0.402551\pi\)
\(152\) 0.146777i 0.0119052i
\(153\) 20.9362i 1.69259i
\(154\) −17.9697 −1.44804
\(155\) 11.8954 + 0.855526i 0.955461 + 0.0687175i
\(156\) 0 0
\(157\) 0.979363i 0.0781617i −0.999236 0.0390808i \(-0.987557\pi\)
0.999236 0.0390808i \(-0.0124430\pi\)
\(158\) 4.50128i 0.358102i
\(159\) −17.0243 −1.35011
\(160\) −0.160405 + 2.23031i −0.0126812 + 0.176321i
\(161\) 0.0519584 0.00409489
\(162\) 12.8967i 1.01326i
\(163\) 3.39574i 0.265975i −0.991118 0.132987i \(-0.957543\pi\)
0.991118 0.132987i \(-0.0424570\pi\)
\(164\) −2.25139 −0.175804
\(165\) 2.88442 40.1056i 0.224552 3.12221i
\(166\) −1.11696 −0.0866929
\(167\) 20.2181i 1.56453i −0.622949 0.782263i \(-0.714066\pi\)
0.622949 0.782263i \(-0.285934\pi\)
\(168\) 9.40747i 0.725802i
\(169\) 0 0
\(170\) −7.28013 0.523593i −0.558360 0.0401577i
\(171\) −0.941416 −0.0719919
\(172\) 6.21583i 0.473952i
\(173\) 16.7420i 1.27287i 0.771331 + 0.636434i \(0.219591\pi\)
−0.771331 + 0.636434i \(0.780409\pi\)
\(174\) 7.23910 0.548795
\(175\) 2.19382 15.1727i 0.165837 1.14695i
\(176\) 5.86077 0.441772
\(177\) 34.6318i 2.60308i
\(178\) 7.13294i 0.534637i
\(179\) −9.83274 −0.734934 −0.367467 0.930037i \(-0.619775\pi\)
−0.367467 + 0.930037i \(0.619775\pi\)
\(180\) −14.3050 1.02883i −1.06623 0.0766844i
\(181\) −0.443661 −0.0329771 −0.0164885 0.999864i \(-0.505249\pi\)
−0.0164885 + 0.999864i \(0.505249\pi\)
\(182\) 0 0
\(183\) 12.9258i 0.955504i
\(184\) −0.0169460 −0.00124928
\(185\) 1.64407 22.8595i 0.120875 1.68066i
\(186\) −16.3644 −1.19989
\(187\) 19.1306i 1.39897i
\(188\) 4.28931i 0.312830i
\(189\) −32.1164 −2.33613
\(190\) −0.0235438 + 0.327357i −0.00170805 + 0.0237490i
\(191\) −17.5614 −1.27070 −0.635350 0.772224i \(-0.719144\pi\)
−0.635350 + 0.772224i \(0.719144\pi\)
\(192\) 3.06821i 0.221429i
\(193\) 0.105639i 0.00760410i 0.999993 + 0.00380205i \(0.00121023\pi\)
−0.999993 + 0.00380205i \(0.998790\pi\)
\(194\) 10.0240 0.719681
\(195\) 0 0
\(196\) 2.40101 0.171501
\(197\) 3.17264i 0.226041i 0.993593 + 0.113021i \(0.0360526\pi\)
−0.993593 + 0.113021i \(0.963947\pi\)
\(198\) 37.5905i 2.67144i
\(199\) 11.9745 0.848852 0.424426 0.905463i \(-0.360476\pi\)
0.424426 + 0.905463i \(0.360476\pi\)
\(200\) −0.715507 + 4.94854i −0.0505940 + 0.349915i
\(201\) −28.9618 −2.04281
\(202\) 11.3356i 0.797572i
\(203\) 7.23413i 0.507736i
\(204\) 10.0152 0.701204
\(205\) −5.02128 0.361135i −0.350702 0.0252228i
\(206\) 12.1963 0.849753
\(207\) 0.108691i 0.00755453i
\(208\) 0 0
\(209\) 0.860225 0.0595030
\(210\) −1.50901 + 20.9815i −0.104132 + 1.44786i
\(211\) 24.2859 1.67191 0.835955 0.548798i \(-0.184914\pi\)
0.835955 + 0.548798i \(0.184914\pi\)
\(212\) 5.54859i 0.381079i
\(213\) 34.4070i 2.35753i
\(214\) 8.60404 0.588160
\(215\) 0.997053 13.8632i 0.0679984 0.945463i
\(216\) 10.4747 0.712710
\(217\) 16.3532i 1.11012i
\(218\) 16.5382i 1.12011i
\(219\) 9.75032 0.658865
\(220\) 13.0713 + 0.940099i 0.881268 + 0.0633815i
\(221\) 0 0
\(222\) 31.4476i 2.11063i
\(223\) 2.51878i 0.168670i −0.996437 0.0843349i \(-0.973123\pi\)
0.996437 0.0843349i \(-0.0268766\pi\)
\(224\) −3.06611 −0.204863
\(225\) −31.7396 4.58921i −2.11597 0.305947i
\(226\) 4.79844 0.319188
\(227\) 19.9429i 1.32365i −0.749656 0.661827i \(-0.769781\pi\)
0.749656 0.661827i \(-0.230219\pi\)
\(228\) 0.450342i 0.0298247i
\(229\) 8.36964 0.553081 0.276541 0.961002i \(-0.410812\pi\)
0.276541 + 0.961002i \(0.410812\pi\)
\(230\) −0.0377949 0.00271824i −0.00249212 0.000179235i
\(231\) 55.1350 3.62761
\(232\) 2.35939i 0.154901i
\(233\) 21.9090i 1.43531i −0.696399 0.717654i \(-0.745216\pi\)
0.696399 0.717654i \(-0.254784\pi\)
\(234\) 0 0
\(235\) −0.688029 + 9.56648i −0.0448821 + 0.624048i
\(236\) −11.2873 −0.734740
\(237\) 13.8109i 0.897113i
\(238\) 10.0083i 0.648743i
\(239\) 5.67861 0.367319 0.183659 0.982990i \(-0.441206\pi\)
0.183659 + 0.982990i \(0.441206\pi\)
\(240\) 0.492158 6.84306i 0.0317687 0.441717i
\(241\) 20.3442 1.31049 0.655243 0.755419i \(-0.272566\pi\)
0.655243 + 0.755419i \(0.272566\pi\)
\(242\) 23.3486i 1.50090i
\(243\) 8.14581i 0.522554i
\(244\) 4.21282 0.269698
\(245\) 5.35498 + 0.385135i 0.342117 + 0.0246054i
\(246\) 6.90773 0.440421
\(247\) 0 0
\(248\) 5.33352i 0.338679i
\(249\) 3.42707 0.217182
\(250\) −2.38957 + 10.9220i −0.151130 + 0.690768i
\(251\) 4.57329 0.288664 0.144332 0.989529i \(-0.453897\pi\)
0.144332 + 0.989529i \(0.453897\pi\)
\(252\) 19.6658i 1.23883i
\(253\) 0.0993168i 0.00624399i
\(254\) 10.1167 0.634777
\(255\) 22.3370 + 1.60649i 1.39880 + 0.100603i
\(256\) 1.00000 0.0625000
\(257\) 12.0638i 0.752519i 0.926514 + 0.376259i \(0.122790\pi\)
−0.926514 + 0.376259i \(0.877210\pi\)
\(258\) 19.0715i 1.18734i
\(259\) 31.4260 1.95272
\(260\) 0 0
\(261\) −15.1329 −0.936705
\(262\) 14.8793i 0.919247i
\(263\) 24.1283i 1.48781i 0.668283 + 0.743907i \(0.267030\pi\)
−0.668283 + 0.743907i \(0.732970\pi\)
\(264\) −17.9821 −1.10672
\(265\) 0.890024 12.3751i 0.0546738 0.760194i
\(266\) −0.450033 −0.0275933
\(267\) 21.8854i 1.33936i
\(268\) 9.43931i 0.576598i
\(269\) 14.5369 0.886333 0.443166 0.896439i \(-0.353855\pi\)
0.443166 + 0.896439i \(0.353855\pi\)
\(270\) 23.3617 + 1.68019i 1.42175 + 0.102253i
\(271\) −1.41894 −0.0861947 −0.0430973 0.999071i \(-0.513723\pi\)
−0.0430973 + 0.999071i \(0.513723\pi\)
\(272\) 3.26418i 0.197920i
\(273\) 0 0
\(274\) 19.1887 1.15923
\(275\) 29.0022 + 4.19342i 1.74890 + 0.252873i
\(276\) 0.0519941 0.00312967
\(277\) 22.1610i 1.33152i −0.746164 0.665762i \(-0.768107\pi\)
0.746164 0.665762i \(-0.231893\pi\)
\(278\) 5.83295i 0.349837i
\(279\) 34.2088 2.04803
\(280\) −6.83836 0.491820i −0.408670 0.0293919i
\(281\) 11.2300 0.669924 0.334962 0.942232i \(-0.391276\pi\)
0.334962 + 0.942232i \(0.391276\pi\)
\(282\) 13.1605i 0.783698i
\(283\) 16.4081i 0.975362i 0.873022 + 0.487681i \(0.162157\pi\)
−0.873022 + 0.487681i \(0.837843\pi\)
\(284\) 11.2140 0.665429
\(285\) 0.0722374 1.00440i 0.00427897 0.0594956i
\(286\) 0 0
\(287\) 6.90299i 0.407471i
\(288\) 6.41393i 0.377944i
\(289\) 6.34512 0.373243
\(290\) −0.378459 + 5.26216i −0.0222239 + 0.309004i
\(291\) −30.7558 −1.80294
\(292\) 3.17785i 0.185970i
\(293\) 24.5220i 1.43259i −0.697797 0.716296i \(-0.745836\pi\)
0.697797 0.716296i \(-0.254164\pi\)
\(294\) −7.36680 −0.429640
\(295\) −25.1741 1.81054i −1.46569 0.105414i
\(296\) −10.2495 −0.595739
\(297\) 61.3895i 3.56218i
\(298\) 3.08843i 0.178908i
\(299\) 0 0
\(300\) 2.19533 15.1832i 0.126747 0.876601i
\(301\) 19.0584 1.09851
\(302\) 7.40695i 0.426222i
\(303\) 34.7801i 1.99806i
\(304\) 0.146777 0.00841823
\(305\) 9.39587 + 0.675759i 0.538006 + 0.0386938i
\(306\) −20.9362 −1.19684
\(307\) 15.4206i 0.880100i 0.897973 + 0.440050i \(0.145039\pi\)
−0.897973 + 0.440050i \(0.854961\pi\)
\(308\) 17.9697i 1.02392i
\(309\) −37.4207 −2.12879
\(310\) 0.855526 11.8954i 0.0485906 0.675613i
\(311\) 5.01162 0.284183 0.142091 0.989854i \(-0.454617\pi\)
0.142091 + 0.989854i \(0.454617\pi\)
\(312\) 0 0
\(313\) 30.6035i 1.72981i 0.501936 + 0.864905i \(0.332621\pi\)
−0.501936 + 0.864905i \(0.667379\pi\)
\(314\) −0.979363 −0.0552687
\(315\) 3.15450 43.8607i 0.177736 2.47127i
\(316\) 4.50128 0.253217
\(317\) 2.06303i 0.115871i 0.998320 + 0.0579357i \(0.0184518\pi\)
−0.998320 + 0.0579357i \(0.981548\pi\)
\(318\) 17.0243i 0.954673i
\(319\) 13.8278 0.774209
\(320\) 2.23031 + 0.160405i 0.124678 + 0.00896694i
\(321\) −26.3990 −1.47345
\(322\) 0.0519584i 0.00289553i
\(323\) 0.479106i 0.0266582i
\(324\) −12.8967 −0.716483
\(325\) 0 0
\(326\) −3.39574 −0.188073
\(327\) 50.7427i 2.80608i
\(328\) 2.25139i 0.124312i
\(329\) −13.1515 −0.725065
\(330\) −40.1056 2.88442i −2.20774 0.158782i
\(331\) 32.7988 1.80279 0.901394 0.433000i \(-0.142545\pi\)
0.901394 + 0.433000i \(0.142545\pi\)
\(332\) 1.11696i 0.0613011i
\(333\) 65.7395i 3.60250i
\(334\) −20.2181 −1.10629
\(335\) 1.51412 21.0526i 0.0827251 1.15022i
\(336\) 9.40747 0.513219
\(337\) 1.08781i 0.0592569i −0.999561 0.0296284i \(-0.990568\pi\)
0.999561 0.0296284i \(-0.00943241\pi\)
\(338\) 0 0
\(339\) −14.7226 −0.799624
\(340\) −0.523593 + 7.28013i −0.0283958 + 0.394820i
\(341\) −31.2585 −1.69274
\(342\) 0.941416i 0.0509059i
\(343\) 14.1010i 0.761382i
\(344\) −6.21583 −0.335135
\(345\) 0.115963 + 0.00834013i 0.00624322 + 0.000449018i
\(346\) 16.7420 0.900053
\(347\) 15.7820i 0.847223i −0.905844 0.423612i \(-0.860762\pi\)
0.905844 0.423612i \(-0.139238\pi\)
\(348\) 7.23910i 0.388056i
\(349\) 5.67847 0.303962 0.151981 0.988383i \(-0.451435\pi\)
0.151981 + 0.988383i \(0.451435\pi\)
\(350\) −15.1727 2.19382i −0.811018 0.117265i
\(351\) 0 0
\(352\) 5.86077i 0.312380i
\(353\) 5.40523i 0.287692i −0.989600 0.143846i \(-0.954053\pi\)
0.989600 0.143846i \(-0.0459469\pi\)
\(354\) 34.6318 1.84066
\(355\) 25.0107 + 1.79879i 1.32743 + 0.0954698i
\(356\) 7.13294 0.378045
\(357\) 30.7077i 1.62522i
\(358\) 9.83274i 0.519677i
\(359\) 29.7756 1.57150 0.785749 0.618546i \(-0.212278\pi\)
0.785749 + 0.618546i \(0.212278\pi\)
\(360\) −1.02883 + 14.3050i −0.0542241 + 0.753941i
\(361\) −18.9785 −0.998866
\(362\) 0.443661i 0.0233183i
\(363\) 71.6384i 3.76004i
\(364\) 0 0
\(365\) −0.509744 + 7.08758i −0.0266812 + 0.370981i
\(366\) −12.9258 −0.675643
\(367\) 8.42416i 0.439738i −0.975529 0.219869i \(-0.929437\pi\)
0.975529 0.219869i \(-0.0705629\pi\)
\(368\) 0.0169460i 0.000883374i
\(369\) −14.4402 −0.751729
\(370\) −22.8595 1.64407i −1.18841 0.0854713i
\(371\) 17.0126 0.883249
\(372\) 16.3644i 0.848454i
\(373\) 7.17141i 0.371321i −0.982614 0.185661i \(-0.940557\pi\)
0.982614 0.185661i \(-0.0594425\pi\)
\(374\) 19.1306 0.989220
\(375\) 7.33172 33.5110i 0.378608 1.73050i
\(376\) 4.28931 0.221204
\(377\) 0 0
\(378\) 32.1164i 1.65189i
\(379\) −29.1901 −1.49940 −0.749698 0.661780i \(-0.769801\pi\)
−0.749698 + 0.661780i \(0.769801\pi\)
\(380\) 0.327357 + 0.0235438i 0.0167931 + 0.00120777i
\(381\) −31.0401 −1.59023
\(382\) 17.5614i 0.898521i
\(383\) 14.8064i 0.756573i −0.925689 0.378286i \(-0.876513\pi\)
0.925689 0.378286i \(-0.123487\pi\)
\(384\) −3.06821 −0.156574
\(385\) −2.88244 + 40.0780i −0.146903 + 2.04257i
\(386\) 0.105639 0.00537691
\(387\) 39.8679i 2.02660i
\(388\) 10.0240i 0.508892i
\(389\) −18.3462 −0.930187 −0.465094 0.885262i \(-0.653979\pi\)
−0.465094 + 0.885262i \(0.653979\pi\)
\(390\) 0 0
\(391\) −0.0553149 −0.00279740
\(392\) 2.40101i 0.121269i
\(393\) 45.6529i 2.30288i
\(394\) 3.17264 0.159835
\(395\) 10.0392 + 0.722030i 0.505129 + 0.0363293i
\(396\) 37.5905 1.88900
\(397\) 12.5269i 0.628709i −0.949306 0.314355i \(-0.898212\pi\)
0.949306 0.314355i \(-0.101788\pi\)
\(398\) 11.9745i 0.600229i
\(399\) 1.38080 0.0691264
\(400\) 4.94854 + 0.715507i 0.247427 + 0.0357754i
\(401\) −17.0328 −0.850579 −0.425289 0.905057i \(-0.639828\pi\)
−0.425289 + 0.905057i \(0.639828\pi\)
\(402\) 28.9618i 1.44448i
\(403\) 0 0
\(404\) 11.3356 0.563968
\(405\) −28.7636 2.06870i −1.42927 0.102795i
\(406\) −7.23413 −0.359024
\(407\) 60.0699i 2.97755i
\(408\) 10.0152i 0.495826i
\(409\) −33.5842 −1.66063 −0.830317 0.557292i \(-0.811840\pi\)
−0.830317 + 0.557292i \(0.811840\pi\)
\(410\) −0.361135 + 5.02128i −0.0178352 + 0.247984i
\(411\) −58.8750 −2.90409
\(412\) 12.1963i 0.600866i
\(413\) 34.6080i 1.70295i
\(414\) −0.108691 −0.00534186
\(415\) −0.179167 + 2.49116i −0.00879494 + 0.122286i
\(416\) 0 0
\(417\) 17.8967i 0.876407i
\(418\) 0.860225i 0.0420750i
\(419\) −32.5784 −1.59156 −0.795779 0.605587i \(-0.792938\pi\)
−0.795779 + 0.605587i \(0.792938\pi\)
\(420\) 20.9815 + 1.50901i 1.02379 + 0.0736321i
\(421\) −0.993580 −0.0484241 −0.0242121 0.999707i \(-0.507708\pi\)
−0.0242121 + 0.999707i \(0.507708\pi\)
\(422\) 24.2859i 1.18222i
\(423\) 27.5113i 1.33765i
\(424\) −5.54859 −0.269463
\(425\) −2.33554 + 16.1529i −0.113291 + 0.783532i
\(426\) −34.4070 −1.66702
\(427\) 12.9169i 0.625095i
\(428\) 8.60404i 0.415892i
\(429\) 0 0
\(430\) −13.8632 0.997053i −0.668543 0.0480822i
\(431\) 18.4175 0.887140 0.443570 0.896240i \(-0.353712\pi\)
0.443570 + 0.896240i \(0.353712\pi\)
\(432\) 10.4747i 0.503962i
\(433\) 15.8335i 0.760908i −0.924800 0.380454i \(-0.875768\pi\)
0.924800 0.380454i \(-0.124232\pi\)
\(434\) 16.3532 0.784976
\(435\) 1.16119 16.1454i 0.0556749 0.774113i
\(436\) −16.5382 −0.792035
\(437\) 0.00248729i 0.000118983i
\(438\) 9.75032i 0.465888i
\(439\) 12.9767 0.619346 0.309673 0.950843i \(-0.399780\pi\)
0.309673 + 0.950843i \(0.399780\pi\)
\(440\) 0.940099 13.0713i 0.0448175 0.623150i
\(441\) 15.3999 0.733328
\(442\) 0 0
\(443\) 31.3998i 1.49185i 0.666030 + 0.745925i \(0.267992\pi\)
−0.666030 + 0.745925i \(0.732008\pi\)
\(444\) 31.4476 1.49244
\(445\) 15.9087 + 1.14416i 0.754143 + 0.0542385i
\(446\) −2.51878 −0.119268
\(447\) 9.47595i 0.448197i
\(448\) 3.06611i 0.144860i
\(449\) −22.2359 −1.04938 −0.524689 0.851294i \(-0.675818\pi\)
−0.524689 + 0.851294i \(0.675818\pi\)
\(450\) −4.58921 + 31.7396i −0.216337 + 1.49622i
\(451\) 13.1949 0.621321
\(452\) 4.79844i 0.225700i
\(453\) 22.7261i 1.06777i
\(454\) −19.9429 −0.935965
\(455\) 0 0
\(456\) −0.450342 −0.0210892
\(457\) 3.80485i 0.177983i −0.996032 0.0889917i \(-0.971636\pi\)
0.996032 0.0889917i \(-0.0283645\pi\)
\(458\) 8.36964i 0.391087i
\(459\) 34.1912 1.59591
\(460\) −0.00271824 + 0.0377949i −0.000126739 + 0.00176220i
\(461\) −23.4158 −1.09058 −0.545292 0.838246i \(-0.683581\pi\)
−0.545292 + 0.838246i \(0.683581\pi\)
\(462\) 55.1350i 2.56511i
\(463\) 28.7667i 1.33690i 0.743756 + 0.668452i \(0.233043\pi\)
−0.743756 + 0.668452i \(0.766957\pi\)
\(464\) 2.35939 0.109532
\(465\) −2.62494 + 36.4976i −0.121729 + 1.69254i
\(466\) −21.9090 −1.01492
\(467\) 27.7874i 1.28585i −0.765929 0.642925i \(-0.777721\pi\)
0.765929 0.642925i \(-0.222279\pi\)
\(468\) 0 0
\(469\) 28.9419 1.33641
\(470\) 9.56648 + 0.688029i 0.441269 + 0.0317364i
\(471\) 3.00489 0.138458
\(472\) 11.2873i 0.519539i
\(473\) 36.4295i 1.67503i
\(474\) −13.8109 −0.634355
\(475\) 0.726331 + 0.105020i 0.0333264 + 0.00481864i
\(476\) −10.0083 −0.458731
\(477\) 35.5883i 1.62947i
\(478\) 5.67861i 0.259734i
\(479\) −25.7075 −1.17460 −0.587302 0.809368i \(-0.699810\pi\)
−0.587302 + 0.809368i \(0.699810\pi\)
\(480\) −6.84306 0.492158i −0.312341 0.0224638i
\(481\) 0 0
\(482\) 20.3442i 0.926653i
\(483\) 0.159419i 0.00725383i
\(484\) −23.3486 −1.06130
\(485\) 1.60791 22.3566i 0.0730112 1.01516i
\(486\) 8.14581 0.369502
\(487\) 21.4220i 0.970722i 0.874314 + 0.485361i \(0.161312\pi\)
−0.874314 + 0.485361i \(0.838688\pi\)
\(488\) 4.21282i 0.190705i
\(489\) 10.4188 0.471157
\(490\) 0.385135 5.35498i 0.0173986 0.241913i
\(491\) −3.97410 −0.179349 −0.0896743 0.995971i \(-0.528583\pi\)
−0.0896743 + 0.995971i \(0.528583\pi\)
\(492\) 6.90773i 0.311425i
\(493\) 7.70146i 0.346856i
\(494\) 0 0
\(495\) 83.8384 + 6.02973i 3.76826 + 0.271016i
\(496\) −5.33352 −0.239482
\(497\) 34.3833i 1.54230i
\(498\) 3.42707i 0.153571i
\(499\) −2.48276 −0.111143 −0.0555717 0.998455i \(-0.517698\pi\)
−0.0555717 + 0.998455i \(0.517698\pi\)
\(500\) 10.9220 + 2.38957i 0.488446 + 0.106865i
\(501\) 62.0335 2.77145
\(502\) 4.57329i 0.204116i
\(503\) 30.2812i 1.35017i 0.737739 + 0.675086i \(0.235894\pi\)
−0.737739 + 0.675086i \(0.764106\pi\)
\(504\) −19.6658 −0.875984
\(505\) 25.2819 + 1.81830i 1.12503 + 0.0809131i
\(506\) 0.0993168 0.00441517
\(507\) 0 0
\(508\) 10.1167i 0.448855i
\(509\) −36.1968 −1.60440 −0.802198 0.597058i \(-0.796336\pi\)
−0.802198 + 0.597058i \(0.796336\pi\)
\(510\) 1.60649 22.3370i 0.0711367 0.989098i
\(511\) −9.74362 −0.431033
\(512\) 1.00000i 0.0441942i
\(513\) 1.53744i 0.0678795i
\(514\) 12.0638 0.532111
\(515\) 1.95635 27.2014i 0.0862069 1.19864i
\(516\) 19.0715 0.839575
\(517\) 25.1387i 1.10560i
\(518\) 31.4260i 1.38078i
\(519\) −51.3679 −2.25480
\(520\) 0 0
\(521\) −29.7160 −1.30188 −0.650942 0.759128i \(-0.725626\pi\)
−0.650942 + 0.759128i \(0.725626\pi\)
\(522\) 15.1329i 0.662351i
\(523\) 34.3388i 1.50153i 0.660569 + 0.750765i \(0.270315\pi\)
−0.660569 + 0.750765i \(0.729685\pi\)
\(524\) −14.8793 −0.650006
\(525\) 46.5532 + 6.73111i 2.03175 + 0.293770i
\(526\) 24.1283 1.05204
\(527\) 17.4096i 0.758373i
\(528\) 17.9821i 0.782570i
\(529\) 22.9997 0.999988
\(530\) −12.3751 0.890024i −0.537538 0.0386602i
\(531\) −72.3958 −3.14171
\(532\) 0.450033i 0.0195114i
\(533\) 0 0
\(534\) −21.8854 −0.947073
\(535\) 1.38014 19.1896i 0.0596684 0.829641i
\(536\) −9.43931 −0.407716
\(537\) 30.1689i 1.30189i
\(538\) 14.5369i 0.626732i
\(539\) −14.0717 −0.606113
\(540\) 1.68019 23.3617i 0.0723040 1.00533i
\(541\) −14.8974 −0.640489 −0.320244 0.947335i \(-0.603765\pi\)
−0.320244 + 0.947335i \(0.603765\pi\)
\(542\) 1.41894i 0.0609488i
\(543\) 1.36125i 0.0584167i
\(544\) 3.26418 0.139951
\(545\) −36.8852 2.65282i −1.57999 0.113634i
\(546\) 0 0
\(547\) 34.0349i 1.45523i −0.685987 0.727614i \(-0.740629\pi\)
0.685987 0.727614i \(-0.259371\pi\)
\(548\) 19.1887i 0.819701i
\(549\) 27.0207 1.15322
\(550\) 4.19342 29.0022i 0.178808 1.23666i
\(551\) 0.346303 0.0147530
\(552\) 0.0519941i 0.00221301i
\(553\) 13.8014i 0.586895i
\(554\) −22.1610 −0.941529
\(555\) 70.1378 + 5.04437i 2.97718 + 0.214122i
\(556\) −5.83295 −0.247372
\(557\) 14.6699i 0.621585i 0.950478 + 0.310792i \(0.100594\pi\)
−0.950478 + 0.310792i \(0.899406\pi\)
\(558\) 34.2088i 1.44818i
\(559\) 0 0
\(560\) −0.491820 + 6.83836i −0.0207832 + 0.288973i
\(561\) −58.6968 −2.47818
\(562\) 11.2300i 0.473708i
\(563\) 15.6720i 0.660495i −0.943894 0.330247i \(-0.892868\pi\)
0.943894 0.330247i \(-0.107132\pi\)
\(564\) −13.1605 −0.554158
\(565\) 0.769697 10.7020i 0.0323814 0.450237i
\(566\) 16.4081 0.689685
\(567\) 39.5426i 1.66063i
\(568\) 11.2140i 0.470529i
\(569\) 5.49378 0.230311 0.115156 0.993347i \(-0.463263\pi\)
0.115156 + 0.993347i \(0.463263\pi\)
\(570\) −1.00440 0.0722374i −0.0420698 0.00302569i
\(571\) −34.7053 −1.45237 −0.726186 0.687498i \(-0.758709\pi\)
−0.726186 + 0.687498i \(0.758709\pi\)
\(572\) 0 0
\(573\) 53.8822i 2.25096i
\(574\) −6.90299 −0.288125
\(575\) −0.0121250 + 0.0838582i −0.000505648 + 0.00349713i
\(576\) 6.41393 0.267247
\(577\) 37.7135i 1.57003i −0.619475 0.785017i \(-0.712654\pi\)
0.619475 0.785017i \(-0.287346\pi\)
\(578\) 6.34512i 0.263922i
\(579\) −0.324124 −0.0134702
\(580\) 5.26216 + 0.378459i 0.218499 + 0.0157146i
\(581\) −3.42472 −0.142081
\(582\) 30.7558i 1.27487i
\(583\) 32.5190i 1.34680i
\(584\) 3.17785 0.131500
\(585\) 0 0
\(586\) −24.5220 −1.01300
\(587\) 31.5460i 1.30204i −0.759059 0.651022i \(-0.774340\pi\)
0.759059 0.651022i \(-0.225660\pi\)
\(588\) 7.36680i 0.303802i
\(589\) −0.782838 −0.0322563
\(590\) −1.81054 + 25.1741i −0.0745388 + 1.03640i
\(591\) −9.73433 −0.400417
\(592\) 10.2495i 0.421251i
\(593\) 34.8672i 1.43182i −0.698191 0.715912i \(-0.746011\pi\)
0.698191 0.715912i \(-0.253989\pi\)
\(594\) −61.3895 −2.51884
\(595\) −22.3216 1.60539i −0.915098 0.0658146i
\(596\) 3.08843 0.126507
\(597\) 36.7404i 1.50368i
\(598\) 0 0
\(599\) 10.4498 0.426969 0.213484 0.976946i \(-0.431519\pi\)
0.213484 + 0.976946i \(0.431519\pi\)
\(600\) −15.1832 2.19533i −0.619850 0.0896239i
\(601\) 16.0656 0.655330 0.327665 0.944794i \(-0.393738\pi\)
0.327665 + 0.944794i \(0.393738\pi\)
\(602\) 19.0584i 0.776762i
\(603\) 60.5431i 2.46550i
\(604\) −7.40695 −0.301385
\(605\) −52.0745 3.74524i −2.11713 0.152266i
\(606\) −34.7801 −1.41285
\(607\) 21.7323i 0.882085i −0.897486 0.441042i \(-0.854609\pi\)
0.897486 0.441042i \(-0.145391\pi\)
\(608\) 0.146777i 0.00595259i
\(609\) 22.1958 0.899421
\(610\) 0.675759 9.39587i 0.0273607 0.380428i
\(611\) 0 0
\(612\) 20.9362i 0.846297i
\(613\) 39.8653i 1.61014i 0.593177 + 0.805072i \(0.297873\pi\)
−0.593177 + 0.805072i \(0.702127\pi\)
\(614\) 15.4206 0.622325
\(615\) 1.10804 15.4064i 0.0446804 0.621245i
\(616\) 17.9697 0.724021
\(617\) 30.0048i 1.20795i −0.797004 0.603974i \(-0.793583\pi\)
0.797004 0.603974i \(-0.206417\pi\)
\(618\) 37.4207i 1.50528i
\(619\) −14.0110 −0.563150 −0.281575 0.959539i \(-0.590857\pi\)
−0.281575 + 0.959539i \(0.590857\pi\)
\(620\) −11.8954 0.855526i −0.477731 0.0343588i
\(621\) 0.177504 0.00712299
\(622\) 5.01162i 0.200948i
\(623\) 21.8704i 0.876218i
\(624\) 0 0
\(625\) 23.9761 + 7.08143i 0.959044 + 0.283257i
\(626\) 30.6035 1.22316
\(627\) 2.63935i 0.105406i
\(628\) 0.979363i 0.0390808i
\(629\) −33.4562 −1.33399
\(630\) −43.8607 3.15450i −1.74745 0.125678i
\(631\) −3.66957 −0.146083 −0.0730416 0.997329i \(-0.523271\pi\)
−0.0730416 + 0.997329i \(0.523271\pi\)
\(632\) 4.50128i 0.179051i
\(633\) 74.5143i 2.96168i
\(634\) 2.06303 0.0819335
\(635\) 1.62277 22.5633i 0.0643977 0.895398i
\(636\) 17.0243 0.675056
\(637\) 0 0
\(638\) 13.8278i 0.547448i
\(639\) 71.9258 2.84534
\(640\) 0.160405 2.23031i 0.00634058 0.0881606i
\(641\) −0.743118 −0.0293514 −0.0146757 0.999892i \(-0.504672\pi\)
−0.0146757 + 0.999892i \(0.504672\pi\)
\(642\) 26.3990i 1.04189i
\(643\) 26.7693i 1.05568i 0.849344 + 0.527839i \(0.176998\pi\)
−0.849344 + 0.527839i \(0.823002\pi\)
\(644\) −0.0519584 −0.00204745
\(645\) 42.5353 + 3.05917i 1.67482 + 0.120455i
\(646\) 0.479106 0.0188502
\(647\) 7.66204i 0.301226i 0.988593 + 0.150613i \(0.0481247\pi\)
−0.988593 + 0.150613i \(0.951875\pi\)
\(648\) 12.8967i 0.506630i
\(649\) 66.1521 2.59670
\(650\) 0 0
\(651\) −50.1749 −1.96651
\(652\) 3.39574i 0.132987i
\(653\) 30.6721i 1.20029i −0.799890 0.600146i \(-0.795109\pi\)
0.799890 0.600146i \(-0.204891\pi\)
\(654\) 50.7427 1.98420
\(655\) −33.1854 2.38672i −1.29666 0.0932570i
\(656\) 2.25139 0.0879019
\(657\) 20.3825i 0.795197i
\(658\) 13.1515i 0.512698i
\(659\) 22.4254 0.873571 0.436785 0.899566i \(-0.356117\pi\)
0.436785 + 0.899566i \(0.356117\pi\)
\(660\) −2.88442 + 40.1056i −0.112276 + 1.56111i
\(661\) −7.48529 −0.291144 −0.145572 0.989348i \(-0.546502\pi\)
−0.145572 + 0.989348i \(0.546502\pi\)
\(662\) 32.7988i 1.27476i
\(663\) 0 0
\(664\) 1.11696 0.0433465
\(665\) −0.0721878 + 1.00371i −0.00279932 + 0.0389223i
\(666\) −65.7395 −2.54735
\(667\) 0.0399823i 0.00154812i
\(668\) 20.2181i 0.782263i
\(669\) 7.72814 0.298787
\(670\) −21.0526 1.51412i −0.813331 0.0584955i
\(671\) −24.6903 −0.953160
\(672\) 9.40747i 0.362901i
\(673\) 6.32528i 0.243822i −0.992541 0.121911i \(-0.961098\pi\)
0.992541 0.121911i \(-0.0389022\pi\)
\(674\) −1.08781 −0.0419010
\(675\) 7.49469 51.8343i 0.288471 1.99510i
\(676\) 0 0
\(677\) 6.94316i 0.266847i 0.991059 + 0.133424i \(0.0425971\pi\)
−0.991059 + 0.133424i \(0.957403\pi\)
\(678\) 14.7226i 0.565420i
\(679\) 30.7347 1.17949
\(680\) 7.28013 + 0.523593i 0.279180 + 0.0200789i
\(681\) 61.1890 2.34477
\(682\) 31.2585i 1.19695i
\(683\) 32.3677i 1.23851i 0.785188 + 0.619257i \(0.212566\pi\)
−0.785188 + 0.619257i \(0.787434\pi\)
\(684\) 0.941416 0.0359959
\(685\) 3.07797 42.7967i 0.117603 1.63518i
\(686\) −14.1010 −0.538379
\(687\) 25.6798i 0.979746i
\(688\) 6.21583i 0.236976i
\(689\) 0 0
\(690\) 0.00834013 0.115963i 0.000317503 0.00441463i
\(691\) −8.94842 −0.340414 −0.170207 0.985408i \(-0.554444\pi\)
−0.170207 + 0.985408i \(0.554444\pi\)
\(692\) 16.7420i 0.636434i
\(693\) 115.257i 4.37824i
\(694\) −15.7820 −0.599077
\(695\) −13.0093 0.935637i −0.493470 0.0354908i
\(696\) −7.23910 −0.274397
\(697\) 7.34893i 0.278361i
\(698\) 5.67847i 0.214933i
\(699\) 67.2216 2.54255
\(700\) −2.19382 + 15.1727i −0.0829186 + 0.573476i
\(701\) 30.3913 1.14786 0.573931 0.818903i \(-0.305418\pi\)
0.573931 + 0.818903i \(0.305418\pi\)
\(702\) 0 0
\(703\) 1.50439i 0.0567390i
\(704\) −5.86077 −0.220886
\(705\) −29.3520 2.11102i −1.10546 0.0795056i
\(706\) −5.40523 −0.203429
\(707\) 34.7562i 1.30714i
\(708\) 34.6318i 1.30154i
\(709\) 15.8024 0.593470 0.296735 0.954960i \(-0.404102\pi\)
0.296735 + 0.954960i \(0.404102\pi\)
\(710\) 1.79879 25.0107i 0.0675073 0.938634i
\(711\) 28.8709 1.08274
\(712\) 7.13294i 0.267318i
\(713\) 0.0903821i 0.00338484i
\(714\) 30.7077 1.14921
\(715\) 0 0
\(716\) 9.83274 0.367467
\(717\) 17.4232i 0.650681i
\(718\) 29.7756i 1.11122i
\(719\) −17.1490 −0.639551 −0.319775 0.947493i \(-0.603607\pi\)
−0.319775 + 0.947493i \(0.603607\pi\)
\(720\) 14.3050 + 1.02883i 0.533117 + 0.0383422i
\(721\) 37.3950 1.39266
\(722\) 18.9785i 0.706305i
\(723\) 62.4203i 2.32144i
\(724\) 0.443661 0.0164885
\(725\) 11.6755 + 1.68816i 0.433618 + 0.0626966i
\(726\) 71.6384 2.65875
\(727\) 26.0357i 0.965612i −0.875727 0.482806i \(-0.839618\pi\)
0.875727 0.482806i \(-0.160382\pi\)
\(728\) 0 0
\(729\) 13.6970 0.507296
\(730\) 7.08758 + 0.509744i 0.262323 + 0.0188665i
\(731\) −20.2896 −0.750437
\(732\) 12.9258i 0.477752i
\(733\) 10.3589i 0.382616i −0.981530 0.191308i \(-0.938727\pi\)
0.981530 0.191308i \(-0.0612729\pi\)
\(734\) −8.42416 −0.310941
\(735\) −1.18168 + 16.4302i −0.0435867 + 0.606038i
\(736\) 0.0169460 0.000624639
\(737\) 55.3216i 2.03780i
\(738\) 14.4402i 0.531552i
\(739\) 13.2485 0.487355 0.243677 0.969856i \(-0.421646\pi\)
0.243677 + 0.969856i \(0.421646\pi\)
\(740\) −1.64407 + 22.8595i −0.0604374 + 0.840332i
\(741\) 0 0
\(742\) 17.0126i 0.624551i
\(743\) 14.4666i 0.530729i −0.964148 0.265365i \(-0.914508\pi\)
0.964148 0.265365i \(-0.0854923\pi\)
\(744\) 16.3644 0.599947
\(745\) 6.88814 + 0.495401i 0.252362 + 0.0181501i
\(746\) −7.17141 −0.262564
\(747\) 7.16410i 0.262121i
\(748\) 19.1306i 0.699484i
\(749\) 26.3809 0.963937
\(750\) −33.5110 7.33172i −1.22365 0.267717i
\(751\) 12.6727 0.462432 0.231216 0.972902i \(-0.425730\pi\)
0.231216 + 0.972902i \(0.425730\pi\)
\(752\) 4.28931i 0.156415i
\(753\) 14.0318i 0.511348i
\(754\) 0 0
\(755\) −16.5198 1.18812i −0.601216 0.0432400i
\(756\) 32.1164 1.16806
\(757\) 8.62881i 0.313619i −0.987629 0.156810i \(-0.949879\pi\)
0.987629 0.156810i \(-0.0501209\pi\)
\(758\) 29.1901i 1.06023i
\(759\) −0.304725 −0.0110608
\(760\) 0.0235438 0.327357i 0.000854024 0.0118745i
\(761\) −0.0205103 −0.000743499 −0.000371749 1.00000i \(-0.500118\pi\)
−0.000371749 1.00000i \(0.500118\pi\)
\(762\) 31.0401i 1.12447i
\(763\) 50.7078i 1.83575i
\(764\) 17.5614 0.635350
\(765\) −3.35828 + 46.6942i −0.121419 + 1.68823i
\(766\) −14.8064 −0.534978
\(767\) 0 0
\(768\) 3.06821i 0.110715i
\(769\) −14.9014 −0.537358 −0.268679 0.963230i \(-0.586587\pi\)
−0.268679 + 0.963230i \(0.586587\pi\)
\(770\) 40.0780 + 2.88244i 1.44431 + 0.103876i
\(771\) −37.0143 −1.33304
\(772\) 0.105639i 0.00380205i
\(773\) 51.9416i 1.86821i −0.357000 0.934105i \(-0.616200\pi\)
0.357000 0.934105i \(-0.383800\pi\)
\(774\) −39.8679 −1.43302
\(775\) −26.3932 3.81617i −0.948070 0.137081i
\(776\) −10.0240 −0.359841
\(777\) 96.4217i 3.45911i
\(778\) 18.3462i 0.657742i
\(779\) 0.330451 0.0118397
\(780\) 0 0
\(781\) −65.7227 −2.35174
\(782\) 0.0553149i 0.00197806i
\(783\) 24.7138i 0.883198i
\(784\) −2.40101 −0.0857503
\(785\) −0.157095 + 2.18428i −0.00560697 + 0.0779603i
\(786\) 45.6529 1.62838
\(787\) 40.4580i 1.44217i 0.692845 + 0.721086i \(0.256357\pi\)
−0.692845 + 0.721086i \(0.743643\pi\)
\(788\) 3.17264i 0.113021i
\(789\) −74.0307 −2.63556
\(790\) 0.722030 10.0392i 0.0256887 0.357180i
\(791\) 14.7125 0.523118
\(792\) 37.5905i 1.33572i
\(793\) 0 0
\(794\) −12.5269 −0.444564
\(795\) 37.9693 + 2.73078i 1.34663 + 0.0968509i
\(796\) −11.9745 −0.424426
\(797\) 33.1779i 1.17522i 0.809143 + 0.587612i \(0.199932\pi\)
−0.809143 + 0.587612i \(0.800068\pi\)
\(798\) 1.38080i 0.0488797i
\(799\) 14.0011 0.495323
\(800\) 0.715507 4.94854i 0.0252970 0.174957i
\(801\) 45.7502 1.61650
\(802\) 17.0328i 0.601450i
\(803\) 18.6246i 0.657249i
\(804\) 28.9618 1.02140
\(805\) −0.115883 0.00833441i −0.00408434 0.000293749i
\(806\) 0 0
\(807\) 44.6024i 1.57008i
\(808\) 11.3356i 0.398786i
\(809\) 33.3426 1.17226 0.586132 0.810216i \(-0.300650\pi\)
0.586132 + 0.810216i \(0.300650\pi\)
\(810\) −2.06870 + 28.7636i −0.0726867 + 1.01065i
\(811\) −18.6578 −0.655162 −0.327581 0.944823i \(-0.606233\pi\)
−0.327581 + 0.944823i \(0.606233\pi\)
\(812\) 7.23413i 0.253868i
\(813\) 4.35362i 0.152688i
\(814\) 60.0699 2.10545
\(815\) −0.544695 + 7.57354i −0.0190798 + 0.265290i
\(816\) −10.0152 −0.350602
\(817\) 0.912339i 0.0319187i
\(818\) 33.5842i 1.17425i
\(819\) 0 0
\(820\) 5.02128 + 0.361135i 0.175351 + 0.0126114i
\(821\) −32.4377 −1.13208 −0.566041 0.824377i \(-0.691526\pi\)
−0.566041 + 0.824377i \(0.691526\pi\)
\(822\) 58.8750i 2.05350i
\(823\) 28.7896i 1.00354i 0.865000 + 0.501772i \(0.167318\pi\)
−0.865000 + 0.501772i \(0.832682\pi\)
\(824\) −12.1963 −0.424877
\(825\) −12.8663 + 88.9850i −0.447947 + 3.09806i
\(826\) −34.6080 −1.20417
\(827\) 5.37264i 0.186825i −0.995627 0.0934124i \(-0.970222\pi\)
0.995627 0.0934124i \(-0.0297775\pi\)
\(828\) 0.108691i 0.00377726i
\(829\) 16.6031 0.576650 0.288325 0.957533i \(-0.406902\pi\)
0.288325 + 0.957533i \(0.406902\pi\)
\(830\) 2.49116 + 0.179167i 0.0864696 + 0.00621896i
\(831\) 67.9946 2.35871
\(832\) 0 0
\(833\) 7.83732i 0.271547i
\(834\) 17.8967 0.619713
\(835\) −3.24310 + 45.0926i −0.112232 + 1.56049i
\(836\) −0.860225 −0.0297515
\(837\) 55.8668i 1.93104i
\(838\) 32.5784i 1.12540i
\(839\) 23.3946 0.807670 0.403835 0.914832i \(-0.367677\pi\)
0.403835 + 0.914832i \(0.367677\pi\)
\(840\) 1.50901 20.9815i 0.0520658 0.723932i
\(841\) −23.4333 −0.808045
\(842\) 0.993580i 0.0342410i
\(843\) 34.4560i 1.18673i
\(844\) −24.2859 −0.835955
\(845\) 0 0
\(846\) 27.5113 0.945859
\(847\) 71.5893i 2.45984i
\(848\) 5.54859i 0.190539i
\(849\) −50.3436 −1.72779
\(850\) 16.1529 + 2.33554i 0.554041 + 0.0801085i
\(851\) −0.173688 −0.00595396
\(852\) 34.4070i 1.17876i
\(853\) 24.2937i 0.831801i −0.909410 0.415901i \(-0.863466\pi\)
0.909410 0.415901i \(-0.136534\pi\)
\(854\) 12.9169 0.442009
\(855\) 2.09965 + 0.151008i 0.0718064 + 0.00516437i
\(856\) −8.60404 −0.294080
\(857\) 13.2496i 0.452599i 0.974058 + 0.226299i \(0.0726627\pi\)
−0.974058 + 0.226299i \(0.927337\pi\)
\(858\) 0 0
\(859\) 25.0581 0.854973 0.427486 0.904022i \(-0.359399\pi\)
0.427486 + 0.904022i \(0.359399\pi\)
\(860\) −0.997053 + 13.8632i −0.0339992 + 0.472731i
\(861\) 21.1798 0.721807
\(862\) 18.4175i 0.627303i
\(863\) 5.39736i 0.183728i 0.995772 + 0.0918641i \(0.0292825\pi\)
−0.995772 + 0.0918641i \(0.970717\pi\)
\(864\) −10.4747 −0.356355
\(865\) 2.68550 37.3397i 0.0913098 1.26959i
\(866\) −15.8335 −0.538044
\(867\) 19.4682i 0.661174i
\(868\) 16.3532i 0.555062i
\(869\) −26.3809 −0.894912
\(870\) −16.1454 1.16119i −0.547381 0.0393681i
\(871\) 0 0
\(872\) 16.5382i 0.560054i
\(873\) 64.2932i 2.17600i
\(874\) 0.00248729 8.41337e−5
\(875\) −7.32669 + 33.4880i −0.247687 + 1.13210i
\(876\) −9.75032 −0.329433
\(877\) 5.51023i 0.186067i −0.995663 0.0930337i \(-0.970344\pi\)
0.995663 0.0930337i \(-0.0296564\pi\)
\(878\) 12.9767i 0.437944i
\(879\) 75.2388 2.53774
\(880\) −13.0713 0.940099i −0.440634 0.0316907i
\(881\) 17.3675 0.585126 0.292563 0.956246i \(-0.405492\pi\)
0.292563 + 0.956246i \(0.405492\pi\)
\(882\) 15.3999i 0.518541i
\(883\) 44.8753i 1.51017i −0.655625 0.755087i \(-0.727595\pi\)
0.655625 0.755087i \(-0.272405\pi\)
\(884\) 0 0
\(885\) 5.55513 77.2395i 0.186734 2.59638i
\(886\) 31.3998 1.05490
\(887\) 48.4709i 1.62749i −0.581219 0.813747i \(-0.697424\pi\)
0.581219 0.813747i \(-0.302576\pi\)
\(888\) 31.4476i 1.05531i
\(889\) 31.0188 1.04034
\(890\) 1.14416 15.9087i 0.0383524 0.533259i
\(891\) 75.5845 2.53218
\(892\) 2.51878i 0.0843349i
\(893\) 0.629571i 0.0210678i
\(894\) −9.47595 −0.316923
\(895\) 21.9300 + 1.57723i 0.733040 + 0.0527209i
\(896\) 3.06611 0.102431
\(897\) 0 0
\(898\) 22.2359i 0.742023i
\(899\) −12.5838 −0.419695
\(900\) 31.7396 + 4.58921i 1.05799 + 0.152974i
\(901\) −18.1116 −0.603385
\(902\) 13.1949i 0.439341i
\(903\) 58.4752i 1.94593i
\(904\) −4.79844 −0.159594
\(905\) 0.989500 + 0.0711657i 0.0328921 + 0.00236563i
\(906\) 22.7261 0.755024
\(907\) 23.2156i 0.770862i 0.922737 + 0.385431i \(0.125947\pi\)
−0.922737 + 0.385431i \(0.874053\pi\)
\(908\) 19.9429i 0.661827i
\(909\) 72.7059 2.41150
\(910\) 0 0
\(911\) 16.1288 0.534370 0.267185 0.963645i \(-0.413907\pi\)
0.267185 + 0.963645i \(0.413907\pi\)
\(912\) 0.450342i 0.0149123i
\(913\) 6.54624i 0.216649i
\(914\) −3.80485 −0.125853
\(915\) −2.07337 + 28.8285i −0.0685436 + 0.953042i
\(916\) −8.36964 −0.276541
\(917\) 45.6215i 1.50656i
\(918\) 34.1912i 1.12848i
\(919\) 34.2809 1.13082 0.565411 0.824809i \(-0.308718\pi\)
0.565411 + 0.824809i \(0.308718\pi\)
\(920\) 0.0377949 + 0.00271824i 0.00124606 + 8.96177e-5i
\(921\) −47.3137 −1.55904
\(922\) 23.4158i 0.771159i
\(923\) 0 0
\(924\) −55.1350 −1.81381
\(925\) −7.33358 + 50.7200i −0.241127 + 1.66766i
\(926\) 28.7667 0.945333
\(927\) 78.2259i 2.56928i
\(928\) 2.35939i 0.0774507i
\(929\) 38.2009 1.25333 0.626666 0.779288i \(-0.284419\pi\)
0.626666 + 0.779288i \(0.284419\pi\)
\(930\) 36.4976 + 2.62494i 1.19680 + 0.0860751i
\(931\) −0.352412 −0.0115498
\(932\) 21.9090i 0.717654i
\(933\) 15.3767i 0.503411i
\(934\) −27.7874 −0.909233
\(935\) 3.06865 42.6671i 0.100356 1.39536i
\(936\) 0 0
\(937\) 48.7978i 1.59416i −0.603876 0.797078i \(-0.706378\pi\)
0.603876 0.797078i \(-0.293622\pi\)
\(938\) 28.9419i 0.944987i
\(939\) −93.8979 −3.06424
\(940\) 0.688029 9.56648i 0.0224410 0.312024i
\(941\) −13.5563 −0.441922 −0.220961 0.975283i \(-0.570919\pi\)
−0.220961 + 0.975283i \(0.570919\pi\)
\(942\) 3.00489i 0.0979048i
\(943\) 0.0381521i 0.00124240i
\(944\) 11.2873 0.367370
\(945\) 71.6295 + 5.15165i 2.33011 + 0.167583i
\(946\) 36.4295 1.18443
\(947\) 18.0780i 0.587456i −0.955889 0.293728i \(-0.905104\pi\)
0.955889 0.293728i \(-0.0948961\pi\)
\(948\) 13.8109i 0.448556i
\(949\) 0 0
\(950\) 0.105020 0.726331i 0.00340729 0.0235653i
\(951\) −6.32982 −0.205259
\(952\) 10.0083i 0.324372i
\(953\) 24.3013i 0.787196i −0.919283 0.393598i \(-0.871230\pi\)
0.919283 0.393598i \(-0.128770\pi\)
\(954\) −35.5883 −1.15221
\(955\) 39.1674 + 2.81695i 1.26743 + 0.0911543i
\(956\) −5.67861 −0.183659
\(957\) 42.4267i 1.37146i
\(958\) 25.7075i 0.830571i
\(959\) 58.8346 1.89987
\(960\) −0.492158 + 6.84306i −0.0158843 + 0.220859i
\(961\) −2.55352 −0.0823718
\(962\) 0 0
\(963\) 55.1857i 1.77833i
\(964\) −20.3442 −0.655243
\(965\) 0.0169452 0.235609i 0.000545484 0.00758451i
\(966\) 0.159419 0.00512923
\(967\) 0.452528i 0.0145523i 0.999974 + 0.00727616i \(0.00231609\pi\)
−0.999974 + 0.00727616i \(0.997684\pi\)
\(968\) 23.3486i 0.750452i
\(969\) −1.47000 −0.0472232
\(970\) −22.3566 1.60791i −0.717827 0.0516267i
\(971\) −36.8572 −1.18280 −0.591402 0.806377i \(-0.701425\pi\)
−0.591402 + 0.806377i \(0.701425\pi\)
\(972\) 8.14581i 0.261277i
\(973\) 17.8844i 0.573349i
\(974\) 21.4220 0.686404
\(975\) 0 0
\(976\) −4.21282 −0.134849
\(977\) 33.3976i 1.06848i −0.845332 0.534242i \(-0.820597\pi\)
0.845332 0.534242i \(-0.179403\pi\)
\(978\) 10.4188i 0.333158i
\(979\) −41.8045 −1.33608
\(980\) −5.35498 0.385135i −0.171059 0.0123027i
\(981\) −106.075 −3.38671
\(982\) 3.97410i 0.126819i
\(983\) 18.0751i 0.576507i −0.957554 0.288253i \(-0.906925\pi\)
0.957554 0.288253i \(-0.0930745\pi\)
\(984\) −6.90773 −0.220211
\(985\) 0.508909 7.07596i 0.0162152 0.225459i
\(986\) 7.70146 0.245265
\(987\) 40.3515i 1.28440i
\(988\) 0 0
\(989\) −0.105334 −0.00334942
\(990\) 6.02973 83.8384i 0.191637 2.66456i
\(991\) 25.8715 0.821834 0.410917 0.911673i \(-0.365209\pi\)
0.410917 + 0.911673i \(0.365209\pi\)
\(992\) 5.33352i 0.169340i
\(993\) 100.634i 3.19352i
\(994\) 34.3833 1.09057
\(995\) −26.7069 1.92078i −0.846665 0.0608928i
\(996\) −3.42707 −0.108591
\(997\) 10.8765i 0.344461i −0.985057 0.172231i \(-0.944903\pi\)
0.985057 0.172231i \(-0.0550975\pi\)
\(998\) 2.48276i 0.0785903i
\(999\) 107.360 3.39672
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.b.g.339.8 yes 18
5.2 odd 4 8450.2.a.da.1.8 9
5.3 odd 4 8450.2.a.ct.1.2 9
5.4 even 2 inner 1690.2.b.g.339.11 yes 18
13.5 odd 4 1690.2.c.g.1689.17 18
13.8 odd 4 1690.2.c.h.1689.17 18
13.12 even 2 1690.2.b.f.339.17 yes 18
65.12 odd 4 8450.2.a.cw.1.8 9
65.34 odd 4 1690.2.c.g.1689.2 18
65.38 odd 4 8450.2.a.cx.1.2 9
65.44 odd 4 1690.2.c.h.1689.2 18
65.64 even 2 1690.2.b.f.339.2 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.2 18 65.64 even 2
1690.2.b.f.339.17 yes 18 13.12 even 2
1690.2.b.g.339.8 yes 18 1.1 even 1 trivial
1690.2.b.g.339.11 yes 18 5.4 even 2 inner
1690.2.c.g.1689.2 18 65.34 odd 4
1690.2.c.g.1689.17 18 13.5 odd 4
1690.2.c.h.1689.2 18 65.44 odd 4
1690.2.c.h.1689.17 18 13.8 odd 4
8450.2.a.ct.1.2 9 5.3 odd 4
8450.2.a.cw.1.8 9 65.12 odd 4
8450.2.a.cx.1.2 9 65.38 odd 4
8450.2.a.da.1.8 9 5.2 odd 4