Properties

Label 169.8.a.i.1.7
Level $169$
Weight $8$
Character 169.1
Self dual yes
Analytic conductor $52.793$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.58294 q^{2} +18.1259 q^{3} -54.3331 q^{4} -37.6136 q^{5} -155.574 q^{6} -711.860 q^{7} +1564.95 q^{8} -1858.45 q^{9} +322.835 q^{10} -4443.35 q^{11} -984.838 q^{12} +6109.86 q^{14} -681.782 q^{15} -6477.28 q^{16} -12189.3 q^{17} +15951.0 q^{18} -3742.40 q^{19} +2043.66 q^{20} -12903.1 q^{21} +38137.0 q^{22} -36942.6 q^{23} +28366.3 q^{24} -76710.2 q^{25} -73327.6 q^{27} +38677.5 q^{28} +52831.5 q^{29} +5851.69 q^{30} +159829. q^{31} -144720. q^{32} -80539.9 q^{33} +104620. q^{34} +26775.6 q^{35} +100975. q^{36} -306798. q^{37} +32120.8 q^{38} -58863.5 q^{40} +720391. q^{41} +110747. q^{42} -822785. q^{43} +241421. q^{44} +69903.0 q^{45} +317076. q^{46} +157589. q^{47} -117407. q^{48} -316798. q^{49} +658400. q^{50} -220942. q^{51} -1.36471e6 q^{53} +629367. q^{54} +167130. q^{55} -1.11403e6 q^{56} -67834.6 q^{57} -453450. q^{58} -1.62822e6 q^{59} +37043.3 q^{60} +1.21911e6 q^{61} -1.37180e6 q^{62} +1.32296e6 q^{63} +2.07122e6 q^{64} +691269. q^{66} +3.98372e6 q^{67} +662280. q^{68} -669619. q^{69} -229814. q^{70} +267877. q^{71} -2.90839e6 q^{72} +4.29822e6 q^{73} +2.63323e6 q^{74} -1.39045e6 q^{75} +203336. q^{76} +3.16304e6 q^{77} +5.94629e6 q^{79} +243634. q^{80} +2.73530e6 q^{81} -6.18307e6 q^{82} -2.95302e6 q^{83} +701067. q^{84} +458481. q^{85} +7.06192e6 q^{86} +957621. q^{87} -6.95363e6 q^{88} +1.20011e7 q^{89} -599973. q^{90} +2.00720e6 q^{92} +2.89705e6 q^{93} -1.35258e6 q^{94} +140765. q^{95} -2.62319e6 q^{96} +4.66114e6 q^{97} +2.71906e6 q^{98} +8.25774e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 31 q^{2} - 26 q^{3} + 1409 q^{4} + 680 q^{5} + 1470 q^{6} + 2929 q^{7} + 4716 q^{8} + 15465 q^{9} - 5167 q^{10} + 14824 q^{11} + 21795 q^{12} - 179 q^{14} + 36398 q^{15} + 113205 q^{16} + 45016 q^{17}+ \cdots + 37605493 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.58294 −0.758632 −0.379316 0.925267i \(-0.623841\pi\)
−0.379316 + 0.925267i \(0.623841\pi\)
\(3\) 18.1259 0.387593 0.193797 0.981042i \(-0.437920\pi\)
0.193797 + 0.981042i \(0.437920\pi\)
\(4\) −54.3331 −0.424477
\(5\) −37.6136 −0.134570 −0.0672852 0.997734i \(-0.521434\pi\)
−0.0672852 + 0.997734i \(0.521434\pi\)
\(6\) −155.574 −0.294041
\(7\) −711.860 −0.784425 −0.392213 0.919875i \(-0.628290\pi\)
−0.392213 + 0.919875i \(0.628290\pi\)
\(8\) 1564.95 1.08065
\(9\) −1858.45 −0.849771
\(10\) 322.835 0.102089
\(11\) −4443.35 −1.00655 −0.503275 0.864126i \(-0.667872\pi\)
−0.503275 + 0.864126i \(0.667872\pi\)
\(12\) −984.838 −0.164525
\(13\) 0 0
\(14\) 6109.86 0.595090
\(15\) −681.782 −0.0521586
\(16\) −6477.28 −0.395342
\(17\) −12189.3 −0.601736 −0.300868 0.953666i \(-0.597276\pi\)
−0.300868 + 0.953666i \(0.597276\pi\)
\(18\) 15951.0 0.644664
\(19\) −3742.40 −0.125174 −0.0625868 0.998040i \(-0.519935\pi\)
−0.0625868 + 0.998040i \(0.519935\pi\)
\(20\) 2043.66 0.0571221
\(21\) −12903.1 −0.304038
\(22\) 38137.0 0.763602
\(23\) −36942.6 −0.633111 −0.316555 0.948574i \(-0.602526\pi\)
−0.316555 + 0.948574i \(0.602526\pi\)
\(24\) 28366.3 0.418854
\(25\) −76710.2 −0.981891
\(26\) 0 0
\(27\) −73327.6 −0.716959
\(28\) 38677.5 0.332971
\(29\) 52831.5 0.402254 0.201127 0.979565i \(-0.435540\pi\)
0.201127 + 0.979565i \(0.435540\pi\)
\(30\) 5851.69 0.0395692
\(31\) 159829. 0.963584 0.481792 0.876286i \(-0.339986\pi\)
0.481792 + 0.876286i \(0.339986\pi\)
\(32\) −144720. −0.780735
\(33\) −80539.9 −0.390132
\(34\) 104620. 0.456496
\(35\) 26775.6 0.105560
\(36\) 100975. 0.360709
\(37\) −306798. −0.995741 −0.497871 0.867251i \(-0.665885\pi\)
−0.497871 + 0.867251i \(0.665885\pi\)
\(38\) 32120.8 0.0949608
\(39\) 0 0
\(40\) −58863.5 −0.145424
\(41\) 720391. 1.63239 0.816196 0.577774i \(-0.196079\pi\)
0.816196 + 0.577774i \(0.196079\pi\)
\(42\) 110747. 0.230653
\(43\) −822785. −1.57814 −0.789072 0.614301i \(-0.789438\pi\)
−0.789072 + 0.614301i \(0.789438\pi\)
\(44\) 241421. 0.427258
\(45\) 69903.0 0.114354
\(46\) 317076. 0.480298
\(47\) 157589. 0.221404 0.110702 0.993854i \(-0.464690\pi\)
0.110702 + 0.993854i \(0.464690\pi\)
\(48\) −117407. −0.153232
\(49\) −316798. −0.384677
\(50\) 658400. 0.744894
\(51\) −220942. −0.233229
\(52\) 0 0
\(53\) −1.36471e6 −1.25914 −0.629572 0.776942i \(-0.716770\pi\)
−0.629572 + 0.776942i \(0.716770\pi\)
\(54\) 629367. 0.543908
\(55\) 167130. 0.135452
\(56\) −1.11403e6 −0.847692
\(57\) −67834.6 −0.0485165
\(58\) −453450. −0.305163
\(59\) −1.62822e6 −1.03212 −0.516060 0.856552i \(-0.672602\pi\)
−0.516060 + 0.856552i \(0.672602\pi\)
\(60\) 37043.3 0.0221401
\(61\) 1.21911e6 0.687683 0.343842 0.939028i \(-0.388272\pi\)
0.343842 + 0.939028i \(0.388272\pi\)
\(62\) −1.37180e6 −0.731006
\(63\) 1.32296e6 0.666582
\(64\) 2.07122e6 0.987633
\(65\) 0 0
\(66\) 691269. 0.295967
\(67\) 3.98372e6 1.61818 0.809090 0.587685i \(-0.199961\pi\)
0.809090 + 0.587685i \(0.199961\pi\)
\(68\) 662280. 0.255423
\(69\) −669619. −0.245390
\(70\) −229814. −0.0800816
\(71\) 267877. 0.0888241 0.0444121 0.999013i \(-0.485859\pi\)
0.0444121 + 0.999013i \(0.485859\pi\)
\(72\) −2.90839e6 −0.918309
\(73\) 4.29822e6 1.29318 0.646590 0.762838i \(-0.276195\pi\)
0.646590 + 0.762838i \(0.276195\pi\)
\(74\) 2.63323e6 0.755401
\(75\) −1.39045e6 −0.380574
\(76\) 203336. 0.0531334
\(77\) 3.16304e6 0.789564
\(78\) 0 0
\(79\) 5.94629e6 1.35691 0.678455 0.734642i \(-0.262650\pi\)
0.678455 + 0.734642i \(0.262650\pi\)
\(80\) 243634. 0.0532014
\(81\) 2.73530e6 0.571883
\(82\) −6.18307e6 −1.23839
\(83\) −2.95302e6 −0.566883 −0.283441 0.958990i \(-0.591476\pi\)
−0.283441 + 0.958990i \(0.591476\pi\)
\(84\) 701067. 0.129057
\(85\) 458481. 0.0809759
\(86\) 7.06192e6 1.19723
\(87\) 957621. 0.155911
\(88\) −6.95363e6 −1.08773
\(89\) 1.20011e7 1.80449 0.902245 0.431223i \(-0.141918\pi\)
0.902245 + 0.431223i \(0.141918\pi\)
\(90\) −599973. −0.0867527
\(91\) 0 0
\(92\) 2.00720e6 0.268741
\(93\) 2.89705e6 0.373479
\(94\) −1.35258e6 −0.167964
\(95\) 140765. 0.0168447
\(96\) −2.62319e6 −0.302608
\(97\) 4.66114e6 0.518551 0.259275 0.965803i \(-0.416516\pi\)
0.259275 + 0.965803i \(0.416516\pi\)
\(98\) 2.71906e6 0.291828
\(99\) 8.25774e6 0.855338
\(100\) 4.16790e6 0.416790
\(101\) −1.93897e7 −1.87261 −0.936304 0.351191i \(-0.885777\pi\)
−0.936304 + 0.351191i \(0.885777\pi\)
\(102\) 1.89633e6 0.176935
\(103\) 1.97787e7 1.78348 0.891740 0.452547i \(-0.149485\pi\)
0.891740 + 0.452547i \(0.149485\pi\)
\(104\) 0 0
\(105\) 485333. 0.0409145
\(106\) 1.17133e7 0.955228
\(107\) 1.45526e7 1.14841 0.574206 0.818711i \(-0.305311\pi\)
0.574206 + 0.818711i \(0.305311\pi\)
\(108\) 3.98411e6 0.304333
\(109\) 6.20545e6 0.458966 0.229483 0.973313i \(-0.426296\pi\)
0.229483 + 0.973313i \(0.426296\pi\)
\(110\) −1.43447e6 −0.102758
\(111\) −5.56100e6 −0.385943
\(112\) 4.61092e6 0.310116
\(113\) 7.16247e6 0.466969 0.233484 0.972361i \(-0.424987\pi\)
0.233484 + 0.972361i \(0.424987\pi\)
\(114\) 582221. 0.0368062
\(115\) 1.38954e6 0.0851980
\(116\) −2.87050e6 −0.170747
\(117\) 0 0
\(118\) 1.39749e7 0.783000
\(119\) 8.67704e6 0.472017
\(120\) −1.06696e6 −0.0563654
\(121\) 256155. 0.0131448
\(122\) −1.04636e7 −0.521699
\(123\) 1.30578e7 0.632705
\(124\) −8.68400e6 −0.409019
\(125\) 5.82391e6 0.266704
\(126\) −1.13549e7 −0.505691
\(127\) 1.56555e7 0.678196 0.339098 0.940751i \(-0.389878\pi\)
0.339098 + 0.940751i \(0.389878\pi\)
\(128\) 747029. 0.0314849
\(129\) −1.49138e7 −0.611678
\(130\) 0 0
\(131\) −2.61761e7 −1.01731 −0.508657 0.860969i \(-0.669858\pi\)
−0.508657 + 0.860969i \(0.669858\pi\)
\(132\) 4.37598e6 0.165602
\(133\) 2.66407e6 0.0981894
\(134\) −3.41920e7 −1.22760
\(135\) 2.75811e6 0.0964815
\(136\) −1.90756e7 −0.650268
\(137\) 6.57353e6 0.218412 0.109206 0.994019i \(-0.465169\pi\)
0.109206 + 0.994019i \(0.465169\pi\)
\(138\) 5.74730e6 0.186160
\(139\) 1.10161e7 0.347919 0.173959 0.984753i \(-0.444344\pi\)
0.173959 + 0.984753i \(0.444344\pi\)
\(140\) −1.45480e6 −0.0448080
\(141\) 2.85646e6 0.0858146
\(142\) −2.29917e6 −0.0673849
\(143\) 0 0
\(144\) 1.20377e7 0.335950
\(145\) −1.98718e6 −0.0541315
\(146\) −3.68914e7 −0.981048
\(147\) −5.74227e6 −0.149098
\(148\) 1.66693e7 0.422669
\(149\) −2.61742e7 −0.648218 −0.324109 0.946020i \(-0.605064\pi\)
−0.324109 + 0.946020i \(0.605064\pi\)
\(150\) 1.19341e7 0.288716
\(151\) −6.37855e7 −1.50766 −0.753829 0.657071i \(-0.771795\pi\)
−0.753829 + 0.657071i \(0.771795\pi\)
\(152\) −5.85669e6 −0.135269
\(153\) 2.26531e7 0.511338
\(154\) −2.71482e7 −0.598989
\(155\) −6.01174e6 −0.129670
\(156\) 0 0
\(157\) −6.74650e7 −1.39133 −0.695664 0.718367i \(-0.744890\pi\)
−0.695664 + 0.718367i \(0.744890\pi\)
\(158\) −5.10367e7 −1.02940
\(159\) −2.47367e7 −0.488036
\(160\) 5.44344e6 0.105064
\(161\) 2.62979e7 0.496628
\(162\) −2.34769e7 −0.433849
\(163\) −4.30912e7 −0.779348 −0.389674 0.920953i \(-0.627412\pi\)
−0.389674 + 0.920953i \(0.627412\pi\)
\(164\) −3.91410e7 −0.692913
\(165\) 3.02939e6 0.0525003
\(166\) 2.53456e7 0.430056
\(167\) −6.27530e7 −1.04262 −0.521311 0.853367i \(-0.674557\pi\)
−0.521311 + 0.853367i \(0.674557\pi\)
\(168\) −2.01928e7 −0.328560
\(169\) 0 0
\(170\) −3.93512e6 −0.0614309
\(171\) 6.95507e6 0.106369
\(172\) 4.47044e7 0.669886
\(173\) 9.73052e7 1.42881 0.714405 0.699732i \(-0.246697\pi\)
0.714405 + 0.699732i \(0.246697\pi\)
\(174\) −8.21921e6 −0.118279
\(175\) 5.46069e7 0.770220
\(176\) 2.87808e7 0.397932
\(177\) −2.95130e7 −0.400043
\(178\) −1.03004e8 −1.36894
\(179\) 9.62895e7 1.25485 0.627427 0.778675i \(-0.284108\pi\)
0.627427 + 0.778675i \(0.284108\pi\)
\(180\) −3.79804e6 −0.0485407
\(181\) −9.20560e7 −1.15392 −0.576962 0.816771i \(-0.695762\pi\)
−0.576962 + 0.816771i \(0.695762\pi\)
\(182\) 0 0
\(183\) 2.20975e7 0.266541
\(184\) −5.78134e7 −0.684174
\(185\) 1.15398e7 0.133997
\(186\) −2.48652e7 −0.283333
\(187\) 5.41611e7 0.605678
\(188\) −8.56232e6 −0.0939808
\(189\) 5.21990e7 0.562401
\(190\) −1.20818e6 −0.0127789
\(191\) 1.37682e7 0.142976 0.0714878 0.997441i \(-0.477225\pi\)
0.0714878 + 0.997441i \(0.477225\pi\)
\(192\) 3.75428e7 0.382800
\(193\) 1.24460e7 0.124618 0.0623089 0.998057i \(-0.480154\pi\)
0.0623089 + 0.998057i \(0.480154\pi\)
\(194\) −4.00063e7 −0.393389
\(195\) 0 0
\(196\) 1.72126e7 0.163287
\(197\) −1.12835e8 −1.05151 −0.525754 0.850636i \(-0.676217\pi\)
−0.525754 + 0.850636i \(0.676217\pi\)
\(198\) −7.08757e7 −0.648887
\(199\) 1.48457e8 1.33541 0.667704 0.744427i \(-0.267277\pi\)
0.667704 + 0.744427i \(0.267277\pi\)
\(200\) −1.20048e8 −1.06108
\(201\) 7.22087e7 0.627196
\(202\) 1.66421e8 1.42062
\(203\) −3.76086e7 −0.315538
\(204\) 1.20044e7 0.0990003
\(205\) −2.70965e7 −0.219672
\(206\) −1.69760e8 −1.35301
\(207\) 6.86559e7 0.537999
\(208\) 0 0
\(209\) 1.66288e7 0.125994
\(210\) −4.16559e6 −0.0310391
\(211\) −1.45474e8 −1.06610 −0.533048 0.846085i \(-0.678954\pi\)
−0.533048 + 0.846085i \(0.678954\pi\)
\(212\) 7.41490e7 0.534478
\(213\) 4.85552e6 0.0344276
\(214\) −1.24904e8 −0.871223
\(215\) 3.09479e7 0.212372
\(216\) −1.14754e8 −0.774785
\(217\) −1.13776e8 −0.755860
\(218\) −5.32610e7 −0.348187
\(219\) 7.79094e7 0.501228
\(220\) −9.08069e6 −0.0574963
\(221\) 0 0
\(222\) 4.77298e7 0.292789
\(223\) −2.87816e8 −1.73799 −0.868996 0.494819i \(-0.835234\pi\)
−0.868996 + 0.494819i \(0.835234\pi\)
\(224\) 1.03020e8 0.612428
\(225\) 1.42562e8 0.834383
\(226\) −6.14750e7 −0.354258
\(227\) 9.37576e7 0.532005 0.266003 0.963972i \(-0.414297\pi\)
0.266003 + 0.963972i \(0.414297\pi\)
\(228\) 3.68566e6 0.0205941
\(229\) 1.30682e8 0.719103 0.359551 0.933125i \(-0.382930\pi\)
0.359551 + 0.933125i \(0.382930\pi\)
\(230\) −1.19264e7 −0.0646339
\(231\) 5.73331e7 0.306030
\(232\) 8.26789e7 0.434697
\(233\) 5.84615e7 0.302778 0.151389 0.988474i \(-0.451625\pi\)
0.151389 + 0.988474i \(0.451625\pi\)
\(234\) 0 0
\(235\) −5.92750e6 −0.0297944
\(236\) 8.84660e7 0.438111
\(237\) 1.07782e8 0.525929
\(238\) −7.44746e7 −0.358087
\(239\) 6.20670e7 0.294082 0.147041 0.989130i \(-0.453025\pi\)
0.147041 + 0.989130i \(0.453025\pi\)
\(240\) 4.41609e6 0.0206205
\(241\) −3.17938e8 −1.46313 −0.731565 0.681771i \(-0.761210\pi\)
−0.731565 + 0.681771i \(0.761210\pi\)
\(242\) −2.19856e6 −0.00997207
\(243\) 2.09947e8 0.938617
\(244\) −6.62380e7 −0.291906
\(245\) 1.19159e7 0.0517662
\(246\) −1.12074e8 −0.479990
\(247\) 0 0
\(248\) 2.50125e8 1.04130
\(249\) −5.35263e7 −0.219720
\(250\) −4.99863e7 −0.202330
\(251\) −4.54805e7 −0.181538 −0.0907689 0.995872i \(-0.528932\pi\)
−0.0907689 + 0.995872i \(0.528932\pi\)
\(252\) −7.18803e7 −0.282949
\(253\) 1.64149e8 0.637258
\(254\) −1.34371e8 −0.514501
\(255\) 8.31041e6 0.0313857
\(256\) −2.71527e8 −1.01152
\(257\) 1.85747e8 0.682583 0.341292 0.939957i \(-0.389136\pi\)
0.341292 + 0.939957i \(0.389136\pi\)
\(258\) 1.28004e8 0.464039
\(259\) 2.18397e8 0.781084
\(260\) 0 0
\(261\) −9.81847e7 −0.341824
\(262\) 2.24668e8 0.771767
\(263\) −1.32964e6 −0.00450702 −0.00225351 0.999997i \(-0.500717\pi\)
−0.00225351 + 0.999997i \(0.500717\pi\)
\(264\) −1.26041e8 −0.421598
\(265\) 5.13317e7 0.169444
\(266\) −2.28655e7 −0.0744896
\(267\) 2.17531e8 0.699409
\(268\) −2.16448e8 −0.686880
\(269\) 4.40803e8 1.38074 0.690369 0.723457i \(-0.257448\pi\)
0.690369 + 0.723457i \(0.257448\pi\)
\(270\) −2.36727e7 −0.0731940
\(271\) −4.43852e7 −0.135471 −0.0677353 0.997703i \(-0.521577\pi\)
−0.0677353 + 0.997703i \(0.521577\pi\)
\(272\) 7.89533e7 0.237891
\(273\) 0 0
\(274\) −5.64203e7 −0.165695
\(275\) 3.40850e8 0.988323
\(276\) 3.63825e7 0.104162
\(277\) −5.63635e8 −1.59338 −0.796689 0.604389i \(-0.793417\pi\)
−0.796689 + 0.604389i \(0.793417\pi\)
\(278\) −9.45509e7 −0.263942
\(279\) −2.97034e8 −0.818826
\(280\) 4.19026e7 0.114074
\(281\) 6.29310e8 1.69197 0.845984 0.533208i \(-0.179014\pi\)
0.845984 + 0.533208i \(0.179014\pi\)
\(282\) −2.45168e7 −0.0651017
\(283\) −4.86094e8 −1.27487 −0.637437 0.770502i \(-0.720006\pi\)
−0.637437 + 0.770502i \(0.720006\pi\)
\(284\) −1.45546e7 −0.0377038
\(285\) 2.55150e6 0.00652888
\(286\) 0 0
\(287\) −5.12818e8 −1.28049
\(288\) 2.68955e8 0.663446
\(289\) −2.61761e8 −0.637914
\(290\) 1.70559e7 0.0410659
\(291\) 8.44876e7 0.200987
\(292\) −2.33536e8 −0.548925
\(293\) −1.58617e8 −0.368396 −0.184198 0.982889i \(-0.558969\pi\)
−0.184198 + 0.982889i \(0.558969\pi\)
\(294\) 4.92856e7 0.113111
\(295\) 6.12431e7 0.138893
\(296\) −4.80125e8 −1.07605
\(297\) 3.25820e8 0.721656
\(298\) 2.24651e8 0.491759
\(299\) 0 0
\(300\) 7.55472e7 0.161545
\(301\) 5.85708e8 1.23794
\(302\) 5.47468e8 1.14376
\(303\) −3.51457e8 −0.725810
\(304\) 2.42406e7 0.0494864
\(305\) −4.58551e7 −0.0925418
\(306\) −1.94430e8 −0.387917
\(307\) 3.43683e8 0.677912 0.338956 0.940802i \(-0.389926\pi\)
0.338956 + 0.940802i \(0.389926\pi\)
\(308\) −1.71858e8 −0.335152
\(309\) 3.58508e8 0.691265
\(310\) 5.15984e7 0.0983718
\(311\) −3.43924e8 −0.648338 −0.324169 0.945999i \(-0.605085\pi\)
−0.324169 + 0.945999i \(0.605085\pi\)
\(312\) 0 0
\(313\) −2.30082e8 −0.424109 −0.212054 0.977258i \(-0.568015\pi\)
−0.212054 + 0.977258i \(0.568015\pi\)
\(314\) 5.79048e8 1.05551
\(315\) −4.97611e7 −0.0897022
\(316\) −3.23080e8 −0.575977
\(317\) 5.16781e8 0.911169 0.455584 0.890193i \(-0.349430\pi\)
0.455584 + 0.890193i \(0.349430\pi\)
\(318\) 2.12314e8 0.370240
\(319\) −2.34749e8 −0.404889
\(320\) −7.79059e7 −0.132906
\(321\) 2.63780e8 0.445117
\(322\) −2.25714e8 −0.376758
\(323\) 4.56171e7 0.0753215
\(324\) −1.48617e8 −0.242751
\(325\) 0 0
\(326\) 3.69849e8 0.591239
\(327\) 1.12480e8 0.177892
\(328\) 1.12738e9 1.76405
\(329\) −1.12182e8 −0.173675
\(330\) −2.60011e7 −0.0398284
\(331\) 1.09918e9 1.66598 0.832990 0.553287i \(-0.186627\pi\)
0.832990 + 0.553287i \(0.186627\pi\)
\(332\) 1.60447e8 0.240629
\(333\) 5.70169e8 0.846152
\(334\) 5.38606e8 0.790967
\(335\) −1.49842e8 −0.217759
\(336\) 8.35773e7 0.120199
\(337\) 9.93632e8 1.41423 0.707116 0.707097i \(-0.249996\pi\)
0.707116 + 0.707097i \(0.249996\pi\)
\(338\) 0 0
\(339\) 1.29826e8 0.180994
\(340\) −2.49107e7 −0.0343724
\(341\) −7.10176e8 −0.969896
\(342\) −5.96950e7 −0.0806950
\(343\) 8.11763e8 1.08618
\(344\) −1.28762e9 −1.70543
\(345\) 2.51868e7 0.0330222
\(346\) −8.35165e8 −1.08394
\(347\) 9.94060e7 0.127720 0.0638601 0.997959i \(-0.479659\pi\)
0.0638601 + 0.997959i \(0.479659\pi\)
\(348\) −5.20305e7 −0.0661806
\(349\) −2.62555e8 −0.330621 −0.165311 0.986242i \(-0.552863\pi\)
−0.165311 + 0.986242i \(0.552863\pi\)
\(350\) −4.68688e8 −0.584314
\(351\) 0 0
\(352\) 6.43041e8 0.785850
\(353\) −7.65807e7 −0.0926633 −0.0463316 0.998926i \(-0.514753\pi\)
−0.0463316 + 0.998926i \(0.514753\pi\)
\(354\) 2.53308e8 0.303485
\(355\) −1.00758e7 −0.0119531
\(356\) −6.52054e8 −0.765965
\(357\) 1.57280e8 0.182951
\(358\) −8.26448e8 −0.951973
\(359\) 1.28834e9 1.46960 0.734801 0.678282i \(-0.237275\pi\)
0.734801 + 0.678282i \(0.237275\pi\)
\(360\) 1.09395e8 0.123577
\(361\) −8.79866e8 −0.984332
\(362\) 7.90112e8 0.875404
\(363\) 4.64305e6 0.00509484
\(364\) 0 0
\(365\) −1.61672e8 −0.174024
\(366\) −1.89662e8 −0.202207
\(367\) −9.75428e8 −1.03006 −0.515032 0.857171i \(-0.672220\pi\)
−0.515032 + 0.857171i \(0.672220\pi\)
\(368\) 2.39288e8 0.250295
\(369\) −1.33881e9 −1.38716
\(370\) −9.90452e7 −0.101655
\(371\) 9.71484e8 0.987705
\(372\) −1.57406e8 −0.158533
\(373\) −7.26009e8 −0.724371 −0.362186 0.932106i \(-0.617969\pi\)
−0.362186 + 0.932106i \(0.617969\pi\)
\(374\) −4.64861e8 −0.459487
\(375\) 1.05564e8 0.103373
\(376\) 2.46620e8 0.239261
\(377\) 0 0
\(378\) −4.48021e8 −0.426655
\(379\) −1.53421e9 −1.44760 −0.723800 0.690009i \(-0.757606\pi\)
−0.723800 + 0.690009i \(0.757606\pi\)
\(380\) −7.64820e6 −0.00715018
\(381\) 2.83772e8 0.262864
\(382\) −1.18172e8 −0.108466
\(383\) 3.52677e7 0.0320760 0.0160380 0.999871i \(-0.494895\pi\)
0.0160380 + 0.999871i \(0.494895\pi\)
\(384\) 1.35406e7 0.0122033
\(385\) −1.18973e8 −0.106252
\(386\) −1.06823e8 −0.0945390
\(387\) 1.52910e9 1.34106
\(388\) −2.53254e8 −0.220113
\(389\) 5.04613e8 0.434645 0.217323 0.976100i \(-0.430268\pi\)
0.217323 + 0.976100i \(0.430268\pi\)
\(390\) 0 0
\(391\) 4.50302e8 0.380965
\(392\) −4.95775e8 −0.415703
\(393\) −4.74466e8 −0.394304
\(394\) 9.68458e8 0.797709
\(395\) −2.23661e8 −0.182600
\(396\) −4.48668e8 −0.363071
\(397\) 2.26708e8 0.181845 0.0909224 0.995858i \(-0.471018\pi\)
0.0909224 + 0.995858i \(0.471018\pi\)
\(398\) −1.27420e9 −1.01308
\(399\) 4.82888e7 0.0380576
\(400\) 4.96874e8 0.388183
\(401\) −2.33490e8 −0.180827 −0.0904134 0.995904i \(-0.528819\pi\)
−0.0904134 + 0.995904i \(0.528819\pi\)
\(402\) −6.19763e8 −0.475811
\(403\) 0 0
\(404\) 1.05350e9 0.794879
\(405\) −1.02884e8 −0.0769585
\(406\) 3.22793e8 0.239377
\(407\) 1.36321e9 1.00226
\(408\) −3.45764e8 −0.252040
\(409\) 1.88840e9 1.36478 0.682388 0.730990i \(-0.260941\pi\)
0.682388 + 0.730990i \(0.260941\pi\)
\(410\) 2.32568e8 0.166650
\(411\) 1.19152e8 0.0846551
\(412\) −1.07464e9 −0.757047
\(413\) 1.15906e9 0.809621
\(414\) −5.89270e8 −0.408144
\(415\) 1.11074e8 0.0762857
\(416\) 0 0
\(417\) 1.99678e8 0.134851
\(418\) −1.42724e8 −0.0955829
\(419\) 5.93294e7 0.0394023 0.0197011 0.999806i \(-0.493729\pi\)
0.0197011 + 0.999806i \(0.493729\pi\)
\(420\) −2.63696e7 −0.0173673
\(421\) 4.12500e7 0.0269424 0.0134712 0.999909i \(-0.495712\pi\)
0.0134712 + 0.999909i \(0.495712\pi\)
\(422\) 1.24859e9 0.808775
\(423\) −2.92872e8 −0.188142
\(424\) −2.13571e9 −1.36070
\(425\) 9.35040e8 0.590839
\(426\) −4.16747e7 −0.0261179
\(427\) −8.67836e8 −0.539436
\(428\) −7.90688e8 −0.487475
\(429\) 0 0
\(430\) −2.65624e8 −0.161112
\(431\) −1.56893e9 −0.943917 −0.471958 0.881621i \(-0.656453\pi\)
−0.471958 + 0.881621i \(0.656453\pi\)
\(432\) 4.74964e8 0.283444
\(433\) −1.76006e8 −0.104188 −0.0520941 0.998642i \(-0.516590\pi\)
−0.0520941 + 0.998642i \(0.516590\pi\)
\(434\) 9.76532e8 0.573419
\(435\) −3.60196e7 −0.0209810
\(436\) −3.37161e8 −0.194821
\(437\) 1.38254e8 0.0792488
\(438\) −6.68692e8 −0.380248
\(439\) 1.88359e9 1.06257 0.531287 0.847192i \(-0.321708\pi\)
0.531287 + 0.847192i \(0.321708\pi\)
\(440\) 2.61551e8 0.146377
\(441\) 5.88754e8 0.326888
\(442\) 0 0
\(443\) −2.29191e9 −1.25252 −0.626260 0.779614i \(-0.715415\pi\)
−0.626260 + 0.779614i \(0.715415\pi\)
\(444\) 3.02146e8 0.163824
\(445\) −4.51403e8 −0.242831
\(446\) 2.47031e9 1.31850
\(447\) −4.74432e8 −0.251245
\(448\) −1.47442e9 −0.774724
\(449\) 2.77965e9 1.44920 0.724599 0.689170i \(-0.242025\pi\)
0.724599 + 0.689170i \(0.242025\pi\)
\(450\) −1.22360e9 −0.632990
\(451\) −3.20095e9 −1.64309
\(452\) −3.89159e8 −0.198218
\(453\) −1.15617e9 −0.584358
\(454\) −8.04716e8 −0.403596
\(455\) 0 0
\(456\) −1.06158e8 −0.0524295
\(457\) −2.68742e9 −1.31713 −0.658566 0.752523i \(-0.728837\pi\)
−0.658566 + 0.752523i \(0.728837\pi\)
\(458\) −1.12163e9 −0.545535
\(459\) 8.93809e8 0.431420
\(460\) −7.54981e7 −0.0361646
\(461\) −2.79625e9 −1.32930 −0.664650 0.747155i \(-0.731419\pi\)
−0.664650 + 0.747155i \(0.731419\pi\)
\(462\) −4.92087e8 −0.232164
\(463\) −8.32472e7 −0.0389795 −0.0194898 0.999810i \(-0.506204\pi\)
−0.0194898 + 0.999810i \(0.506204\pi\)
\(464\) −3.42205e8 −0.159028
\(465\) −1.08968e8 −0.0502592
\(466\) −5.01771e8 −0.229697
\(467\) −3.64730e9 −1.65715 −0.828576 0.559876i \(-0.810849\pi\)
−0.828576 + 0.559876i \(0.810849\pi\)
\(468\) 0 0
\(469\) −2.83585e9 −1.26934
\(470\) 5.08754e7 0.0226030
\(471\) −1.22287e9 −0.539269
\(472\) −2.54809e9 −1.11537
\(473\) 3.65592e9 1.58848
\(474\) −9.25088e8 −0.398987
\(475\) 2.87081e8 0.122907
\(476\) −4.71450e8 −0.200360
\(477\) 2.53625e9 1.06999
\(478\) −5.32718e8 −0.223100
\(479\) −2.04827e9 −0.851556 −0.425778 0.904828i \(-0.640000\pi\)
−0.425778 + 0.904828i \(0.640000\pi\)
\(480\) 9.86675e7 0.0407221
\(481\) 0 0
\(482\) 2.72885e9 1.10998
\(483\) 4.76675e8 0.192490
\(484\) −1.39177e7 −0.00557967
\(485\) −1.75322e8 −0.0697816
\(486\) −1.80197e9 −0.712065
\(487\) 1.60868e9 0.631129 0.315564 0.948904i \(-0.397806\pi\)
0.315564 + 0.948904i \(0.397806\pi\)
\(488\) 1.90785e9 0.743148
\(489\) −7.81068e8 −0.302070
\(490\) −1.02274e8 −0.0392715
\(491\) 2.08343e9 0.794316 0.397158 0.917750i \(-0.369997\pi\)
0.397158 + 0.917750i \(0.369997\pi\)
\(492\) −7.09469e8 −0.268569
\(493\) −6.43977e8 −0.242050
\(494\) 0 0
\(495\) −3.10603e8 −0.115103
\(496\) −1.03526e9 −0.380945
\(497\) −1.90691e8 −0.0696759
\(498\) 4.59413e8 0.166687
\(499\) 1.01332e9 0.365087 0.182543 0.983198i \(-0.441567\pi\)
0.182543 + 0.983198i \(0.441567\pi\)
\(500\) −3.16431e8 −0.113210
\(501\) −1.13746e9 −0.404113
\(502\) 3.90356e8 0.137720
\(503\) 1.20560e9 0.422391 0.211195 0.977444i \(-0.432264\pi\)
0.211195 + 0.977444i \(0.432264\pi\)
\(504\) 2.07037e9 0.720345
\(505\) 7.29317e8 0.251998
\(506\) −1.40888e9 −0.483445
\(507\) 0 0
\(508\) −8.50614e8 −0.287879
\(509\) 3.99769e9 1.34368 0.671842 0.740694i \(-0.265503\pi\)
0.671842 + 0.740694i \(0.265503\pi\)
\(510\) −7.13278e7 −0.0238102
\(511\) −3.05973e9 −1.01440
\(512\) 2.23488e9 0.735885
\(513\) 2.74422e8 0.0897444
\(514\) −1.59425e9 −0.517830
\(515\) −7.43949e8 −0.240004
\(516\) 8.10310e8 0.259643
\(517\) −7.00225e8 −0.222854
\(518\) −1.87449e9 −0.592556
\(519\) 1.76375e9 0.553798
\(520\) 0 0
\(521\) 2.01184e9 0.623249 0.311624 0.950205i \(-0.399127\pi\)
0.311624 + 0.950205i \(0.399127\pi\)
\(522\) 8.42714e8 0.259318
\(523\) 5.43348e8 0.166082 0.0830409 0.996546i \(-0.473537\pi\)
0.0830409 + 0.996546i \(0.473537\pi\)
\(524\) 1.42223e9 0.431827
\(525\) 9.89803e8 0.298532
\(526\) 1.14122e7 0.00341917
\(527\) −1.94820e9 −0.579823
\(528\) 5.21680e8 0.154236
\(529\) −2.04007e9 −0.599171
\(530\) −4.40577e8 −0.128545
\(531\) 3.02596e9 0.877066
\(532\) −1.44747e8 −0.0416791
\(533\) 0 0
\(534\) −1.86705e9 −0.530594
\(535\) −5.47376e8 −0.154542
\(536\) 6.23434e9 1.74869
\(537\) 1.74534e9 0.486373
\(538\) −3.78339e9 −1.04747
\(539\) 1.40764e9 0.387197
\(540\) −1.49857e8 −0.0409542
\(541\) 4.04447e8 0.109818 0.0549088 0.998491i \(-0.482513\pi\)
0.0549088 + 0.998491i \(0.482513\pi\)
\(542\) 3.80955e8 0.102772
\(543\) −1.66860e9 −0.447253
\(544\) 1.76403e9 0.469796
\(545\) −2.33409e8 −0.0617633
\(546\) 0 0
\(547\) −7.98136e8 −0.208507 −0.104254 0.994551i \(-0.533245\pi\)
−0.104254 + 0.994551i \(0.533245\pi\)
\(548\) −3.57160e8 −0.0927110
\(549\) −2.26566e9 −0.584374
\(550\) −2.92550e9 −0.749774
\(551\) −1.97717e8 −0.0503516
\(552\) −1.04792e9 −0.265181
\(553\) −4.23293e9 −1.06439
\(554\) 4.83765e9 1.20879
\(555\) 2.09169e8 0.0519365
\(556\) −5.98541e8 −0.147684
\(557\) 1.48425e9 0.363927 0.181963 0.983305i \(-0.441755\pi\)
0.181963 + 0.983305i \(0.441755\pi\)
\(558\) 2.54943e9 0.621188
\(559\) 0 0
\(560\) −1.73433e8 −0.0417325
\(561\) 9.81721e8 0.234757
\(562\) −5.40133e9 −1.28358
\(563\) 1.39349e9 0.329097 0.164548 0.986369i \(-0.447383\pi\)
0.164548 + 0.986369i \(0.447383\pi\)
\(564\) −1.55200e8 −0.0364263
\(565\) −2.69406e8 −0.0628402
\(566\) 4.17212e9 0.967161
\(567\) −1.94715e9 −0.448599
\(568\) 4.19215e8 0.0959882
\(569\) −8.69007e9 −1.97756 −0.988781 0.149370i \(-0.952275\pi\)
−0.988781 + 0.149370i \(0.952275\pi\)
\(570\) −2.18994e7 −0.00495302
\(571\) 5.03913e9 1.13274 0.566369 0.824152i \(-0.308348\pi\)
0.566369 + 0.824152i \(0.308348\pi\)
\(572\) 0 0
\(573\) 2.49563e8 0.0554164
\(574\) 4.40148e9 0.971421
\(575\) 2.83387e9 0.621646
\(576\) −3.84925e9 −0.839262
\(577\) −4.02573e9 −0.872427 −0.436214 0.899843i \(-0.643681\pi\)
−0.436214 + 0.899843i \(0.643681\pi\)
\(578\) 2.24668e9 0.483942
\(579\) 2.25596e8 0.0483010
\(580\) 1.07970e8 0.0229776
\(581\) 2.10214e9 0.444677
\(582\) −7.25153e8 −0.152475
\(583\) 6.06389e9 1.26739
\(584\) 6.72652e9 1.39748
\(585\) 0 0
\(586\) 1.36141e9 0.279477
\(587\) 2.51557e9 0.513337 0.256669 0.966499i \(-0.417375\pi\)
0.256669 + 0.966499i \(0.417375\pi\)
\(588\) 3.11995e8 0.0632888
\(589\) −5.98145e8 −0.120615
\(590\) −5.25646e8 −0.105369
\(591\) −2.04525e9 −0.407558
\(592\) 1.98722e9 0.393658
\(593\) 8.91464e9 1.75555 0.877774 0.479076i \(-0.159028\pi\)
0.877774 + 0.479076i \(0.159028\pi\)
\(594\) −2.79649e9 −0.547471
\(595\) −3.26375e8 −0.0635195
\(596\) 1.42212e9 0.275154
\(597\) 2.69092e9 0.517596
\(598\) 0 0
\(599\) 7.56365e9 1.43793 0.718964 0.695047i \(-0.244616\pi\)
0.718964 + 0.695047i \(0.244616\pi\)
\(600\) −2.17598e9 −0.411269
\(601\) 6.55777e9 1.23224 0.616120 0.787652i \(-0.288704\pi\)
0.616120 + 0.787652i \(0.288704\pi\)
\(602\) −5.02710e9 −0.939138
\(603\) −7.40354e9 −1.37508
\(604\) 3.46566e9 0.639966
\(605\) −9.63491e6 −0.00176890
\(606\) 3.01654e9 0.550623
\(607\) 8.10496e9 1.47092 0.735462 0.677566i \(-0.236965\pi\)
0.735462 + 0.677566i \(0.236965\pi\)
\(608\) 5.41601e8 0.0977275
\(609\) −6.81692e8 −0.122300
\(610\) 3.93572e8 0.0702052
\(611\) 0 0
\(612\) −1.23081e9 −0.217051
\(613\) 2.95977e9 0.518975 0.259487 0.965746i \(-0.416446\pi\)
0.259487 + 0.965746i \(0.416446\pi\)
\(614\) −2.94981e9 −0.514286
\(615\) −4.91149e8 −0.0851433
\(616\) 4.95002e9 0.853246
\(617\) 4.15027e9 0.711341 0.355671 0.934611i \(-0.384253\pi\)
0.355671 + 0.934611i \(0.384253\pi\)
\(618\) −3.07706e9 −0.524416
\(619\) −4.05061e9 −0.686441 −0.343220 0.939255i \(-0.611518\pi\)
−0.343220 + 0.939255i \(0.611518\pi\)
\(620\) 3.26636e8 0.0550419
\(621\) 2.70891e9 0.453914
\(622\) 2.95188e9 0.491850
\(623\) −8.54308e9 −1.41549
\(624\) 0 0
\(625\) 5.77393e9 0.946000
\(626\) 1.97478e9 0.321743
\(627\) 3.01413e8 0.0488343
\(628\) 3.66558e9 0.590587
\(629\) 3.73964e9 0.599173
\(630\) 4.27097e8 0.0680510
\(631\) −3.55581e9 −0.563425 −0.281712 0.959499i \(-0.590902\pi\)
−0.281712 + 0.959499i \(0.590902\pi\)
\(632\) 9.30567e9 1.46635
\(633\) −2.63685e9 −0.413212
\(634\) −4.43550e9 −0.691242
\(635\) −5.88861e8 −0.0912651
\(636\) 1.34402e9 0.207160
\(637\) 0 0
\(638\) 2.01483e9 0.307162
\(639\) −4.97836e8 −0.0754802
\(640\) −2.80984e7 −0.00423694
\(641\) 2.95831e9 0.443650 0.221825 0.975086i \(-0.428799\pi\)
0.221825 + 0.975086i \(0.428799\pi\)
\(642\) −2.26401e9 −0.337680
\(643\) −2.39725e9 −0.355611 −0.177806 0.984066i \(-0.556900\pi\)
−0.177806 + 0.984066i \(0.556900\pi\)
\(644\) −1.42885e9 −0.210807
\(645\) 5.60960e8 0.0823138
\(646\) −3.91529e8 −0.0571413
\(647\) −6.84211e9 −0.993174 −0.496587 0.867987i \(-0.665414\pi\)
−0.496587 + 0.867987i \(0.665414\pi\)
\(648\) 4.28062e9 0.618008
\(649\) 7.23473e9 1.03888
\(650\) 0 0
\(651\) −2.06230e9 −0.292966
\(652\) 2.34128e9 0.330816
\(653\) 1.09310e10 1.53626 0.768129 0.640295i \(-0.221188\pi\)
0.768129 + 0.640295i \(0.221188\pi\)
\(654\) −9.65407e8 −0.134955
\(655\) 9.84576e8 0.136900
\(656\) −4.66618e9 −0.645354
\(657\) −7.98803e9 −1.09891
\(658\) 9.62849e8 0.131755
\(659\) 4.64584e9 0.632362 0.316181 0.948699i \(-0.397599\pi\)
0.316181 + 0.948699i \(0.397599\pi\)
\(660\) −1.64596e8 −0.0222852
\(661\) 5.27114e8 0.0709904 0.0354952 0.999370i \(-0.488699\pi\)
0.0354952 + 0.999370i \(0.488699\pi\)
\(662\) −9.43418e9 −1.26387
\(663\) 0 0
\(664\) −4.62134e9 −0.612604
\(665\) −1.00205e8 −0.0132134
\(666\) −4.89373e9 −0.641918
\(667\) −1.95173e9 −0.254671
\(668\) 3.40956e9 0.442569
\(669\) −5.21694e9 −0.673634
\(670\) 1.28608e9 0.165199
\(671\) −5.41693e9 −0.692188
\(672\) 1.86734e9 0.237373
\(673\) 1.17630e9 0.148752 0.0743762 0.997230i \(-0.476303\pi\)
0.0743762 + 0.997230i \(0.476303\pi\)
\(674\) −8.52828e9 −1.07288
\(675\) 5.62498e9 0.703976
\(676\) 0 0
\(677\) −4.93872e9 −0.611722 −0.305861 0.952076i \(-0.598944\pi\)
−0.305861 + 0.952076i \(0.598944\pi\)
\(678\) −1.11429e9 −0.137308
\(679\) −3.31808e9 −0.406764
\(680\) 7.17503e8 0.0875069
\(681\) 1.69945e9 0.206202
\(682\) 6.09540e9 0.735795
\(683\) 1.25808e10 1.51090 0.755450 0.655207i \(-0.227418\pi\)
0.755450 + 0.655207i \(0.227418\pi\)
\(684\) −3.77890e8 −0.0451512
\(685\) −2.47254e8 −0.0293918
\(686\) −6.96732e9 −0.824008
\(687\) 2.36873e9 0.278720
\(688\) 5.32941e9 0.623907
\(689\) 0 0
\(690\) −2.16177e8 −0.0250517
\(691\) 5.61694e9 0.647630 0.323815 0.946121i \(-0.395035\pi\)
0.323815 + 0.946121i \(0.395035\pi\)
\(692\) −5.28689e9 −0.606498
\(693\) −5.87835e9 −0.670949
\(694\) −8.53196e8 −0.0968926
\(695\) −4.14357e8 −0.0468196
\(696\) 1.49863e9 0.168486
\(697\) −8.78103e9 −0.982269
\(698\) 2.25349e9 0.250820
\(699\) 1.05967e9 0.117355
\(700\) −2.96696e9 −0.326941
\(701\) −1.47184e10 −1.61380 −0.806898 0.590691i \(-0.798855\pi\)
−0.806898 + 0.590691i \(0.798855\pi\)
\(702\) 0 0
\(703\) 1.14816e9 0.124641
\(704\) −9.20313e9 −0.994103
\(705\) −1.07442e8 −0.0115481
\(706\) 6.57287e8 0.0702973
\(707\) 1.38028e10 1.46892
\(708\) 1.60353e9 0.169809
\(709\) −2.79809e9 −0.294849 −0.147424 0.989073i \(-0.547098\pi\)
−0.147424 + 0.989073i \(0.547098\pi\)
\(710\) 8.64801e7 0.00906801
\(711\) −1.10509e10 −1.15306
\(712\) 1.87811e10 1.95003
\(713\) −5.90449e9 −0.610055
\(714\) −1.34992e9 −0.138792
\(715\) 0 0
\(716\) −5.23171e9 −0.532657
\(717\) 1.12502e9 0.113984
\(718\) −1.10577e10 −1.11489
\(719\) −2.42687e9 −0.243498 −0.121749 0.992561i \(-0.538850\pi\)
−0.121749 + 0.992561i \(0.538850\pi\)
\(720\) −4.52781e8 −0.0452090
\(721\) −1.40797e10 −1.39901
\(722\) 7.55184e9 0.746746
\(723\) −5.76293e9 −0.567100
\(724\) 5.00169e9 0.489814
\(725\) −4.05272e9 −0.394969
\(726\) −3.98511e7 −0.00386511
\(727\) −8.43860e9 −0.814517 −0.407258 0.913313i \(-0.633515\pi\)
−0.407258 + 0.913313i \(0.633515\pi\)
\(728\) 0 0
\(729\) −2.17660e9 −0.208081
\(730\) 1.38762e9 0.132020
\(731\) 1.00291e10 0.949626
\(732\) −1.20063e9 −0.113141
\(733\) −1.80224e10 −1.69024 −0.845122 0.534573i \(-0.820473\pi\)
−0.845122 + 0.534573i \(0.820473\pi\)
\(734\) 8.37204e9 0.781439
\(735\) 2.15987e8 0.0200642
\(736\) 5.34633e9 0.494292
\(737\) −1.77010e10 −1.62878
\(738\) 1.14909e10 1.05234
\(739\) −8.22224e9 −0.749436 −0.374718 0.927139i \(-0.622260\pi\)
−0.374718 + 0.927139i \(0.622260\pi\)
\(740\) −6.26991e8 −0.0568788
\(741\) 0 0
\(742\) −8.33820e9 −0.749305
\(743\) −5.43950e9 −0.486517 −0.243258 0.969962i \(-0.578216\pi\)
−0.243258 + 0.969962i \(0.578216\pi\)
\(744\) 4.53375e9 0.403601
\(745\) 9.84504e8 0.0872310
\(746\) 6.23130e9 0.549532
\(747\) 5.48804e9 0.481721
\(748\) −2.94274e9 −0.257096
\(749\) −1.03594e10 −0.900844
\(750\) −9.06048e8 −0.0784218
\(751\) 2.16087e10 1.86161 0.930807 0.365512i \(-0.119106\pi\)
0.930807 + 0.365512i \(0.119106\pi\)
\(752\) −1.02075e9 −0.0875302
\(753\) −8.24377e8 −0.0703628
\(754\) 0 0
\(755\) 2.39920e9 0.202886
\(756\) −2.83613e9 −0.238726
\(757\) −2.97846e9 −0.249549 −0.124775 0.992185i \(-0.539821\pi\)
−0.124775 + 0.992185i \(0.539821\pi\)
\(758\) 1.31681e10 1.09820
\(759\) 2.97535e9 0.246997
\(760\) 2.20291e8 0.0182033
\(761\) 2.61767e9 0.215312 0.107656 0.994188i \(-0.465665\pi\)
0.107656 + 0.994188i \(0.465665\pi\)
\(762\) −2.43560e9 −0.199417
\(763\) −4.41741e9 −0.360025
\(764\) −7.48071e8 −0.0606899
\(765\) −8.52065e8 −0.0688110
\(766\) −3.02700e8 −0.0243339
\(767\) 0 0
\(768\) −4.92169e9 −0.392058
\(769\) −3.25859e9 −0.258397 −0.129199 0.991619i \(-0.541240\pi\)
−0.129199 + 0.991619i \(0.541240\pi\)
\(770\) 1.02114e9 0.0806062
\(771\) 3.36684e9 0.264565
\(772\) −6.76230e8 −0.0528974
\(773\) −1.25784e10 −0.979485 −0.489743 0.871867i \(-0.662909\pi\)
−0.489743 + 0.871867i \(0.662909\pi\)
\(774\) −1.31242e10 −1.01737
\(775\) −1.22605e10 −0.946134
\(776\) 7.29448e9 0.560374
\(777\) 3.95866e9 0.302743
\(778\) −4.33106e9 −0.329736
\(779\) −2.69599e9 −0.204333
\(780\) 0 0
\(781\) −1.19027e9 −0.0894060
\(782\) −3.86492e9 −0.289013
\(783\) −3.87401e9 −0.288399
\(784\) 2.05199e9 0.152079
\(785\) 2.53760e9 0.187232
\(786\) 4.07232e9 0.299132
\(787\) 7.59812e9 0.555641 0.277821 0.960633i \(-0.410388\pi\)
0.277821 + 0.960633i \(0.410388\pi\)
\(788\) 6.13068e9 0.446341
\(789\) −2.41010e7 −0.00174689
\(790\) 1.91967e9 0.138526
\(791\) −5.09867e9 −0.366302
\(792\) 1.29230e10 0.924325
\(793\) 0 0
\(794\) −1.94583e9 −0.137953
\(795\) 9.30436e8 0.0656752
\(796\) −8.06611e9 −0.566850
\(797\) 2.54466e10 1.78043 0.890216 0.455539i \(-0.150554\pi\)
0.890216 + 0.455539i \(0.150554\pi\)
\(798\) −4.14460e8 −0.0288717
\(799\) −1.92090e9 −0.133227
\(800\) 1.11015e10 0.766597
\(801\) −2.23034e10 −1.53340
\(802\) 2.00403e9 0.137181
\(803\) −1.90985e10 −1.30165
\(804\) −3.92332e9 −0.266230
\(805\) −9.89160e8 −0.0668314
\(806\) 0 0
\(807\) 7.98997e9 0.535165
\(808\) −3.03440e10 −2.02364
\(809\) −1.30758e10 −0.868255 −0.434128 0.900851i \(-0.642943\pi\)
−0.434128 + 0.900851i \(0.642943\pi\)
\(810\) 8.83051e8 0.0583832
\(811\) −2.55569e10 −1.68242 −0.841211 0.540707i \(-0.818157\pi\)
−0.841211 + 0.540707i \(0.818157\pi\)
\(812\) 2.04339e9 0.133939
\(813\) −8.04523e8 −0.0525075
\(814\) −1.17004e10 −0.760350
\(815\) 1.62081e9 0.104877
\(816\) 1.43110e9 0.0922052
\(817\) 3.07919e9 0.197542
\(818\) −1.62080e10 −1.03536
\(819\) 0 0
\(820\) 1.47223e9 0.0932457
\(821\) −1.19206e10 −0.751788 −0.375894 0.926663i \(-0.622664\pi\)
−0.375894 + 0.926663i \(0.622664\pi\)
\(822\) −1.02267e9 −0.0642221
\(823\) −2.15124e9 −0.134521 −0.0672604 0.997735i \(-0.521426\pi\)
−0.0672604 + 0.997735i \(0.521426\pi\)
\(824\) 3.09528e10 1.92733
\(825\) 6.17823e9 0.383067
\(826\) −9.94817e9 −0.614205
\(827\) 8.67859e9 0.533556 0.266778 0.963758i \(-0.414041\pi\)
0.266778 + 0.963758i \(0.414041\pi\)
\(828\) −3.73029e9 −0.228368
\(829\) 1.09237e10 0.665931 0.332966 0.942939i \(-0.391951\pi\)
0.332966 + 0.942939i \(0.391951\pi\)
\(830\) −9.53339e8 −0.0578728
\(831\) −1.02164e10 −0.617583
\(832\) 0 0
\(833\) 3.86153e9 0.231474
\(834\) −1.71383e9 −0.102302
\(835\) 2.36037e9 0.140306
\(836\) −9.03493e8 −0.0534814
\(837\) −1.17199e10 −0.690850
\(838\) −5.09221e8 −0.0298918
\(839\) 2.72391e10 1.59231 0.796153 0.605096i \(-0.206865\pi\)
0.796153 + 0.605096i \(0.206865\pi\)
\(840\) 7.59525e8 0.0442145
\(841\) −1.44587e10 −0.838192
\(842\) −3.54047e8 −0.0204394
\(843\) 1.14068e10 0.655796
\(844\) 7.90404e9 0.452534
\(845\) 0 0
\(846\) 2.51371e9 0.142731
\(847\) −1.82347e8 −0.0103111
\(848\) 8.83963e9 0.497793
\(849\) −8.81091e9 −0.494133
\(850\) −8.02540e9 −0.448229
\(851\) 1.13339e10 0.630414
\(852\) −2.63815e8 −0.0146137
\(853\) 3.05226e10 1.68384 0.841918 0.539606i \(-0.181427\pi\)
0.841918 + 0.539606i \(0.181427\pi\)
\(854\) 7.44859e9 0.409234
\(855\) −2.61605e8 −0.0143141
\(856\) 2.27742e10 1.24104
\(857\) 1.11731e10 0.606373 0.303187 0.952931i \(-0.401949\pi\)
0.303187 + 0.952931i \(0.401949\pi\)
\(858\) 0 0
\(859\) 2.74544e10 1.47787 0.738934 0.673778i \(-0.235330\pi\)
0.738934 + 0.673778i \(0.235330\pi\)
\(860\) −1.68149e9 −0.0901469
\(861\) −9.29530e9 −0.496309
\(862\) 1.34661e10 0.716086
\(863\) −1.32881e9 −0.0703761 −0.0351880 0.999381i \(-0.511203\pi\)
−0.0351880 + 0.999381i \(0.511203\pi\)
\(864\) 1.06120e10 0.559755
\(865\) −3.66000e9 −0.192276
\(866\) 1.51065e9 0.0790406
\(867\) −4.74466e9 −0.247251
\(868\) 6.18179e9 0.320845
\(869\) −2.64214e10 −1.36580
\(870\) 3.09154e8 0.0159169
\(871\) 0 0
\(872\) 9.71125e9 0.495984
\(873\) −8.66250e9 −0.440650
\(874\) −1.18663e9 −0.0601207
\(875\) −4.14581e9 −0.209209
\(876\) −4.23306e9 −0.212760
\(877\) −2.02332e10 −1.01290 −0.506450 0.862269i \(-0.669043\pi\)
−0.506450 + 0.862269i \(0.669043\pi\)
\(878\) −1.61667e10 −0.806103
\(879\) −2.87509e9 −0.142788
\(880\) −1.08255e9 −0.0535499
\(881\) −3.68108e10 −1.81367 −0.906837 0.421482i \(-0.861510\pi\)
−0.906837 + 0.421482i \(0.861510\pi\)
\(882\) −5.05324e9 −0.247987
\(883\) −1.87326e10 −0.915662 −0.457831 0.889039i \(-0.651374\pi\)
−0.457831 + 0.889039i \(0.651374\pi\)
\(884\) 0 0
\(885\) 1.11009e9 0.0538340
\(886\) 1.96714e10 0.950203
\(887\) 2.70884e10 1.30332 0.651661 0.758511i \(-0.274073\pi\)
0.651661 + 0.758511i \(0.274073\pi\)
\(888\) −8.70272e9 −0.417071
\(889\) −1.11446e10 −0.531994
\(890\) 3.87437e9 0.184219
\(891\) −1.21539e10 −0.575629
\(892\) 1.56379e10 0.737738
\(893\) −5.89763e8 −0.0277139
\(894\) 4.07202e9 0.190603
\(895\) −3.62179e9 −0.168866
\(896\) −5.31780e8 −0.0246976
\(897\) 0 0
\(898\) −2.38576e10 −1.09941
\(899\) 8.44401e9 0.387605
\(900\) −7.74584e9 −0.354176
\(901\) 1.66348e10 0.757672
\(902\) 2.74735e10 1.24650
\(903\) 1.06165e10 0.479816
\(904\) 1.12089e10 0.504632
\(905\) 3.46256e9 0.155284
\(906\) 9.92337e9 0.443313
\(907\) 9.38357e9 0.417583 0.208791 0.977960i \(-0.433047\pi\)
0.208791 + 0.977960i \(0.433047\pi\)
\(908\) −5.09414e9 −0.225824
\(909\) 3.60348e10 1.59129
\(910\) 0 0
\(911\) 2.34729e10 1.02862 0.514308 0.857606i \(-0.328049\pi\)
0.514308 + 0.857606i \(0.328049\pi\)
\(912\) 4.39384e8 0.0191806
\(913\) 1.31213e10 0.570596
\(914\) 2.30660e10 0.999219
\(915\) −8.31167e8 −0.0358686
\(916\) −7.10035e9 −0.305243
\(917\) 1.86337e10 0.798007
\(918\) −7.67151e9 −0.327289
\(919\) 2.74313e10 1.16585 0.582924 0.812527i \(-0.301908\pi\)
0.582924 + 0.812527i \(0.301908\pi\)
\(920\) 2.17457e9 0.0920696
\(921\) 6.22957e9 0.262754
\(922\) 2.40001e10 1.00845
\(923\) 0 0
\(924\) −3.11508e9 −0.129903
\(925\) 2.35345e10 0.977709
\(926\) 7.14506e8 0.0295711
\(927\) −3.67578e10 −1.51555
\(928\) −7.64578e9 −0.314054
\(929\) −1.37674e10 −0.563375 −0.281688 0.959506i \(-0.590894\pi\)
−0.281688 + 0.959506i \(0.590894\pi\)
\(930\) 9.35270e8 0.0381283
\(931\) 1.18559e9 0.0481514
\(932\) −3.17639e9 −0.128522
\(933\) −6.23396e9 −0.251292
\(934\) 3.13046e10 1.25717
\(935\) −2.03719e9 −0.0815063
\(936\) 0 0
\(937\) −3.57657e10 −1.42029 −0.710147 0.704054i \(-0.751371\pi\)
−0.710147 + 0.704054i \(0.751371\pi\)
\(938\) 2.43399e10 0.962963
\(939\) −4.17045e9 −0.164382
\(940\) 3.22060e8 0.0126470
\(941\) 1.46325e10 0.572471 0.286236 0.958159i \(-0.407596\pi\)
0.286236 + 0.958159i \(0.407596\pi\)
\(942\) 1.04958e10 0.409107
\(943\) −2.66131e10 −1.03349
\(944\) 1.05464e10 0.408041
\(945\) −1.96339e9 −0.0756825
\(946\) −3.13785e10 −1.20507
\(947\) 3.26365e10 1.24876 0.624380 0.781121i \(-0.285352\pi\)
0.624380 + 0.781121i \(0.285352\pi\)
\(948\) −5.85613e9 −0.223245
\(949\) 0 0
\(950\) −2.46400e9 −0.0932411
\(951\) 9.36714e9 0.353163
\(952\) 1.35792e10 0.510087
\(953\) −3.11753e10 −1.16677 −0.583385 0.812195i \(-0.698272\pi\)
−0.583385 + 0.812195i \(0.698272\pi\)
\(954\) −2.17685e10 −0.811725
\(955\) −5.17873e8 −0.0192403
\(956\) −3.37229e9 −0.124831
\(957\) −4.25504e9 −0.156932
\(958\) 1.75802e10 0.646018
\(959\) −4.67944e9 −0.171328
\(960\) −1.41212e9 −0.0515136
\(961\) −1.96731e9 −0.0715058
\(962\) 0 0
\(963\) −2.70453e10 −0.975888
\(964\) 1.72746e10 0.621066
\(965\) −4.68139e8 −0.0167699
\(966\) −4.09128e9 −0.146029
\(967\) 2.54520e9 0.0905169 0.0452585 0.998975i \(-0.485589\pi\)
0.0452585 + 0.998975i \(0.485589\pi\)
\(968\) 4.00871e8 0.0142050
\(969\) 8.26853e8 0.0291941
\(970\) 1.50478e9 0.0529386
\(971\) −3.03029e10 −1.06223 −0.531114 0.847300i \(-0.678226\pi\)
−0.531114 + 0.847300i \(0.678226\pi\)
\(972\) −1.14071e10 −0.398421
\(973\) −7.84195e9 −0.272916
\(974\) −1.38072e10 −0.478795
\(975\) 0 0
\(976\) −7.89652e9 −0.271870
\(977\) 1.42652e10 0.489381 0.244690 0.969601i \(-0.421314\pi\)
0.244690 + 0.969601i \(0.421314\pi\)
\(978\) 6.70387e9 0.229160
\(979\) −5.33249e10 −1.81631
\(980\) −6.47428e8 −0.0219736
\(981\) −1.15325e10 −0.390016
\(982\) −1.78819e10 −0.602593
\(983\) 3.44221e10 1.15585 0.577924 0.816091i \(-0.303863\pi\)
0.577924 + 0.816091i \(0.303863\pi\)
\(984\) 2.04348e10 0.683735
\(985\) 4.24414e9 0.141502
\(986\) 5.52722e9 0.183627
\(987\) −2.03340e9 −0.0673151
\(988\) 0 0
\(989\) 3.03958e10 0.999140
\(990\) 2.66589e9 0.0873210
\(991\) −1.26763e10 −0.413748 −0.206874 0.978368i \(-0.566329\pi\)
−0.206874 + 0.978368i \(0.566329\pi\)
\(992\) −2.31305e10 −0.752304
\(993\) 1.99236e10 0.645723
\(994\) 1.63669e9 0.0528584
\(995\) −5.58399e9 −0.179707
\(996\) 2.90825e9 0.0932661
\(997\) 2.08066e10 0.664917 0.332459 0.943118i \(-0.392122\pi\)
0.332459 + 0.943118i \(0.392122\pi\)
\(998\) −8.69730e9 −0.276967
\(999\) 2.24968e10 0.713906
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.a.i.1.7 yes 21
13.5 odd 4 169.8.b.f.168.28 42
13.8 odd 4 169.8.b.f.168.15 42
13.12 even 2 169.8.a.h.1.15 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.8.a.h.1.15 21 13.12 even 2
169.8.a.i.1.7 yes 21 1.1 even 1 trivial
169.8.b.f.168.15 42 13.8 odd 4
169.8.b.f.168.28 42 13.5 odd 4