Properties

Label 1690.2.b.d.339.7
Level $1690$
Weight $2$
Character 1690.339
Analytic conductor $13.495$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(339,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.339"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,0,0,0,-4,6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.303595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.7
Root \(-0.396143 - 1.68614i\) of defining polynomial
Character \(\chi\) \(=\) 1690.339
Dual form 1690.2.b.d.339.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +0.792287i q^{3} -1.00000 q^{4} +(-2.12819 + 0.686141i) q^{5} -0.792287 q^{6} +3.37228i q^{7} -1.00000i q^{8} +2.37228 q^{9} +(-0.686141 - 2.12819i) q^{10} -5.04868 q^{11} -0.792287i q^{12} -3.37228 q^{14} +(-0.543620 - 1.68614i) q^{15} +1.00000 q^{16} -2.67181i q^{17} +2.37228i q^{18} -3.46410 q^{19} +(2.12819 - 0.686141i) q^{20} -2.67181 q^{21} -5.04868i q^{22} +6.63325i q^{23} +0.792287 q^{24} +(4.05842 - 2.92048i) q^{25} +4.25639i q^{27} -3.37228i q^{28} -8.74456 q^{29} +(1.68614 - 0.543620i) q^{30} +3.46410 q^{31} +1.00000i q^{32} -4.00000i q^{33} +2.67181 q^{34} +(-2.31386 - 7.17687i) q^{35} -2.37228 q^{36} -8.11684i q^{37} -3.46410i q^{38} +(0.686141 + 2.12819i) q^{40} -3.16915 q^{41} -2.67181i q^{42} -9.30506i q^{43} +5.04868 q^{44} +(-5.04868 + 1.62772i) q^{45} -6.63325 q^{46} +4.62772i q^{47} +0.792287i q^{48} -4.37228 q^{49} +(2.92048 + 4.05842i) q^{50} +2.11684 q^{51} +1.58457i q^{53} -4.25639 q^{54} +(10.7446 - 3.46410i) q^{55} +3.37228 q^{56} -2.74456i q^{57} -8.74456i q^{58} +6.63325 q^{59} +(0.543620 + 1.68614i) q^{60} +4.74456 q^{61} +3.46410i q^{62} +8.00000i q^{63} -1.00000 q^{64} +4.00000 q^{66} +4.00000i q^{67} +2.67181i q^{68} -5.25544 q^{69} +(7.17687 - 2.31386i) q^{70} +3.96143 q^{71} -2.37228i q^{72} -10.0000i q^{73} +8.11684 q^{74} +(2.31386 + 3.21543i) q^{75} +3.46410 q^{76} -17.0256i q^{77} -6.74456 q^{79} +(-2.12819 + 0.686141i) q^{80} +3.74456 q^{81} -3.16915i q^{82} -2.74456i q^{83} +2.67181 q^{84} +(1.83324 + 5.68614i) q^{85} +9.30506 q^{86} -6.92820i q^{87} +5.04868i q^{88} -8.51278 q^{89} +(-1.62772 - 5.04868i) q^{90} -6.63325i q^{92} +2.74456i q^{93} -4.62772 q^{94} +(7.37228 - 2.37686i) q^{95} -0.792287 q^{96} -4.74456i q^{97} -4.37228i q^{98} -11.9769 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 4 q^{9} + 6 q^{10} - 4 q^{14} + 8 q^{16} - 2 q^{25} - 24 q^{29} + 2 q^{30} - 30 q^{35} + 4 q^{36} - 6 q^{40} - 12 q^{49} - 52 q^{51} + 40 q^{55} + 4 q^{56} - 8 q^{61} - 8 q^{64} + 32 q^{66}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.792287i 0.457427i 0.973494 + 0.228714i \(0.0734519\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) −1.00000 −0.500000
\(5\) −2.12819 + 0.686141i −0.951757 + 0.306851i
\(6\) −0.792287 −0.323450
\(7\) 3.37228i 1.27460i 0.770615 + 0.637301i \(0.219949\pi\)
−0.770615 + 0.637301i \(0.780051\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.37228 0.790760
\(10\) −0.686141 2.12819i −0.216977 0.672994i
\(11\) −5.04868 −1.52223 −0.761116 0.648615i \(-0.775348\pi\)
−0.761116 + 0.648615i \(0.775348\pi\)
\(12\) 0.792287i 0.228714i
\(13\) 0 0
\(14\) −3.37228 −0.901280
\(15\) −0.543620 1.68614i −0.140362 0.435360i
\(16\) 1.00000 0.250000
\(17\) 2.67181i 0.648010i −0.946055 0.324005i \(-0.894970\pi\)
0.946055 0.324005i \(-0.105030\pi\)
\(18\) 2.37228i 0.559152i
\(19\) −3.46410 −0.794719 −0.397360 0.917663i \(-0.630073\pi\)
−0.397360 + 0.917663i \(0.630073\pi\)
\(20\) 2.12819 0.686141i 0.475879 0.153426i
\(21\) −2.67181 −0.583038
\(22\) 5.04868i 1.07638i
\(23\) 6.63325i 1.38313i 0.722315 + 0.691564i \(0.243078\pi\)
−0.722315 + 0.691564i \(0.756922\pi\)
\(24\) 0.792287 0.161725
\(25\) 4.05842 2.92048i 0.811684 0.584096i
\(26\) 0 0
\(27\) 4.25639i 0.819142i
\(28\) 3.37228i 0.637301i
\(29\) −8.74456 −1.62382 −0.811912 0.583779i \(-0.801573\pi\)
−0.811912 + 0.583779i \(0.801573\pi\)
\(30\) 1.68614 0.543620i 0.307846 0.0992510i
\(31\) 3.46410 0.622171 0.311086 0.950382i \(-0.399307\pi\)
0.311086 + 0.950382i \(0.399307\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 4.00000i 0.696311i
\(34\) 2.67181 0.458212
\(35\) −2.31386 7.17687i −0.391114 1.21311i
\(36\) −2.37228 −0.395380
\(37\) 8.11684i 1.33440i −0.744878 0.667200i \(-0.767492\pi\)
0.744878 0.667200i \(-0.232508\pi\)
\(38\) 3.46410i 0.561951i
\(39\) 0 0
\(40\) 0.686141 + 2.12819i 0.108488 + 0.336497i
\(41\) −3.16915 −0.494938 −0.247469 0.968896i \(-0.579599\pi\)
−0.247469 + 0.968896i \(0.579599\pi\)
\(42\) 2.67181i 0.412270i
\(43\) 9.30506i 1.41901i −0.704701 0.709504i \(-0.748919\pi\)
0.704701 0.709504i \(-0.251081\pi\)
\(44\) 5.04868 0.761116
\(45\) −5.04868 + 1.62772i −0.752612 + 0.242646i
\(46\) −6.63325 −0.978019
\(47\) 4.62772i 0.675022i 0.941322 + 0.337511i \(0.109585\pi\)
−0.941322 + 0.337511i \(0.890415\pi\)
\(48\) 0.792287i 0.114357i
\(49\) −4.37228 −0.624612
\(50\) 2.92048 + 4.05842i 0.413018 + 0.573948i
\(51\) 2.11684 0.296417
\(52\) 0 0
\(53\) 1.58457i 0.217658i 0.994060 + 0.108829i \(0.0347101\pi\)
−0.994060 + 0.108829i \(0.965290\pi\)
\(54\) −4.25639 −0.579221
\(55\) 10.7446 3.46410i 1.44880 0.467099i
\(56\) 3.37228 0.450640
\(57\) 2.74456i 0.363526i
\(58\) 8.74456i 1.14822i
\(59\) 6.63325 0.863576 0.431788 0.901975i \(-0.357883\pi\)
0.431788 + 0.901975i \(0.357883\pi\)
\(60\) 0.543620 + 1.68614i 0.0701811 + 0.217680i
\(61\) 4.74456 0.607479 0.303739 0.952755i \(-0.401765\pi\)
0.303739 + 0.952755i \(0.401765\pi\)
\(62\) 3.46410i 0.439941i
\(63\) 8.00000i 1.00791i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 4.00000 0.492366
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 2.67181i 0.324005i
\(69\) −5.25544 −0.632680
\(70\) 7.17687 2.31386i 0.857800 0.276559i
\(71\) 3.96143 0.470136 0.235068 0.971979i \(-0.424469\pi\)
0.235068 + 0.971979i \(0.424469\pi\)
\(72\) 2.37228i 0.279576i
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 8.11684 0.943564
\(75\) 2.31386 + 3.21543i 0.267181 + 0.371286i
\(76\) 3.46410 0.397360
\(77\) 17.0256i 1.94024i
\(78\) 0 0
\(79\) −6.74456 −0.758823 −0.379411 0.925228i \(-0.623873\pi\)
−0.379411 + 0.925228i \(0.623873\pi\)
\(80\) −2.12819 + 0.686141i −0.237939 + 0.0767129i
\(81\) 3.74456 0.416063
\(82\) 3.16915i 0.349974i
\(83\) 2.74456i 0.301255i −0.988591 0.150627i \(-0.951871\pi\)
0.988591 0.150627i \(-0.0481294\pi\)
\(84\) 2.67181 0.291519
\(85\) 1.83324 + 5.68614i 0.198843 + 0.616749i
\(86\) 9.30506 1.00339
\(87\) 6.92820i 0.742781i
\(88\) 5.04868i 0.538191i
\(89\) −8.51278 −0.902353 −0.451176 0.892435i \(-0.648995\pi\)
−0.451176 + 0.892435i \(0.648995\pi\)
\(90\) −1.62772 5.04868i −0.171577 0.532177i
\(91\) 0 0
\(92\) 6.63325i 0.691564i
\(93\) 2.74456i 0.284598i
\(94\) −4.62772 −0.477313
\(95\) 7.37228 2.37686i 0.756380 0.243861i
\(96\) −0.792287 −0.0808625
\(97\) 4.74456i 0.481737i −0.970558 0.240869i \(-0.922568\pi\)
0.970558 0.240869i \(-0.0774323\pi\)
\(98\) 4.37228i 0.441667i
\(99\) −11.9769 −1.20372
\(100\) −4.05842 + 2.92048i −0.405842 + 0.292048i
\(101\) 3.25544 0.323928 0.161964 0.986797i \(-0.448217\pi\)
0.161964 + 0.986797i \(0.448217\pi\)
\(102\) 2.11684i 0.209599i
\(103\) 10.3923i 1.02398i −0.858990 0.511992i \(-0.828908\pi\)
0.858990 0.511992i \(-0.171092\pi\)
\(104\) 0 0
\(105\) 5.68614 1.83324i 0.554911 0.178906i
\(106\) −1.58457 −0.153907
\(107\) 0.294954i 0.0285142i 0.999898 + 0.0142571i \(0.00453834\pi\)
−0.999898 + 0.0142571i \(0.995462\pi\)
\(108\) 4.25639i 0.409571i
\(109\) −12.7692 −1.22306 −0.611532 0.791220i \(-0.709446\pi\)
−0.611532 + 0.791220i \(0.709446\pi\)
\(110\) 3.46410 + 10.7446i 0.330289 + 1.02445i
\(111\) 6.43087 0.610391
\(112\) 3.37228i 0.318651i
\(113\) 17.0256i 1.60163i −0.598912 0.800815i \(-0.704400\pi\)
0.598912 0.800815i \(-0.295600\pi\)
\(114\) 2.74456 0.257052
\(115\) −4.55134 14.1168i −0.424415 1.31640i
\(116\) 8.74456 0.811912
\(117\) 0 0
\(118\) 6.63325i 0.610640i
\(119\) 9.01011 0.825955
\(120\) −1.68614 + 0.543620i −0.153923 + 0.0496255i
\(121\) 14.4891 1.31719
\(122\) 4.74456i 0.429553i
\(123\) 2.51087i 0.226398i
\(124\) −3.46410 −0.311086
\(125\) −6.63325 + 9.00000i −0.593296 + 0.804984i
\(126\) −8.00000 −0.712697
\(127\) 3.46410i 0.307389i 0.988118 + 0.153695i \(0.0491172\pi\)
−0.988118 + 0.153695i \(0.950883\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 7.37228 0.649093
\(130\) 0 0
\(131\) −7.37228 −0.644119 −0.322060 0.946719i \(-0.604375\pi\)
−0.322060 + 0.946719i \(0.604375\pi\)
\(132\) 4.00000i 0.348155i
\(133\) 11.6819i 1.01295i
\(134\) −4.00000 −0.345547
\(135\) −2.92048 9.05842i −0.251355 0.779625i
\(136\) −2.67181 −0.229106
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 5.25544i 0.447373i
\(139\) 0.627719 0.0532424 0.0266212 0.999646i \(-0.491525\pi\)
0.0266212 + 0.999646i \(0.491525\pi\)
\(140\) 2.31386 + 7.17687i 0.195557 + 0.606556i
\(141\) −3.66648 −0.308773
\(142\) 3.96143i 0.332436i
\(143\) 0 0
\(144\) 2.37228 0.197690
\(145\) 18.6101 6.00000i 1.54549 0.498273i
\(146\) 10.0000 0.827606
\(147\) 3.46410i 0.285714i
\(148\) 8.11684i 0.667200i
\(149\) 3.75906 0.307954 0.153977 0.988074i \(-0.450792\pi\)
0.153977 + 0.988074i \(0.450792\pi\)
\(150\) −3.21543 + 2.31386i −0.262539 + 0.188926i
\(151\) 2.37686 0.193426 0.0967131 0.995312i \(-0.469167\pi\)
0.0967131 + 0.995312i \(0.469167\pi\)
\(152\) 3.46410i 0.280976i
\(153\) 6.33830i 0.512421i
\(154\) 17.0256 1.37196
\(155\) −7.37228 + 2.37686i −0.592156 + 0.190914i
\(156\) 0 0
\(157\) 4.75372i 0.379388i 0.981843 + 0.189694i \(0.0607496\pi\)
−0.981843 + 0.189694i \(0.939250\pi\)
\(158\) 6.74456i 0.536569i
\(159\) −1.25544 −0.0995627
\(160\) −0.686141 2.12819i −0.0542442 0.168249i
\(161\) −22.3692 −1.76294
\(162\) 3.74456i 0.294201i
\(163\) 13.2554i 1.03825i −0.854700 0.519123i \(-0.826259\pi\)
0.854700 0.519123i \(-0.173741\pi\)
\(164\) 3.16915 0.247469
\(165\) 2.74456 + 8.51278i 0.213664 + 0.662719i
\(166\) 2.74456 0.213019
\(167\) 5.48913i 0.424761i 0.977187 + 0.212381i \(0.0681217\pi\)
−0.977187 + 0.212381i \(0.931878\pi\)
\(168\) 2.67181i 0.206135i
\(169\) 0 0
\(170\) −5.68614 + 1.83324i −0.436107 + 0.140603i
\(171\) −8.21782 −0.628433
\(172\) 9.30506i 0.709504i
\(173\) 12.2718i 0.933010i 0.884519 + 0.466505i \(0.154487\pi\)
−0.884519 + 0.466505i \(0.845513\pi\)
\(174\) 6.92820 0.525226
\(175\) 9.84868 + 13.6861i 0.744491 + 1.03457i
\(176\) −5.04868 −0.380558
\(177\) 5.25544i 0.395023i
\(178\) 8.51278i 0.638060i
\(179\) −22.1168 −1.65309 −0.826545 0.562870i \(-0.809697\pi\)
−0.826545 + 0.562870i \(0.809697\pi\)
\(180\) 5.04868 1.62772i 0.376306 0.121323i
\(181\) −19.4891 −1.44862 −0.724308 0.689477i \(-0.757840\pi\)
−0.724308 + 0.689477i \(0.757840\pi\)
\(182\) 0 0
\(183\) 3.75906i 0.277877i
\(184\) 6.63325 0.489010
\(185\) 5.56930 + 17.2742i 0.409463 + 1.27003i
\(186\) −2.74456 −0.201241
\(187\) 13.4891i 0.986423i
\(188\) 4.62772i 0.337511i
\(189\) −14.3537 −1.04408
\(190\) 2.37686 + 7.37228i 0.172436 + 0.534842i
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0.792287i 0.0571784i
\(193\) 14.0000i 1.00774i 0.863779 + 0.503871i \(0.168091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 4.74456 0.340640
\(195\) 0 0
\(196\) 4.37228 0.312306
\(197\) 1.37228i 0.0977710i 0.998804 + 0.0488855i \(0.0155669\pi\)
−0.998804 + 0.0488855i \(0.984433\pi\)
\(198\) 11.9769i 0.851160i
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) −2.92048 4.05842i −0.206509 0.286974i
\(201\) −3.16915 −0.223534
\(202\) 3.25544i 0.229052i
\(203\) 29.4891i 2.06973i
\(204\) −2.11684 −0.148209
\(205\) 6.74456 2.17448i 0.471061 0.151872i
\(206\) 10.3923 0.724066
\(207\) 15.7359i 1.09372i
\(208\) 0 0
\(209\) 17.4891 1.20975
\(210\) 1.83324 + 5.68614i 0.126506 + 0.392381i
\(211\) −14.1168 −0.971844 −0.485922 0.874002i \(-0.661516\pi\)
−0.485922 + 0.874002i \(0.661516\pi\)
\(212\) 1.58457i 0.108829i
\(213\) 3.13859i 0.215053i
\(214\) −0.294954 −0.0201626
\(215\) 6.38458 + 19.8030i 0.435425 + 1.35055i
\(216\) 4.25639 0.289611
\(217\) 11.6819i 0.793021i
\(218\) 12.7692i 0.864837i
\(219\) 7.92287 0.535378
\(220\) −10.7446 + 3.46410i −0.724398 + 0.233550i
\(221\) 0 0
\(222\) 6.43087i 0.431612i
\(223\) 2.11684i 0.141754i 0.997485 + 0.0708772i \(0.0225798\pi\)
−0.997485 + 0.0708772i \(0.977420\pi\)
\(224\) −3.37228 −0.225320
\(225\) 9.62772 6.92820i 0.641848 0.461880i
\(226\) 17.0256 1.13252
\(227\) 17.4891i 1.16079i 0.814334 + 0.580397i \(0.197103\pi\)
−0.814334 + 0.580397i \(0.802897\pi\)
\(228\) 2.74456i 0.181763i
\(229\) 14.9436 0.987504 0.493752 0.869603i \(-0.335625\pi\)
0.493752 + 0.869603i \(0.335625\pi\)
\(230\) 14.1168 4.55134i 0.930837 0.300107i
\(231\) 13.4891 0.887519
\(232\) 8.74456i 0.574109i
\(233\) 11.1846i 0.732727i 0.930472 + 0.366363i \(0.119397\pi\)
−0.930472 + 0.366363i \(0.880603\pi\)
\(234\) 0 0
\(235\) −3.17527 9.84868i −0.207132 0.642457i
\(236\) −6.63325 −0.431788
\(237\) 5.34363i 0.347106i
\(238\) 9.01011i 0.584039i
\(239\) 6.13592 0.396899 0.198450 0.980111i \(-0.436409\pi\)
0.198450 + 0.980111i \(0.436409\pi\)
\(240\) −0.543620 1.68614i −0.0350905 0.108840i
\(241\) −11.6819 −0.752499 −0.376249 0.926518i \(-0.622786\pi\)
−0.376249 + 0.926518i \(0.622786\pi\)
\(242\) 14.4891i 0.931396i
\(243\) 15.7359i 1.00946i
\(244\) −4.74456 −0.303739
\(245\) 9.30506 3.00000i 0.594479 0.191663i
\(246\) 2.51087 0.160088
\(247\) 0 0
\(248\) 3.46410i 0.219971i
\(249\) 2.17448 0.137802
\(250\) −9.00000 6.63325i −0.569210 0.419524i
\(251\) −22.9783 −1.45037 −0.725187 0.688552i \(-0.758247\pi\)
−0.725187 + 0.688552i \(0.758247\pi\)
\(252\) 8.00000i 0.503953i
\(253\) 33.4891i 2.10544i
\(254\) −3.46410 −0.217357
\(255\) −4.50506 + 1.45245i −0.282118 + 0.0909561i
\(256\) 1.00000 0.0625000
\(257\) 9.01011i 0.562035i 0.959703 + 0.281018i \(0.0906719\pi\)
−0.959703 + 0.281018i \(0.909328\pi\)
\(258\) 7.37228i 0.458978i
\(259\) 27.3723 1.70083
\(260\) 0 0
\(261\) −20.7446 −1.28406
\(262\) 7.37228i 0.455461i
\(263\) 28.4125i 1.75199i 0.482319 + 0.875996i \(0.339795\pi\)
−0.482319 + 0.875996i \(0.660205\pi\)
\(264\) −4.00000 −0.246183
\(265\) −1.08724 3.37228i −0.0667887 0.207158i
\(266\) 11.6819 0.716265
\(267\) 6.74456i 0.412761i
\(268\) 4.00000i 0.244339i
\(269\) −8.74456 −0.533165 −0.266583 0.963812i \(-0.585895\pi\)
−0.266583 + 0.963812i \(0.585895\pi\)
\(270\) 9.05842 2.92048i 0.551278 0.177735i
\(271\) −11.4795 −0.697333 −0.348666 0.937247i \(-0.613365\pi\)
−0.348666 + 0.937247i \(0.613365\pi\)
\(272\) 2.67181i 0.162003i
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) −20.4897 + 14.7446i −1.23557 + 0.889131i
\(276\) 5.25544 0.316340
\(277\) 16.4356i 0.987522i 0.869598 + 0.493761i \(0.164378\pi\)
−0.869598 + 0.493761i \(0.835622\pi\)
\(278\) 0.627719i 0.0376481i
\(279\) 8.21782 0.491988
\(280\) −7.17687 + 2.31386i −0.428900 + 0.138280i
\(281\) −8.51278 −0.507830 −0.253915 0.967227i \(-0.581718\pi\)
−0.253915 + 0.967227i \(0.581718\pi\)
\(282\) 3.66648i 0.218336i
\(283\) 17.3205i 1.02960i −0.857311 0.514799i \(-0.827867\pi\)
0.857311 0.514799i \(-0.172133\pi\)
\(284\) −3.96143 −0.235068
\(285\) 1.88316 + 5.84096i 0.111549 + 0.345989i
\(286\) 0 0
\(287\) 10.6873i 0.630849i
\(288\) 2.37228i 0.139788i
\(289\) 9.86141 0.580083
\(290\) 6.00000 + 18.6101i 0.352332 + 1.09282i
\(291\) 3.75906 0.220360
\(292\) 10.0000i 0.585206i
\(293\) 30.8614i 1.80294i −0.432839 0.901471i \(-0.642488\pi\)
0.432839 0.901471i \(-0.357512\pi\)
\(294\) 3.46410 0.202031
\(295\) −14.1168 + 4.55134i −0.821914 + 0.264989i
\(296\) −8.11684 −0.471782
\(297\) 21.4891i 1.24693i
\(298\) 3.75906i 0.217756i
\(299\) 0 0
\(300\) −2.31386 3.21543i −0.133591 0.185643i
\(301\) 31.3793 1.80867
\(302\) 2.37686i 0.136773i
\(303\) 2.57924i 0.148174i
\(304\) −3.46410 −0.198680
\(305\) −10.0974 + 3.25544i −0.578173 + 0.186406i
\(306\) 6.33830 0.362336
\(307\) 16.2337i 0.926506i 0.886226 + 0.463253i \(0.153318\pi\)
−0.886226 + 0.463253i \(0.846682\pi\)
\(308\) 17.0256i 0.970121i
\(309\) 8.23369 0.468398
\(310\) −2.37686 7.37228i −0.134997 0.418717i
\(311\) −14.7446 −0.836087 −0.418044 0.908427i \(-0.637284\pi\)
−0.418044 + 0.908427i \(0.637284\pi\)
\(312\) 0 0
\(313\) 17.5229i 0.990452i −0.868764 0.495226i \(-0.835085\pi\)
0.868764 0.495226i \(-0.164915\pi\)
\(314\) −4.75372 −0.268268
\(315\) −5.48913 17.0256i −0.309277 0.959281i
\(316\) 6.74456 0.379411
\(317\) 28.9783i 1.62758i −0.581159 0.813790i \(-0.697400\pi\)
0.581159 0.813790i \(-0.302600\pi\)
\(318\) 1.25544i 0.0704014i
\(319\) 44.1485 2.47184
\(320\) 2.12819 0.686141i 0.118970 0.0383564i
\(321\) −0.233688 −0.0130432
\(322\) 22.3692i 1.24659i
\(323\) 9.25544i 0.514986i
\(324\) −3.74456 −0.208031
\(325\) 0 0
\(326\) 13.2554 0.734151
\(327\) 10.1168i 0.559463i
\(328\) 3.16915i 0.174987i
\(329\) −15.6060 −0.860385
\(330\) −8.51278 + 2.74456i −0.468613 + 0.151083i
\(331\) 10.3923 0.571213 0.285606 0.958347i \(-0.407805\pi\)
0.285606 + 0.958347i \(0.407805\pi\)
\(332\) 2.74456i 0.150627i
\(333\) 19.2554i 1.05519i
\(334\) −5.48913 −0.300352
\(335\) −2.74456 8.51278i −0.149951 0.465103i
\(336\) −2.67181 −0.145759
\(337\) 31.3793i 1.70934i 0.519172 + 0.854670i \(0.326240\pi\)
−0.519172 + 0.854670i \(0.673760\pi\)
\(338\) 0 0
\(339\) 13.4891 0.732629
\(340\) −1.83324 5.68614i −0.0994214 0.308374i
\(341\) −17.4891 −0.947089
\(342\) 8.21782i 0.444369i
\(343\) 8.86141i 0.478471i
\(344\) −9.30506 −0.501695
\(345\) 11.1846 3.60597i 0.602158 0.194139i
\(346\) −12.2718 −0.659738
\(347\) 15.6434i 0.839780i 0.907575 + 0.419890i \(0.137931\pi\)
−0.907575 + 0.419890i \(0.862069\pi\)
\(348\) 6.92820i 0.371391i
\(349\) −22.2766 −1.19244 −0.596220 0.802821i \(-0.703331\pi\)
−0.596220 + 0.802821i \(0.703331\pi\)
\(350\) −13.6861 + 9.84868i −0.731555 + 0.526434i
\(351\) 0 0
\(352\) 5.04868i 0.269095i
\(353\) 11.4891i 0.611504i −0.952111 0.305752i \(-0.901092\pi\)
0.952111 0.305752i \(-0.0989079\pi\)
\(354\) −5.25544 −0.279323
\(355\) −8.43070 + 2.71810i −0.447455 + 0.144262i
\(356\) 8.51278 0.451176
\(357\) 7.13859i 0.377814i
\(358\) 22.1168i 1.16891i
\(359\) −23.6588 −1.24866 −0.624332 0.781159i \(-0.714629\pi\)
−0.624332 + 0.781159i \(0.714629\pi\)
\(360\) 1.62772 + 5.04868i 0.0857883 + 0.266089i
\(361\) −7.00000 −0.368421
\(362\) 19.4891i 1.02433i
\(363\) 11.4795i 0.602520i
\(364\) 0 0
\(365\) 6.86141 + 21.2819i 0.359142 + 1.11395i
\(366\) −3.75906 −0.196489
\(367\) 15.1460i 0.790616i −0.918549 0.395308i \(-0.870638\pi\)
0.918549 0.395308i \(-0.129362\pi\)
\(368\) 6.63325i 0.345782i
\(369\) −7.51811 −0.391377
\(370\) −17.2742 + 5.56930i −0.898044 + 0.289534i
\(371\) −5.34363 −0.277427
\(372\) 2.74456i 0.142299i
\(373\) 30.2921i 1.56846i 0.620468 + 0.784232i \(0.286943\pi\)
−0.620468 + 0.784232i \(0.713057\pi\)
\(374\) −13.4891 −0.697506
\(375\) −7.13058 5.25544i −0.368222 0.271390i
\(376\) 4.62772 0.238656
\(377\) 0 0
\(378\) 14.3537i 0.738277i
\(379\) −17.3205 −0.889695 −0.444847 0.895606i \(-0.646742\pi\)
−0.444847 + 0.895606i \(0.646742\pi\)
\(380\) −7.37228 + 2.37686i −0.378190 + 0.121930i
\(381\) −2.74456 −0.140608
\(382\) 0 0
\(383\) 34.1168i 1.74329i −0.490138 0.871645i \(-0.663054\pi\)
0.490138 0.871645i \(-0.336946\pi\)
\(384\) 0.792287 0.0404312
\(385\) 11.6819 + 36.2337i 0.595366 + 1.84664i
\(386\) −14.0000 −0.712581
\(387\) 22.0742i 1.12210i
\(388\) 4.74456i 0.240869i
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 17.7228 0.896281
\(392\) 4.37228i 0.220834i
\(393\) 5.84096i 0.294638i
\(394\) −1.37228 −0.0691345
\(395\) 14.3537 4.62772i 0.722215 0.232846i
\(396\) 11.9769 0.601861
\(397\) 31.4891i 1.58039i 0.612853 + 0.790197i \(0.290022\pi\)
−0.612853 + 0.790197i \(0.709978\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 9.25544 0.463351
\(400\) 4.05842 2.92048i 0.202921 0.146024i
\(401\) 0.994667 0.0496713 0.0248356 0.999692i \(-0.492094\pi\)
0.0248356 + 0.999692i \(0.492094\pi\)
\(402\) 3.16915i 0.158063i
\(403\) 0 0
\(404\) −3.25544 −0.161964
\(405\) −7.96916 + 2.56930i −0.395991 + 0.127669i
\(406\) 29.4891 1.46352
\(407\) 40.9793i 2.03127i
\(408\) 2.11684i 0.104799i
\(409\) −25.5383 −1.26279 −0.631395 0.775462i \(-0.717517\pi\)
−0.631395 + 0.775462i \(0.717517\pi\)
\(410\) 2.17448 + 6.74456i 0.107390 + 0.333090i
\(411\) −4.75372 −0.234484
\(412\) 10.3923i 0.511992i
\(413\) 22.3692i 1.10072i
\(414\) −15.7359 −0.773379
\(415\) 1.88316 + 5.84096i 0.0924405 + 0.286722i
\(416\) 0 0
\(417\) 0.497333i 0.0243545i
\(418\) 17.4891i 0.855421i
\(419\) 1.88316 0.0919982 0.0459991 0.998941i \(-0.485353\pi\)
0.0459991 + 0.998941i \(0.485353\pi\)
\(420\) −5.68614 + 1.83324i −0.277455 + 0.0894530i
\(421\) 1.08724 0.0529889 0.0264944 0.999649i \(-0.491566\pi\)
0.0264944 + 0.999649i \(0.491566\pi\)
\(422\) 14.1168i 0.687197i
\(423\) 10.9783i 0.533781i
\(424\) 1.58457 0.0769537
\(425\) −7.80298 10.8434i −0.378500 0.525980i
\(426\) −3.13859 −0.152065
\(427\) 16.0000i 0.774294i
\(428\) 0.294954i 0.0142571i
\(429\) 0 0
\(430\) −19.8030 + 6.38458i −0.954985 + 0.307892i
\(431\) −9.89497 −0.476624 −0.238312 0.971189i \(-0.576594\pi\)
−0.238312 + 0.971189i \(0.576594\pi\)
\(432\) 4.25639i 0.204786i
\(433\) 15.3484i 0.737597i −0.929509 0.368799i \(-0.879769\pi\)
0.929509 0.368799i \(-0.120231\pi\)
\(434\) −11.6819 −0.560750
\(435\) 4.75372 + 14.7446i 0.227924 + 0.706948i
\(436\) 12.7692 0.611532
\(437\) 22.9783i 1.09920i
\(438\) 7.92287i 0.378569i
\(439\) 12.2337 0.583882 0.291941 0.956436i \(-0.405699\pi\)
0.291941 + 0.956436i \(0.405699\pi\)
\(440\) −3.46410 10.7446i −0.165145 0.512227i
\(441\) −10.3723 −0.493918
\(442\) 0 0
\(443\) 7.72049i 0.366812i −0.983037 0.183406i \(-0.941288\pi\)
0.983037 0.183406i \(-0.0587122\pi\)
\(444\) −6.43087 −0.305196
\(445\) 18.1168 5.84096i 0.858821 0.276888i
\(446\) −2.11684 −0.100235
\(447\) 2.97825i 0.140866i
\(448\) 3.37228i 0.159325i
\(449\) −34.0511 −1.60697 −0.803486 0.595324i \(-0.797024\pi\)
−0.803486 + 0.595324i \(0.797024\pi\)
\(450\) 6.92820 + 9.62772i 0.326599 + 0.453855i
\(451\) 16.0000 0.753411
\(452\) 17.0256i 0.800815i
\(453\) 1.88316i 0.0884784i
\(454\) −17.4891 −0.820805
\(455\) 0 0
\(456\) −2.74456 −0.128526
\(457\) 20.9783i 0.981321i 0.871351 + 0.490661i \(0.163244\pi\)
−0.871351 + 0.490661i \(0.836756\pi\)
\(458\) 14.9436i 0.698271i
\(459\) 11.3723 0.530813
\(460\) 4.55134 + 14.1168i 0.212207 + 0.658201i
\(461\) −41.4766 −1.93176 −0.965880 0.258990i \(-0.916610\pi\)
−0.965880 + 0.258990i \(0.916610\pi\)
\(462\) 13.4891i 0.627571i
\(463\) 16.0000i 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) −8.74456 −0.405956
\(465\) −1.88316 5.84096i −0.0873293 0.270868i
\(466\) −11.1846 −0.518116
\(467\) 14.1514i 0.654847i −0.944878 0.327423i \(-0.893820\pi\)
0.944878 0.327423i \(-0.106180\pi\)
\(468\) 0 0
\(469\) −13.4891 −0.622870
\(470\) 9.84868 3.17527i 0.454286 0.146464i
\(471\) −3.76631 −0.173542
\(472\) 6.63325i 0.305320i
\(473\) 46.9783i 2.16006i
\(474\) 5.34363 0.245441
\(475\) −14.0588 + 10.1168i −0.645061 + 0.464193i
\(476\) −9.01011 −0.412978
\(477\) 3.75906i 0.172115i
\(478\) 6.13592i 0.280650i
\(479\) 21.5769 0.985874 0.492937 0.870065i \(-0.335923\pi\)
0.492937 + 0.870065i \(0.335923\pi\)
\(480\) 1.68614 0.543620i 0.0769614 0.0248128i
\(481\) 0 0
\(482\) 11.6819i 0.532097i
\(483\) 17.7228i 0.806416i
\(484\) −14.4891 −0.658597
\(485\) 3.25544 + 10.0974i 0.147822 + 0.458497i
\(486\) −15.7359 −0.713796
\(487\) 21.4891i 0.973765i 0.873467 + 0.486883i \(0.161866\pi\)
−0.873467 + 0.486883i \(0.838134\pi\)
\(488\) 4.74456i 0.214776i
\(489\) 10.5021 0.474922
\(490\) 3.00000 + 9.30506i 0.135526 + 0.420360i
\(491\) 31.3723 1.41581 0.707906 0.706307i \(-0.249640\pi\)
0.707906 + 0.706307i \(0.249640\pi\)
\(492\) 2.51087i 0.113199i
\(493\) 23.3639i 1.05225i
\(494\) 0 0
\(495\) 25.4891 8.21782i 1.14565 0.369364i
\(496\) 3.46410 0.155543
\(497\) 13.3591i 0.599236i
\(498\) 2.17448i 0.0974408i
\(499\) 35.9306 1.60848 0.804238 0.594307i \(-0.202574\pi\)
0.804238 + 0.594307i \(0.202574\pi\)
\(500\) 6.63325 9.00000i 0.296648 0.402492i
\(501\) −4.34896 −0.194297
\(502\) 22.9783i 1.02557i
\(503\) 6.63325i 0.295762i −0.989005 0.147881i \(-0.952755\pi\)
0.989005 0.147881i \(-0.0472453\pi\)
\(504\) 8.00000 0.356348
\(505\) −6.92820 + 2.23369i −0.308301 + 0.0993978i
\(506\) 33.4891 1.48877
\(507\) 0 0
\(508\) 3.46410i 0.153695i
\(509\) −10.0974 −0.447557 −0.223779 0.974640i \(-0.571839\pi\)
−0.223779 + 0.974640i \(0.571839\pi\)
\(510\) −1.45245 4.50506i −0.0643157 0.199487i
\(511\) 33.7228 1.49181
\(512\) 1.00000i 0.0441942i
\(513\) 14.7446i 0.650988i
\(514\) −9.01011 −0.397419
\(515\) 7.13058 + 22.1168i 0.314211 + 0.974585i
\(516\) −7.37228 −0.324547
\(517\) 23.3639i 1.02754i
\(518\) 27.3723i 1.20267i
\(519\) −9.72281 −0.426784
\(520\) 0 0
\(521\) −21.6060 −0.946575 −0.473287 0.880908i \(-0.656933\pi\)
−0.473287 + 0.880908i \(0.656933\pi\)
\(522\) 20.7446i 0.907965i
\(523\) 10.3923i 0.454424i −0.973845 0.227212i \(-0.927039\pi\)
0.973845 0.227212i \(-0.0729610\pi\)
\(524\) 7.37228 0.322060
\(525\) −10.8434 + 7.80298i −0.473243 + 0.340550i
\(526\) −28.4125 −1.23885
\(527\) 9.25544i 0.403173i
\(528\) 4.00000i 0.174078i
\(529\) −21.0000 −0.913043
\(530\) 3.37228 1.08724i 0.146483 0.0472267i
\(531\) 15.7359 0.682881
\(532\) 11.6819i 0.506476i
\(533\) 0 0
\(534\) 6.74456 0.291866
\(535\) −0.202380 0.627719i −0.00874964 0.0271386i
\(536\) 4.00000 0.172774
\(537\) 17.5229i 0.756168i
\(538\) 8.74456i 0.377005i
\(539\) 22.0742 0.950804
\(540\) 2.92048 + 9.05842i 0.125678 + 0.389812i
\(541\) 40.4820 1.74046 0.870228 0.492649i \(-0.163971\pi\)
0.870228 + 0.492649i \(0.163971\pi\)
\(542\) 11.4795i 0.493089i
\(543\) 15.4410i 0.662636i
\(544\) 2.67181 0.114553
\(545\) 27.1753 8.76144i 1.16406 0.375299i
\(546\) 0 0
\(547\) 11.4795i 0.490830i 0.969418 + 0.245415i \(0.0789242\pi\)
−0.969418 + 0.245415i \(0.921076\pi\)
\(548\) 6.00000i 0.256307i
\(549\) 11.2554 0.480370
\(550\) −14.7446 20.4897i −0.628710 0.873682i
\(551\) 30.2921 1.29048
\(552\) 5.25544i 0.223686i
\(553\) 22.7446i 0.967197i
\(554\) −16.4356 −0.698284
\(555\) −13.6861 + 4.41248i −0.580944 + 0.187299i
\(556\) −0.627719 −0.0266212
\(557\) 16.1168i 0.682893i −0.939901 0.341446i \(-0.889083\pi\)
0.939901 0.341446i \(-0.110917\pi\)
\(558\) 8.21782i 0.347888i
\(559\) 0 0
\(560\) −2.31386 7.17687i −0.0977784 0.303278i
\(561\) −10.6873 −0.451216
\(562\) 8.51278i 0.359090i
\(563\) 44.9407i 1.89403i 0.321194 + 0.947013i \(0.395916\pi\)
−0.321194 + 0.947013i \(0.604084\pi\)
\(564\) 3.66648 0.154387
\(565\) 11.6819 + 36.2337i 0.491462 + 1.52436i
\(566\) 17.3205 0.728035
\(567\) 12.6277i 0.530314i
\(568\) 3.96143i 0.166218i
\(569\) 10.6277 0.445537 0.222769 0.974871i \(-0.428491\pi\)
0.222769 + 0.974871i \(0.428491\pi\)
\(570\) −5.84096 + 1.88316i −0.244651 + 0.0788767i
\(571\) −30.1168 −1.26035 −0.630175 0.776453i \(-0.717017\pi\)
−0.630175 + 0.776453i \(0.717017\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 10.6873 0.446078
\(575\) 19.3723 + 26.9205i 0.807880 + 1.12266i
\(576\) −2.37228 −0.0988451
\(577\) 24.9783i 1.03986i −0.854209 0.519929i \(-0.825958\pi\)
0.854209 0.519929i \(-0.174042\pi\)
\(578\) 9.86141i 0.410180i
\(579\) −11.0920 −0.460969
\(580\) −18.6101 + 6.00000i −0.772744 + 0.249136i
\(581\) 9.25544 0.383980
\(582\) 3.75906i 0.155818i
\(583\) 8.00000i 0.331326i
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) 30.8614 1.27487
\(587\) 37.7228i 1.55699i −0.627653 0.778494i \(-0.715984\pi\)
0.627653 0.778494i \(-0.284016\pi\)
\(588\) 3.46410i 0.142857i
\(589\) −12.0000 −0.494451
\(590\) −4.55134 14.1168i −0.187376 0.581181i
\(591\) −1.08724 −0.0447231
\(592\) 8.11684i 0.333600i
\(593\) 2.23369i 0.0917266i 0.998948 + 0.0458633i \(0.0146039\pi\)
−0.998948 + 0.0458633i \(0.985396\pi\)
\(594\) 21.4891 0.881709
\(595\) −19.1753 + 6.18220i −0.786109 + 0.253446i
\(596\) −3.75906 −0.153977
\(597\) 6.33830i 0.259409i
\(598\) 0 0
\(599\) −25.7228 −1.05101 −0.525503 0.850792i \(-0.676123\pi\)
−0.525503 + 0.850792i \(0.676123\pi\)
\(600\) 3.21543 2.31386i 0.131270 0.0944629i
\(601\) −26.6277 −1.08617 −0.543084 0.839679i \(-0.682743\pi\)
−0.543084 + 0.839679i \(0.682743\pi\)
\(602\) 31.3793i 1.27892i
\(603\) 9.48913i 0.386427i
\(604\) −2.37686 −0.0967131
\(605\) −30.8357 + 9.94158i −1.25365 + 0.404183i
\(606\) −2.57924 −0.104774
\(607\) 3.46410i 0.140604i −0.997526 0.0703018i \(-0.977604\pi\)
0.997526 0.0703018i \(-0.0223962\pi\)
\(608\) 3.46410i 0.140488i
\(609\) 23.3639 0.946751
\(610\) −3.25544 10.0974i −0.131809 0.408830i
\(611\) 0 0
\(612\) 6.33830i 0.256210i
\(613\) 3.48913i 0.140924i 0.997514 + 0.0704622i \(0.0224474\pi\)
−0.997514 + 0.0704622i \(0.977553\pi\)
\(614\) −16.2337 −0.655138
\(615\) 1.72281 + 5.34363i 0.0694705 + 0.215476i
\(616\) −17.0256 −0.685979
\(617\) 3.25544i 0.131059i 0.997851 + 0.0655295i \(0.0208736\pi\)
−0.997851 + 0.0655295i \(0.979126\pi\)
\(618\) 8.23369i 0.331208i
\(619\) 29.0024 1.16571 0.582853 0.812578i \(-0.301936\pi\)
0.582853 + 0.812578i \(0.301936\pi\)
\(620\) 7.37228 2.37686i 0.296078 0.0954570i
\(621\) −28.2337 −1.13298
\(622\) 14.7446i 0.591203i
\(623\) 28.7075i 1.15014i
\(624\) 0 0
\(625\) 7.94158 23.7051i 0.317663 0.948204i
\(626\) 17.5229 0.700355
\(627\) 13.8564i 0.553372i
\(628\) 4.75372i 0.189694i
\(629\) −21.6867 −0.864705
\(630\) 17.0256 5.48913i 0.678314 0.218692i
\(631\) 49.1046 1.95482 0.977411 0.211348i \(-0.0677853\pi\)
0.977411 + 0.211348i \(0.0677853\pi\)
\(632\) 6.74456i 0.268284i
\(633\) 11.1846i 0.444548i
\(634\) 28.9783 1.15087
\(635\) −2.37686 7.37228i −0.0943229 0.292560i
\(636\) 1.25544 0.0497813
\(637\) 0 0
\(638\) 44.1485i 1.74785i
\(639\) 9.39764 0.371765
\(640\) 0.686141 + 2.12819i 0.0271221 + 0.0841243i
\(641\) −28.9783 −1.14457 −0.572286 0.820054i \(-0.693943\pi\)
−0.572286 + 0.820054i \(0.693943\pi\)
\(642\) 0.233688i 0.00922293i
\(643\) 14.5109i 0.572253i −0.958192 0.286127i \(-0.907632\pi\)
0.958192 0.286127i \(-0.0923678\pi\)
\(644\) 22.3692 0.881469
\(645\) −15.6896 + 5.05842i −0.617779 + 0.199175i
\(646\) −9.25544 −0.364150
\(647\) 34.3461i 1.35028i 0.737688 + 0.675142i \(0.235917\pi\)
−0.737688 + 0.675142i \(0.764083\pi\)
\(648\) 3.74456i 0.147100i
\(649\) −33.4891 −1.31456
\(650\) 0 0
\(651\) −9.25544 −0.362749
\(652\) 13.2554i 0.519123i
\(653\) 3.75906i 0.147103i 0.997291 + 0.0735516i \(0.0234334\pi\)
−0.997291 + 0.0735516i \(0.976567\pi\)
\(654\) 10.1168 0.395600
\(655\) 15.6896 5.05842i 0.613045 0.197649i
\(656\) −3.16915 −0.123734
\(657\) 23.7228i 0.925515i
\(658\) 15.6060i 0.608384i
\(659\) 28.4674 1.10893 0.554466 0.832207i \(-0.312923\pi\)
0.554466 + 0.832207i \(0.312923\pi\)
\(660\) −2.74456 8.51278i −0.106832 0.331359i
\(661\) 30.2921 1.17822 0.589112 0.808051i \(-0.299478\pi\)
0.589112 + 0.808051i \(0.299478\pi\)
\(662\) 10.3923i 0.403908i
\(663\) 0 0
\(664\) −2.74456 −0.106510
\(665\) 8.01544 + 24.8614i 0.310826 + 0.964084i
\(666\) 19.2554 0.746133
\(667\) 58.0049i 2.24596i
\(668\) 5.48913i 0.212381i
\(669\) −1.67715 −0.0648423
\(670\) 8.51278 2.74456i 0.328877 0.106032i
\(671\) −23.9538 −0.924725
\(672\) 2.67181i 0.103067i
\(673\) 19.6974i 0.759278i −0.925135 0.379639i \(-0.876048\pi\)
0.925135 0.379639i \(-0.123952\pi\)
\(674\) −31.3793 −1.20869
\(675\) 12.4307 + 17.2742i 0.478458 + 0.664885i
\(676\) 0 0
\(677\) 5.93354i 0.228044i 0.993478 + 0.114022i \(0.0363735\pi\)
−0.993478 + 0.114022i \(0.963627\pi\)
\(678\) 13.4891i 0.518047i
\(679\) 16.0000 0.614024
\(680\) 5.68614 1.83324i 0.218054 0.0703016i
\(681\) −13.8564 −0.530979
\(682\) 17.4891i 0.669693i
\(683\) 2.74456i 0.105018i −0.998620 0.0525089i \(-0.983278\pi\)
0.998620 0.0525089i \(-0.0167218\pi\)
\(684\) 8.21782 0.314216
\(685\) −4.11684 12.7692i −0.157297 0.487885i
\(686\) −8.86141 −0.338330
\(687\) 11.8397i 0.451711i
\(688\) 9.30506i 0.354752i
\(689\) 0 0
\(690\) 3.60597 + 11.1846i 0.137277 + 0.425790i
\(691\) −19.4950 −0.741624 −0.370812 0.928708i \(-0.620921\pi\)
−0.370812 + 0.928708i \(0.620921\pi\)
\(692\) 12.2718i 0.466505i
\(693\) 40.3894i 1.53427i
\(694\) −15.6434 −0.593814
\(695\) −1.33591 + 0.430703i −0.0506739 + 0.0163375i
\(696\) −6.92820 −0.262613
\(697\) 8.46738i 0.320725i
\(698\) 22.2766i 0.843182i
\(699\) −8.86141 −0.335169
\(700\) −9.84868 13.6861i −0.372245 0.517287i
\(701\) 28.9783 1.09449 0.547247 0.836971i \(-0.315676\pi\)
0.547247 + 0.836971i \(0.315676\pi\)
\(702\) 0 0
\(703\) 28.1176i 1.06047i
\(704\) 5.04868 0.190279
\(705\) 7.80298 2.51572i 0.293877 0.0947476i
\(706\) 11.4891 0.432399
\(707\) 10.9783i 0.412880i
\(708\) 5.25544i 0.197511i
\(709\) −20.7846 −0.780582 −0.390291 0.920691i \(-0.627626\pi\)
−0.390291 + 0.920691i \(0.627626\pi\)
\(710\) −2.71810 8.43070i −0.102009 0.316399i
\(711\) −16.0000 −0.600047
\(712\) 8.51278i 0.319030i
\(713\) 22.9783i 0.860542i
\(714\) −7.13859 −0.267155
\(715\) 0 0
\(716\) 22.1168 0.826545
\(717\) 4.86141i 0.181553i
\(718\) 23.6588i 0.882939i
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) −5.04868 + 1.62772i −0.188153 + 0.0606615i
\(721\) 35.0458 1.30517
\(722\) 7.00000i 0.260513i
\(723\) 9.25544i 0.344213i
\(724\) 19.4891 0.724308
\(725\) −35.4891 + 25.5383i −1.31803 + 0.948470i
\(726\) −11.4795 −0.426046
\(727\) 22.0742i 0.818688i −0.912380 0.409344i \(-0.865758\pi\)
0.912380 0.409344i \(-0.134242\pi\)
\(728\) 0 0
\(729\) −1.23369 −0.0456921
\(730\) −21.2819 + 6.86141i −0.787680 + 0.253952i
\(731\) −24.8614 −0.919532
\(732\) 3.75906i 0.138939i
\(733\) 47.0951i 1.73950i −0.493495 0.869749i \(-0.664281\pi\)
0.493495 0.869749i \(-0.335719\pi\)
\(734\) 15.1460 0.559050
\(735\) 2.37686 + 7.37228i 0.0876718 + 0.271931i
\(736\) −6.63325 −0.244505
\(737\) 20.1947i 0.743881i
\(738\) 7.51811i 0.276745i
\(739\) −31.5817 −1.16175 −0.580875 0.813993i \(-0.697290\pi\)
−0.580875 + 0.813993i \(0.697290\pi\)
\(740\) −5.56930 17.2742i −0.204731 0.635013i
\(741\) 0 0
\(742\) 5.34363i 0.196171i
\(743\) 10.1168i 0.371151i 0.982630 + 0.185576i \(0.0594149\pi\)
−0.982630 + 0.185576i \(0.940585\pi\)
\(744\) 2.74456 0.100621
\(745\) −8.00000 + 2.57924i −0.293097 + 0.0944961i
\(746\) −30.2921 −1.10907
\(747\) 6.51087i 0.238220i
\(748\) 13.4891i 0.493211i
\(749\) −0.994667 −0.0363443
\(750\) 5.25544 7.13058i 0.191901 0.260372i
\(751\) −2.51087 −0.0916231 −0.0458116 0.998950i \(-0.514587\pi\)
−0.0458116 + 0.998950i \(0.514587\pi\)
\(752\) 4.62772i 0.168756i
\(753\) 18.2054i 0.663441i
\(754\) 0 0
\(755\) −5.05842 + 1.63086i −0.184095 + 0.0593531i
\(756\) 14.3537 0.522040
\(757\) 14.2612i 0.518331i 0.965833 + 0.259165i \(0.0834475\pi\)
−0.965833 + 0.259165i \(0.916553\pi\)
\(758\) 17.3205i 0.629109i
\(759\) 26.5330 0.963087
\(760\) −2.37686 7.37228i −0.0862178 0.267421i
\(761\) −8.51278 −0.308588 −0.154294 0.988025i \(-0.549310\pi\)
−0.154294 + 0.988025i \(0.549310\pi\)
\(762\) 2.74456i 0.0994250i
\(763\) 43.0612i 1.55892i
\(764\) 0 0
\(765\) 4.34896 + 13.4891i 0.157237 + 0.487700i
\(766\) 34.1168 1.23269
\(767\) 0 0
\(768\) 0.792287i 0.0285892i
\(769\) 23.3639 0.842522 0.421261 0.906939i \(-0.361588\pi\)
0.421261 + 0.906939i \(0.361588\pi\)
\(770\) −36.2337 + 11.6819i −1.30577 + 0.420987i
\(771\) −7.13859 −0.257090
\(772\) 14.0000i 0.503871i
\(773\) 9.60597i 0.345503i −0.984965 0.172751i \(-0.944734\pi\)
0.984965 0.172751i \(-0.0552657\pi\)
\(774\) 22.0742 0.793442
\(775\) 14.0588 10.1168i 0.505007 0.363408i
\(776\) −4.74456 −0.170320
\(777\) 21.6867i 0.778006i
\(778\) 6.00000i 0.215110i
\(779\) 10.9783 0.393337
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) 17.7228i 0.633767i
\(783\) 37.2203i 1.33014i
\(784\) −4.37228 −0.156153
\(785\) −3.26172 10.1168i −0.116416 0.361086i
\(786\) 5.84096 0.208340
\(787\) 44.0000i 1.56843i 0.620489 + 0.784215i \(0.286934\pi\)
−0.620489 + 0.784215i \(0.713066\pi\)
\(788\) 1.37228i 0.0488855i
\(789\) −22.5109 −0.801408
\(790\) 4.62772 + 14.3537i 0.164647 + 0.510683i
\(791\) 57.4150 2.04144
\(792\) 11.9769i 0.425580i
\(793\) 0 0
\(794\) −31.4891 −1.11751
\(795\) 2.67181 0.861407i 0.0947595 0.0305509i
\(796\) 8.00000 0.283552
\(797\) 7.92287i 0.280642i 0.990106 + 0.140321i \(0.0448135\pi\)
−0.990106 + 0.140321i \(0.955186\pi\)
\(798\) 9.25544i 0.327639i
\(799\) 12.3644 0.437421
\(800\) 2.92048 + 4.05842i 0.103255 + 0.143487i
\(801\) −20.1947 −0.713545
\(802\) 0.994667i 0.0351229i
\(803\) 50.4868i 1.78164i
\(804\) 3.16915 0.111767
\(805\) 47.6060 15.3484i 1.67789 0.540960i
\(806\) 0 0
\(807\) 6.92820i 0.243884i
\(808\) 3.25544i 0.114526i
\(809\) −12.3505 −0.434222 −0.217111 0.976147i \(-0.569663\pi\)
−0.217111 + 0.976147i \(0.569663\pi\)
\(810\) −2.56930 7.96916i −0.0902759 0.280008i
\(811\) 17.7253 0.622418 0.311209 0.950341i \(-0.399266\pi\)
0.311209 + 0.950341i \(0.399266\pi\)
\(812\) 29.4891i 1.03487i
\(813\) 9.09509i 0.318979i
\(814\) −40.9793 −1.43632
\(815\) 9.09509 + 28.2101i 0.318587 + 0.988158i
\(816\) 2.11684 0.0741044
\(817\) 32.2337i 1.12771i
\(818\) 25.5383i 0.892927i
\(819\) 0 0
\(820\) −6.74456 + 2.17448i −0.235530 + 0.0759362i
\(821\) 30.7894 1.07456 0.537279 0.843405i \(-0.319452\pi\)
0.537279 + 0.843405i \(0.319452\pi\)
\(822\) 4.75372i 0.165805i
\(823\) 14.7413i 0.513848i −0.966432 0.256924i \(-0.917291\pi\)
0.966432 0.256924i \(-0.0827091\pi\)
\(824\) −10.3923 −0.362033
\(825\) −11.6819 16.2337i −0.406712 0.565184i
\(826\) −22.3692 −0.778323
\(827\) 26.7446i 0.930000i 0.885311 + 0.465000i \(0.153946\pi\)
−0.885311 + 0.465000i \(0.846054\pi\)
\(828\) 15.7359i 0.546862i
\(829\) 13.7663 0.478124 0.239062 0.971004i \(-0.423160\pi\)
0.239062 + 0.971004i \(0.423160\pi\)
\(830\) −5.84096 + 1.88316i −0.202743 + 0.0653653i
\(831\) −13.0217 −0.451719
\(832\) 0 0
\(833\) 11.6819i 0.404755i
\(834\) −0.497333 −0.0172212
\(835\) −3.76631 11.6819i −0.130339 0.404270i
\(836\) −17.4891 −0.604874
\(837\) 14.7446i 0.509647i
\(838\) 1.88316i 0.0650525i
\(839\) −0.294954 −0.0101829 −0.00509147 0.999987i \(-0.501621\pi\)
−0.00509147 + 0.999987i \(0.501621\pi\)
\(840\) −1.83324 5.68614i −0.0632528 0.196190i
\(841\) 47.4674 1.63681
\(842\) 1.08724i 0.0374688i
\(843\) 6.74456i 0.232295i
\(844\) 14.1168 0.485922
\(845\) 0 0
\(846\) −10.9783 −0.377440
\(847\) 48.8614i 1.67890i
\(848\) 1.58457i 0.0544145i
\(849\) 13.7228 0.470966
\(850\) 10.8434 7.80298i 0.371924 0.267640i
\(851\) 53.8411 1.84565
\(852\) 3.13859i 0.107526i
\(853\) 12.1168i 0.414873i 0.978249 + 0.207436i \(0.0665120\pi\)
−0.978249 + 0.207436i \(0.933488\pi\)
\(854\) −16.0000 −0.547509
\(855\) 17.4891 5.63858i 0.598115 0.192835i
\(856\) 0.294954 0.0100813
\(857\) 43.5586i 1.48793i −0.668218 0.743966i \(-0.732942\pi\)
0.668218 0.743966i \(-0.267058\pi\)
\(858\) 0 0
\(859\) 36.4674 1.24425 0.622125 0.782918i \(-0.286269\pi\)
0.622125 + 0.782918i \(0.286269\pi\)
\(860\) −6.38458 19.8030i −0.217712 0.675276i
\(861\) 8.46738 0.288567
\(862\) 9.89497i 0.337024i
\(863\) 24.8614i 0.846292i 0.906061 + 0.423146i \(0.139074\pi\)
−0.906061 + 0.423146i \(0.860926\pi\)
\(864\) −4.25639 −0.144805
\(865\) −8.42020 26.1168i −0.286295 0.887999i
\(866\) 15.3484 0.521560
\(867\) 7.81306i 0.265346i
\(868\) 11.6819i 0.396510i
\(869\) 34.0511 1.15510
\(870\) −14.7446 + 4.75372i −0.499887 + 0.161166i
\(871\) 0 0
\(872\) 12.7692i 0.432419i
\(873\) 11.2554i 0.380939i
\(874\) 22.9783 0.777251
\(875\) −30.3505 22.3692i −1.02604 0.756216i
\(876\) −7.92287 −0.267689
\(877\) 4.35053i 0.146907i 0.997299 + 0.0734535i \(0.0234021\pi\)
−0.997299 + 0.0734535i \(0.976598\pi\)
\(878\) 12.2337i 0.412867i
\(879\) 24.4511 0.824715
\(880\) 10.7446 3.46410i 0.362199 0.116775i
\(881\) 14.3940 0.484947 0.242474 0.970158i \(-0.422041\pi\)
0.242474 + 0.970158i \(0.422041\pi\)
\(882\) 10.3723i 0.349253i
\(883\) 8.90030i 0.299519i 0.988722 + 0.149760i \(0.0478500\pi\)
−0.988722 + 0.149760i \(0.952150\pi\)
\(884\) 0 0
\(885\) −3.60597 11.1846i −0.121213 0.375966i
\(886\) 7.72049 0.259375
\(887\) 0.699713i 0.0234941i 0.999931 + 0.0117470i \(0.00373928\pi\)
−0.999931 + 0.0117470i \(0.996261\pi\)
\(888\) 6.43087i 0.215806i
\(889\) −11.6819 −0.391799
\(890\) 5.84096 + 18.1168i 0.195790 + 0.607278i
\(891\) −18.9051 −0.633344
\(892\) 2.11684i 0.0708772i
\(893\) 16.0309i 0.536453i
\(894\) −2.97825 −0.0996076
\(895\) 47.0689 15.1753i 1.57334 0.507253i
\(896\) 3.37228 0.112660
\(897\) 0 0
\(898\) 34.0511i 1.13630i
\(899\) −30.2921 −1.01030
\(900\) −9.62772 + 6.92820i −0.320924 + 0.230940i
\(901\) 4.23369 0.141045
\(902\) 16.0000i 0.532742i
\(903\) 24.8614i 0.827336i
\(904\) −17.0256 −0.566262
\(905\) 41.4766 13.3723i 1.37873 0.444510i
\(906\) −1.88316 −0.0625637
\(907\) 9.30506i 0.308970i −0.987995 0.154485i \(-0.950628\pi\)
0.987995 0.154485i \(-0.0493718\pi\)
\(908\) 17.4891i 0.580397i
\(909\) 7.72281 0.256150
\(910\) 0 0
\(911\) −10.9783 −0.363726 −0.181863 0.983324i \(-0.558213\pi\)
−0.181863 + 0.983324i \(0.558213\pi\)
\(912\) 2.74456i 0.0908816i
\(913\) 13.8564i 0.458580i
\(914\) −20.9783 −0.693899
\(915\) −2.57924 8.00000i −0.0852671 0.264472i
\(916\) −14.9436 −0.493752
\(917\) 24.8614i 0.820996i
\(918\) 11.3723i 0.375341i
\(919\) −2.97825 −0.0982434 −0.0491217 0.998793i \(-0.515642\pi\)
−0.0491217 + 0.998793i \(0.515642\pi\)
\(920\) −14.1168 + 4.55134i −0.465419 + 0.150053i
\(921\) −12.8617 −0.423809
\(922\) 41.4766i 1.36596i
\(923\) 0 0
\(924\) −13.4891 −0.443760
\(925\) −23.7051 32.9416i −0.779419 1.08311i
\(926\) 16.0000 0.525793
\(927\) 24.6535i 0.809726i
\(928\) 8.74456i 0.287054i
\(929\) −21.3745 −0.701275 −0.350638 0.936511i \(-0.614035\pi\)
−0.350638 + 0.936511i \(0.614035\pi\)
\(930\) 5.84096 1.88316i 0.191533 0.0617511i
\(931\) 15.1460 0.496391
\(932\) 11.1846i 0.366363i
\(933\) 11.6819i 0.382449i
\(934\) 14.1514 0.463047
\(935\) −9.25544 28.7075i −0.302685 0.938835i
\(936\) 0 0
\(937\) 9.50744i 0.310595i −0.987868 0.155297i \(-0.950366\pi\)
0.987868 0.155297i \(-0.0496336\pi\)
\(938\) 13.4891i 0.440436i
\(939\) 13.8832 0.453060
\(940\) 3.17527 + 9.84868i 0.103566 + 0.321229i
\(941\) 37.3128 1.21636 0.608182 0.793798i \(-0.291899\pi\)
0.608182 + 0.793798i \(0.291899\pi\)
\(942\) 3.76631i 0.122713i
\(943\) 21.0217i 0.684562i
\(944\) 6.63325 0.215894
\(945\) 30.5475 9.84868i 0.993712 0.320378i
\(946\) −46.9783 −1.52739
\(947\) 6.51087i 0.211575i −0.994389 0.105787i \(-0.966264\pi\)
0.994389 0.105787i \(-0.0337363\pi\)
\(948\) 5.34363i 0.173553i
\(949\) 0 0
\(950\) −10.1168 14.0588i −0.328234 0.456127i
\(951\) 22.9591 0.744500
\(952\) 9.01011i 0.292019i
\(953\) 0.497333i 0.0161102i −0.999968 0.00805510i \(-0.997436\pi\)
0.999968 0.00805510i \(-0.00256405\pi\)
\(954\) −3.75906 −0.121704
\(955\) 0 0
\(956\) −6.13592 −0.198450
\(957\) 34.9783i 1.13069i
\(958\) 21.5769i 0.697118i
\(959\) −20.2337 −0.653380
\(960\) 0.543620 + 1.68614i 0.0175453 + 0.0544200i
\(961\) −19.0000 −0.612903
\(962\) 0 0
\(963\) 0.699713i 0.0225479i
\(964\) 11.6819 0.376249
\(965\) −9.60597 29.7947i −0.309227 0.959126i
\(966\) 17.7228 0.570222
\(967\) 46.3505i 1.49053i 0.666767 + 0.745266i \(0.267678\pi\)
−0.666767 + 0.745266i \(0.732322\pi\)
\(968\) 14.4891i 0.465698i
\(969\) −7.33296 −0.235569
\(970\) −10.0974 + 3.25544i −0.324206 + 0.104526i
\(971\) 27.6060 0.885918 0.442959 0.896542i \(-0.353929\pi\)
0.442959 + 0.896542i \(0.353929\pi\)
\(972\) 15.7359i 0.504730i
\(973\) 2.11684i 0.0678629i
\(974\) −21.4891 −0.688556
\(975\) 0 0
\(976\) 4.74456 0.151870
\(977\) 31.7228i 1.01490i −0.861680 0.507451i \(-0.830588\pi\)
0.861680 0.507451i \(-0.169412\pi\)
\(978\) 10.5021i 0.335820i
\(979\) 42.9783 1.37359
\(980\) −9.30506 + 3.00000i −0.297239 + 0.0958315i
\(981\) −30.2921 −0.967151
\(982\) 31.3723i 1.00113i
\(983\) 21.0951i 0.672829i −0.941714 0.336415i \(-0.890786\pi\)
0.941714 0.336415i \(-0.109214\pi\)
\(984\) −2.51087 −0.0800438
\(985\) −0.941578 2.92048i −0.0300012 0.0930543i
\(986\) −23.3639 −0.744057
\(987\) 12.3644i 0.393563i
\(988\) 0 0
\(989\) 61.7228 1.96267
\(990\) 8.21782 + 25.4891i 0.261180 + 0.810098i
\(991\) −36.2337 −1.15100 −0.575501 0.817801i \(-0.695193\pi\)
−0.575501 + 0.817801i \(0.695193\pi\)
\(992\) 3.46410i 0.109985i
\(993\) 8.23369i 0.261288i
\(994\) −13.3591 −0.423724
\(995\) 17.0256 5.48913i 0.539746 0.174017i
\(996\) −2.17448 −0.0689011
\(997\) 44.1485i 1.39820i −0.715026 0.699098i \(-0.753585\pi\)
0.715026 0.699098i \(-0.246415\pi\)
\(998\) 35.9306i 1.13736i
\(999\) 34.5484 1.09306
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.b.d.339.7 8
5.2 odd 4 8450.2.a.cj.1.3 4
5.3 odd 4 8450.2.a.cn.1.2 4
5.4 even 2 inner 1690.2.b.d.339.2 8
13.5 odd 4 130.2.c.b.129.3 yes 4
13.8 odd 4 130.2.c.a.129.3 yes 4
13.12 even 2 inner 1690.2.b.d.339.3 8
39.5 even 4 1170.2.f.a.649.1 4
39.8 even 4 1170.2.f.b.649.4 4
52.31 even 4 1040.2.f.c.129.2 4
52.47 even 4 1040.2.f.d.129.2 4
65.8 even 4 650.2.d.e.51.6 8
65.12 odd 4 8450.2.a.cn.1.3 4
65.18 even 4 650.2.d.e.51.2 8
65.34 odd 4 130.2.c.b.129.2 yes 4
65.38 odd 4 8450.2.a.cj.1.2 4
65.44 odd 4 130.2.c.a.129.2 4
65.47 even 4 650.2.d.e.51.3 8
65.57 even 4 650.2.d.e.51.7 8
65.64 even 2 inner 1690.2.b.d.339.6 8
195.44 even 4 1170.2.f.b.649.3 4
195.164 even 4 1170.2.f.a.649.2 4
260.99 even 4 1040.2.f.c.129.3 4
260.239 even 4 1040.2.f.d.129.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.c.a.129.2 4 65.44 odd 4
130.2.c.a.129.3 yes 4 13.8 odd 4
130.2.c.b.129.2 yes 4 65.34 odd 4
130.2.c.b.129.3 yes 4 13.5 odd 4
650.2.d.e.51.2 8 65.18 even 4
650.2.d.e.51.3 8 65.47 even 4
650.2.d.e.51.6 8 65.8 even 4
650.2.d.e.51.7 8 65.57 even 4
1040.2.f.c.129.2 4 52.31 even 4
1040.2.f.c.129.3 4 260.99 even 4
1040.2.f.d.129.2 4 52.47 even 4
1040.2.f.d.129.3 4 260.239 even 4
1170.2.f.a.649.1 4 39.5 even 4
1170.2.f.a.649.2 4 195.164 even 4
1170.2.f.b.649.3 4 195.44 even 4
1170.2.f.b.649.4 4 39.8 even 4
1690.2.b.d.339.2 8 5.4 even 2 inner
1690.2.b.d.339.3 8 13.12 even 2 inner
1690.2.b.d.339.6 8 65.64 even 2 inner
1690.2.b.d.339.7 8 1.1 even 1 trivial
8450.2.a.cj.1.2 4 65.38 odd 4
8450.2.a.cj.1.3 4 5.2 odd 4
8450.2.a.cn.1.2 4 5.3 odd 4
8450.2.a.cn.1.3 4 65.12 odd 4