Properties

Label 169.8.a.i.1.18
Level $169$
Weight $8$
Character 169.1
Self dual yes
Analytic conductor $52.793$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+17.7683 q^{2} +58.1116 q^{3} +187.714 q^{4} +15.5333 q^{5} +1032.55 q^{6} +1688.45 q^{7} +1061.02 q^{8} +1189.96 q^{9} +276.002 q^{10} -4665.45 q^{11} +10908.4 q^{12} +30000.9 q^{14} +902.667 q^{15} -5174.84 q^{16} +37309.4 q^{17} +21143.6 q^{18} +20164.9 q^{19} +2915.82 q^{20} +98118.4 q^{21} -82897.4 q^{22} +65513.9 q^{23} +61657.6 q^{24} -77883.7 q^{25} -57939.6 q^{27} +316945. q^{28} -59346.3 q^{29} +16038.9 q^{30} -125426. q^{31} -227759. q^{32} -271117. q^{33} +662927. q^{34} +26227.2 q^{35} +223372. q^{36} +216208. q^{37} +358297. q^{38} +16481.2 q^{40} -154839. q^{41} +1.74340e6 q^{42} -124739. q^{43} -875771. q^{44} +18484.1 q^{45} +1.16407e6 q^{46} +359489. q^{47} -300718. q^{48} +2.02731e6 q^{49} -1.38386e6 q^{50} +2.16811e6 q^{51} -1.76397e6 q^{53} -1.02949e6 q^{54} -72470.0 q^{55} +1.79148e6 q^{56} +1.17181e6 q^{57} -1.05449e6 q^{58} -784579. q^{59} +169443. q^{60} -1.82630e6 q^{61} -2.22860e6 q^{62} +2.00919e6 q^{63} -3.38452e6 q^{64} -4.81730e6 q^{66} -1.23293e6 q^{67} +7.00350e6 q^{68} +3.80712e6 q^{69} +466014. q^{70} +4.03286e6 q^{71} +1.26257e6 q^{72} +2.54855e6 q^{73} +3.84166e6 q^{74} -4.52595e6 q^{75} +3.78523e6 q^{76} -7.87737e6 q^{77} +3.36048e6 q^{79} -80382.4 q^{80} -5.96941e6 q^{81} -2.75122e6 q^{82} +2.84027e6 q^{83} +1.84182e7 q^{84} +579540. q^{85} -2.21640e6 q^{86} -3.44871e6 q^{87} -4.95014e6 q^{88} -1.27649e6 q^{89} +328431. q^{90} +1.22979e7 q^{92} -7.28868e6 q^{93} +6.38753e6 q^{94} +313228. q^{95} -1.32354e7 q^{96} -6.59083e6 q^{97} +3.60220e7 q^{98} -5.55170e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 31 q^{2} - 26 q^{3} + 1409 q^{4} + 680 q^{5} + 1470 q^{6} + 2929 q^{7} + 4716 q^{8} + 15465 q^{9} - 5167 q^{10} + 14824 q^{11} + 21795 q^{12} - 179 q^{14} + 36398 q^{15} + 113205 q^{16} + 45016 q^{17}+ \cdots + 37605493 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 17.7683 1.57051 0.785257 0.619170i \(-0.212531\pi\)
0.785257 + 0.619170i \(0.212531\pi\)
\(3\) 58.1116 1.24262 0.621310 0.783565i \(-0.286601\pi\)
0.621310 + 0.783565i \(0.286601\pi\)
\(4\) 187.714 1.46652
\(5\) 15.5333 0.0555737 0.0277869 0.999614i \(-0.491154\pi\)
0.0277869 + 0.999614i \(0.491154\pi\)
\(6\) 1032.55 1.95155
\(7\) 1688.45 1.86056 0.930282 0.366846i \(-0.119562\pi\)
0.930282 + 0.366846i \(0.119562\pi\)
\(8\) 1061.02 0.732670
\(9\) 1189.96 0.544106
\(10\) 276.002 0.0872794
\(11\) −4665.45 −1.05686 −0.528432 0.848975i \(-0.677220\pi\)
−0.528432 + 0.848975i \(0.677220\pi\)
\(12\) 10908.4 1.82232
\(13\) 0 0
\(14\) 30000.9 2.92204
\(15\) 902.667 0.0690571
\(16\) −5174.84 −0.315847
\(17\) 37309.4 1.84182 0.920910 0.389774i \(-0.127447\pi\)
0.920910 + 0.389774i \(0.127447\pi\)
\(18\) 21143.6 0.854527
\(19\) 20164.9 0.674463 0.337232 0.941422i \(-0.390509\pi\)
0.337232 + 0.941422i \(0.390509\pi\)
\(20\) 2915.82 0.0814998
\(21\) 98118.4 2.31197
\(22\) −82897.4 −1.65982
\(23\) 65513.9 1.12276 0.561379 0.827559i \(-0.310271\pi\)
0.561379 + 0.827559i \(0.310271\pi\)
\(24\) 61657.6 0.910431
\(25\) −77883.7 −0.996912
\(26\) 0 0
\(27\) −57939.6 −0.566503
\(28\) 316945. 2.72855
\(29\) −59346.3 −0.451857 −0.225928 0.974144i \(-0.572542\pi\)
−0.225928 + 0.974144i \(0.572542\pi\)
\(30\) 16038.9 0.108455
\(31\) −125426. −0.756171 −0.378085 0.925771i \(-0.623417\pi\)
−0.378085 + 0.925771i \(0.623417\pi\)
\(32\) −227759. −1.22871
\(33\) −271117. −1.31328
\(34\) 662927. 2.89261
\(35\) 26227.2 0.103398
\(36\) 223372. 0.797941
\(37\) 216208. 0.701723 0.350862 0.936427i \(-0.385889\pi\)
0.350862 + 0.936427i \(0.385889\pi\)
\(38\) 358297. 1.05925
\(39\) 0 0
\(40\) 16481.2 0.0407172
\(41\) −154839. −0.350861 −0.175431 0.984492i \(-0.556132\pi\)
−0.175431 + 0.984492i \(0.556132\pi\)
\(42\) 1.74340e6 3.63099
\(43\) −124739. −0.239256 −0.119628 0.992819i \(-0.538170\pi\)
−0.119628 + 0.992819i \(0.538170\pi\)
\(44\) −875771. −1.54991
\(45\) 18484.1 0.0302380
\(46\) 1.16407e6 1.76331
\(47\) 359489. 0.505061 0.252530 0.967589i \(-0.418737\pi\)
0.252530 + 0.967589i \(0.418737\pi\)
\(48\) −300718. −0.392478
\(49\) 2.02731e6 2.46170
\(50\) −1.38386e6 −1.56566
\(51\) 2.16811e6 2.28868
\(52\) 0 0
\(53\) −1.76397e6 −1.62752 −0.813761 0.581200i \(-0.802583\pi\)
−0.813761 + 0.581200i \(0.802583\pi\)
\(54\) −1.02949e6 −0.889701
\(55\) −72470.0 −0.0587339
\(56\) 1.79148e6 1.36318
\(57\) 1.17181e6 0.838102
\(58\) −1.05449e6 −0.709648
\(59\) −784579. −0.497342 −0.248671 0.968588i \(-0.579994\pi\)
−0.248671 + 0.968588i \(0.579994\pi\)
\(60\) 169443. 0.101273
\(61\) −1.82630e6 −1.03019 −0.515096 0.857133i \(-0.672244\pi\)
−0.515096 + 0.857133i \(0.672244\pi\)
\(62\) −2.22860e6 −1.18758
\(63\) 2.00919e6 1.01234
\(64\) −3.38452e6 −1.61386
\(65\) 0 0
\(66\) −4.81730e6 −2.06253
\(67\) −1.23293e6 −0.500813 −0.250406 0.968141i \(-0.580564\pi\)
−0.250406 + 0.968141i \(0.580564\pi\)
\(68\) 7.00350e6 2.70106
\(69\) 3.80712e6 1.39516
\(70\) 466014. 0.162389
\(71\) 4.03286e6 1.33724 0.668619 0.743605i \(-0.266886\pi\)
0.668619 + 0.743605i \(0.266886\pi\)
\(72\) 1.26257e6 0.398650
\(73\) 2.54855e6 0.766767 0.383384 0.923589i \(-0.374759\pi\)
0.383384 + 0.923589i \(0.374759\pi\)
\(74\) 3.84166e6 1.10207
\(75\) −4.52595e6 −1.23878
\(76\) 3.78523e6 0.989111
\(77\) −7.87737e6 −1.96636
\(78\) 0 0
\(79\) 3.36048e6 0.766843 0.383422 0.923573i \(-0.374746\pi\)
0.383422 + 0.923573i \(0.374746\pi\)
\(80\) −80382.4 −0.0175528
\(81\) −5.96941e6 −1.24805
\(82\) −2.75122e6 −0.551033
\(83\) 2.84027e6 0.545237 0.272619 0.962122i \(-0.412110\pi\)
0.272619 + 0.962122i \(0.412110\pi\)
\(84\) 1.84182e7 3.39055
\(85\) 579540. 0.102357
\(86\) −2.21640e6 −0.375755
\(87\) −3.44871e6 −0.561487
\(88\) −4.95014e6 −0.774333
\(89\) −1.27649e6 −0.191935 −0.0959673 0.995384i \(-0.530594\pi\)
−0.0959673 + 0.995384i \(0.530594\pi\)
\(90\) 328431. 0.0474893
\(91\) 0 0
\(92\) 1.22979e7 1.64654
\(93\) −7.28868e6 −0.939634
\(94\) 6.38753e6 0.793205
\(95\) 313228. 0.0374824
\(96\) −1.32354e7 −1.52682
\(97\) −6.59083e6 −0.733228 −0.366614 0.930373i \(-0.619483\pi\)
−0.366614 + 0.930373i \(0.619483\pi\)
\(98\) 3.60220e7 3.86613
\(99\) −5.55170e6 −0.575047
\(100\) −1.46199e7 −1.46199
\(101\) −5.59140e6 −0.540003 −0.270001 0.962860i \(-0.587024\pi\)
−0.270001 + 0.962860i \(0.587024\pi\)
\(102\) 3.85237e7 3.59441
\(103\) −1.18242e7 −1.06621 −0.533105 0.846049i \(-0.678975\pi\)
−0.533105 + 0.846049i \(0.678975\pi\)
\(104\) 0 0
\(105\) 1.52411e6 0.128485
\(106\) −3.13429e7 −2.55605
\(107\) 1.32849e6 0.104837 0.0524185 0.998625i \(-0.483307\pi\)
0.0524185 + 0.998625i \(0.483307\pi\)
\(108\) −1.08761e7 −0.830786
\(109\) 1.46298e7 1.08205 0.541023 0.841008i \(-0.318037\pi\)
0.541023 + 0.841008i \(0.318037\pi\)
\(110\) −1.28767e6 −0.0922425
\(111\) 1.25642e7 0.871976
\(112\) −8.73744e6 −0.587653
\(113\) −3.67572e6 −0.239645 −0.119822 0.992795i \(-0.538232\pi\)
−0.119822 + 0.992795i \(0.538232\pi\)
\(114\) 2.08212e7 1.31625
\(115\) 1.01765e6 0.0623958
\(116\) −1.11401e7 −0.662655
\(117\) 0 0
\(118\) −1.39407e7 −0.781082
\(119\) 6.29950e7 3.42682
\(120\) 957747. 0.0505961
\(121\) 2.27928e6 0.116963
\(122\) −3.24503e7 −1.61793
\(123\) −8.99792e6 −0.435988
\(124\) −2.35441e7 −1.10894
\(125\) −2.42333e6 −0.110976
\(126\) 3.56999e7 1.58990
\(127\) −2.78149e7 −1.20494 −0.602469 0.798142i \(-0.705816\pi\)
−0.602469 + 0.798142i \(0.705816\pi\)
\(128\) −3.09841e7 −1.30588
\(129\) −7.24878e6 −0.297304
\(130\) 0 0
\(131\) −2.63591e7 −1.02443 −0.512214 0.858858i \(-0.671174\pi\)
−0.512214 + 0.858858i \(0.671174\pi\)
\(132\) −5.08925e7 −1.92595
\(133\) 3.40474e7 1.25488
\(134\) −2.19071e7 −0.786534
\(135\) −899995. −0.0314827
\(136\) 3.95860e7 1.34945
\(137\) −2.86790e7 −0.952887 −0.476443 0.879205i \(-0.658074\pi\)
−0.476443 + 0.879205i \(0.658074\pi\)
\(138\) 6.76462e7 2.19112
\(139\) −3.00048e7 −0.947629 −0.473815 0.880625i \(-0.657123\pi\)
−0.473815 + 0.880625i \(0.657123\pi\)
\(140\) 4.92322e6 0.151635
\(141\) 2.08905e7 0.627599
\(142\) 7.16572e7 2.10015
\(143\) 0 0
\(144\) −6.15785e6 −0.171854
\(145\) −921846. −0.0251114
\(146\) 4.52836e7 1.20422
\(147\) 1.17810e8 3.05895
\(148\) 4.05853e7 1.02909
\(149\) 5.15415e6 0.127645 0.0638227 0.997961i \(-0.479671\pi\)
0.0638227 + 0.997961i \(0.479671\pi\)
\(150\) −8.04186e7 −1.94553
\(151\) 2.40636e7 0.568776 0.284388 0.958709i \(-0.408210\pi\)
0.284388 + 0.958709i \(0.408210\pi\)
\(152\) 2.13953e7 0.494159
\(153\) 4.43967e7 1.00215
\(154\) −1.39968e8 −3.08820
\(155\) −1.94828e6 −0.0420232
\(156\) 0 0
\(157\) −2.16509e6 −0.0446506 −0.0223253 0.999751i \(-0.507107\pi\)
−0.0223253 + 0.999751i \(0.507107\pi\)
\(158\) 5.97102e7 1.20434
\(159\) −1.02507e8 −2.02239
\(160\) −3.53785e6 −0.0682841
\(161\) 1.10617e8 2.08896
\(162\) −1.06066e8 −1.96009
\(163\) 3.17203e7 0.573694 0.286847 0.957976i \(-0.407393\pi\)
0.286847 + 0.957976i \(0.407393\pi\)
\(164\) −2.90654e7 −0.514544
\(165\) −4.21135e6 −0.0729840
\(166\) 5.04668e7 0.856303
\(167\) −2.41873e7 −0.401864 −0.200932 0.979605i \(-0.564397\pi\)
−0.200932 + 0.979605i \(0.564397\pi\)
\(168\) 1.04106e8 1.69391
\(169\) 0 0
\(170\) 1.02975e7 0.160753
\(171\) 2.39954e7 0.366980
\(172\) −2.34152e7 −0.350872
\(173\) 2.17543e7 0.319435 0.159718 0.987163i \(-0.448942\pi\)
0.159718 + 0.987163i \(0.448942\pi\)
\(174\) −6.12779e7 −0.881823
\(175\) −1.31503e8 −1.85482
\(176\) 2.41429e7 0.333807
\(177\) −4.55932e7 −0.618007
\(178\) −2.26812e7 −0.301436
\(179\) 9.71205e7 1.26568 0.632842 0.774281i \(-0.281888\pi\)
0.632842 + 0.774281i \(0.281888\pi\)
\(180\) 3.46972e6 0.0443445
\(181\) −921679. −0.0115533 −0.00577663 0.999983i \(-0.501839\pi\)
−0.00577663 + 0.999983i \(0.501839\pi\)
\(182\) 0 0
\(183\) −1.06129e8 −1.28014
\(184\) 6.95115e7 0.822611
\(185\) 3.35843e6 0.0389974
\(186\) −1.29508e8 −1.47571
\(187\) −1.74065e8 −1.94656
\(188\) 6.74812e7 0.740680
\(189\) −9.78280e7 −1.05401
\(190\) 5.56554e6 0.0588667
\(191\) −5.09497e7 −0.529084 −0.264542 0.964374i \(-0.585221\pi\)
−0.264542 + 0.964374i \(0.585221\pi\)
\(192\) −1.96680e8 −2.00542
\(193\) 1.90809e8 1.91051 0.955254 0.295785i \(-0.0955813\pi\)
0.955254 + 0.295785i \(0.0955813\pi\)
\(194\) −1.17108e8 −1.15155
\(195\) 0 0
\(196\) 3.80555e8 3.61012
\(197\) −5.53491e6 −0.0515797 −0.0257899 0.999667i \(-0.508210\pi\)
−0.0257899 + 0.999667i \(0.508210\pi\)
\(198\) −9.86446e7 −0.903119
\(199\) −2.13170e8 −1.91752 −0.958762 0.284211i \(-0.908268\pi\)
−0.958762 + 0.284211i \(0.908268\pi\)
\(200\) −8.26362e7 −0.730407
\(201\) −7.16474e7 −0.622320
\(202\) −9.93499e7 −0.848082
\(203\) −1.00203e8 −0.840708
\(204\) 4.06985e8 3.35639
\(205\) −2.40516e6 −0.0194987
\(206\) −2.10097e8 −1.67450
\(207\) 7.79590e7 0.610900
\(208\) 0 0
\(209\) −9.40783e7 −0.712816
\(210\) 2.70808e7 0.201788
\(211\) −1.75767e8 −1.28810 −0.644049 0.764985i \(-0.722747\pi\)
−0.644049 + 0.764985i \(0.722747\pi\)
\(212\) −3.31123e8 −2.38679
\(213\) 2.34356e8 1.66168
\(214\) 2.36050e7 0.164648
\(215\) −1.93761e6 −0.0132963
\(216\) −6.14750e7 −0.415060
\(217\) −2.11774e8 −1.40690
\(218\) 2.59947e8 1.69937
\(219\) 1.48101e8 0.952801
\(220\) −1.36036e7 −0.0861342
\(221\) 0 0
\(222\) 2.23245e8 1.36945
\(223\) −3.74636e7 −0.226226 −0.113113 0.993582i \(-0.536082\pi\)
−0.113113 + 0.993582i \(0.536082\pi\)
\(224\) −3.84559e8 −2.28610
\(225\) −9.26785e7 −0.542426
\(226\) −6.53114e7 −0.376365
\(227\) 2.10377e8 1.19373 0.596866 0.802341i \(-0.296412\pi\)
0.596866 + 0.802341i \(0.296412\pi\)
\(228\) 2.19966e8 1.22909
\(229\) −3.04391e8 −1.67497 −0.837486 0.546459i \(-0.815975\pi\)
−0.837486 + 0.546459i \(0.815975\pi\)
\(230\) 1.80819e7 0.0979936
\(231\) −4.57767e8 −2.44344
\(232\) −6.29676e7 −0.331062
\(233\) −2.22293e8 −1.15128 −0.575639 0.817704i \(-0.695247\pi\)
−0.575639 + 0.817704i \(0.695247\pi\)
\(234\) 0 0
\(235\) 5.58407e6 0.0280681
\(236\) −1.47277e8 −0.729359
\(237\) 1.95283e8 0.952895
\(238\) 1.11932e9 5.38188
\(239\) 1.97086e8 0.933822 0.466911 0.884304i \(-0.345367\pi\)
0.466911 + 0.884304i \(0.345367\pi\)
\(240\) −4.67115e6 −0.0218115
\(241\) 2.98738e8 1.37477 0.687385 0.726293i \(-0.258758\pi\)
0.687385 + 0.726293i \(0.258758\pi\)
\(242\) 4.04990e7 0.183692
\(243\) −2.20178e8 −0.984356
\(244\) −3.42822e8 −1.51079
\(245\) 3.14909e7 0.136806
\(246\) −1.59878e8 −0.684725
\(247\) 0 0
\(248\) −1.33079e8 −0.554024
\(249\) 1.65052e8 0.677523
\(250\) −4.30586e7 −0.174289
\(251\) −9.04440e7 −0.361012 −0.180506 0.983574i \(-0.557774\pi\)
−0.180506 + 0.983574i \(0.557774\pi\)
\(252\) 3.77152e8 1.48462
\(253\) −3.05652e8 −1.18660
\(254\) −4.94225e8 −1.89237
\(255\) 3.36780e7 0.127191
\(256\) −1.17319e8 −0.437046
\(257\) 3.35132e8 1.23155 0.615773 0.787924i \(-0.288844\pi\)
0.615773 + 0.787924i \(0.288844\pi\)
\(258\) −1.28799e8 −0.466921
\(259\) 3.65056e8 1.30560
\(260\) 0 0
\(261\) −7.06198e7 −0.245858
\(262\) −4.68358e8 −1.60888
\(263\) 4.38247e7 0.148551 0.0742753 0.997238i \(-0.476336\pi\)
0.0742753 + 0.997238i \(0.476336\pi\)
\(264\) −2.87660e8 −0.962202
\(265\) −2.74004e7 −0.0904475
\(266\) 6.04965e8 1.97081
\(267\) −7.41791e7 −0.238502
\(268\) −2.31438e8 −0.734450
\(269\) 3.55234e8 1.11271 0.556355 0.830945i \(-0.312200\pi\)
0.556355 + 0.830945i \(0.312200\pi\)
\(270\) −1.59914e7 −0.0494440
\(271\) −4.89900e8 −1.49526 −0.747628 0.664118i \(-0.768807\pi\)
−0.747628 + 0.664118i \(0.768807\pi\)
\(272\) −1.93070e8 −0.581733
\(273\) 0 0
\(274\) −5.09578e8 −1.49652
\(275\) 3.63363e8 1.05360
\(276\) 7.14650e8 2.04603
\(277\) −2.84193e7 −0.0803404 −0.0401702 0.999193i \(-0.512790\pi\)
−0.0401702 + 0.999193i \(0.512790\pi\)
\(278\) −5.33135e8 −1.48827
\(279\) −1.49251e8 −0.411437
\(280\) 2.78276e7 0.0757570
\(281\) 3.58070e8 0.962711 0.481355 0.876525i \(-0.340145\pi\)
0.481355 + 0.876525i \(0.340145\pi\)
\(282\) 3.71190e8 0.985653
\(283\) 3.66356e8 0.960840 0.480420 0.877039i \(-0.340484\pi\)
0.480420 + 0.877039i \(0.340484\pi\)
\(284\) 7.57024e8 1.96108
\(285\) 1.82022e7 0.0465765
\(286\) 0 0
\(287\) −2.61437e8 −0.652800
\(288\) −2.71024e8 −0.668550
\(289\) 9.81655e8 2.39230
\(290\) −1.63797e7 −0.0394378
\(291\) −3.83004e8 −0.911124
\(292\) 4.78399e8 1.12448
\(293\) 1.64599e7 0.0382289 0.0191145 0.999817i \(-0.493915\pi\)
0.0191145 + 0.999817i \(0.493915\pi\)
\(294\) 2.09330e9 4.80413
\(295\) −1.21871e7 −0.0276391
\(296\) 2.29401e8 0.514132
\(297\) 2.70314e8 0.598717
\(298\) 9.15807e7 0.200469
\(299\) 0 0
\(300\) −8.49584e8 −1.81670
\(301\) −2.10615e8 −0.445150
\(302\) 4.27570e8 0.893270
\(303\) −3.24925e8 −0.671018
\(304\) −1.04350e8 −0.213027
\(305\) −2.83685e7 −0.0572516
\(306\) 7.88857e8 1.57389
\(307\) −9.09885e8 −1.79474 −0.897372 0.441275i \(-0.854526\pi\)
−0.897372 + 0.441275i \(0.854526\pi\)
\(308\) −1.47869e9 −2.88370
\(309\) −6.87125e8 −1.32489
\(310\) −3.46176e7 −0.0659981
\(311\) 9.54547e8 1.79943 0.899717 0.436473i \(-0.143772\pi\)
0.899717 + 0.436473i \(0.143772\pi\)
\(312\) 0 0
\(313\) 6.29742e8 1.16080 0.580400 0.814331i \(-0.302896\pi\)
0.580400 + 0.814331i \(0.302896\pi\)
\(314\) −3.84701e7 −0.0701245
\(315\) 3.12094e7 0.0562598
\(316\) 6.30809e8 1.12459
\(317\) −7.62485e8 −1.34439 −0.672193 0.740376i \(-0.734648\pi\)
−0.672193 + 0.740376i \(0.734648\pi\)
\(318\) −1.82139e9 −3.17620
\(319\) 2.76878e8 0.477552
\(320\) −5.25728e7 −0.0896884
\(321\) 7.72006e7 0.130273
\(322\) 1.96548e9 3.28075
\(323\) 7.52341e8 1.24224
\(324\) −1.12054e9 −1.83029
\(325\) 0 0
\(326\) 5.63617e8 0.900995
\(327\) 8.50162e8 1.34457
\(328\) −1.64287e8 −0.257066
\(329\) 6.06979e8 0.939698
\(330\) −7.48287e7 −0.114622
\(331\) 4.97597e8 0.754188 0.377094 0.926175i \(-0.376923\pi\)
0.377094 + 0.926175i \(0.376923\pi\)
\(332\) 5.33158e8 0.799599
\(333\) 2.57279e8 0.381812
\(334\) −4.29768e8 −0.631133
\(335\) −1.91515e7 −0.0278320
\(336\) −5.07747e8 −0.730230
\(337\) 1.11553e9 1.58772 0.793862 0.608098i \(-0.208067\pi\)
0.793862 + 0.608098i \(0.208067\pi\)
\(338\) 0 0
\(339\) −2.13602e8 −0.297787
\(340\) 1.08788e8 0.150108
\(341\) 5.85167e8 0.799170
\(342\) 4.26359e8 0.576347
\(343\) 2.03250e9 2.71958
\(344\) −1.32350e8 −0.175296
\(345\) 5.91372e7 0.0775344
\(346\) 3.86537e8 0.501678
\(347\) 2.32713e8 0.298997 0.149499 0.988762i \(-0.452234\pi\)
0.149499 + 0.988762i \(0.452234\pi\)
\(348\) −6.47372e8 −0.823429
\(349\) 8.94950e8 1.12696 0.563481 0.826129i \(-0.309462\pi\)
0.563481 + 0.826129i \(0.309462\pi\)
\(350\) −2.33658e9 −2.91302
\(351\) 0 0
\(352\) 1.06260e9 1.29858
\(353\) 3.82992e8 0.463424 0.231712 0.972784i \(-0.425567\pi\)
0.231712 + 0.972784i \(0.425567\pi\)
\(354\) −8.10115e8 −0.970589
\(355\) 6.26437e7 0.0743153
\(356\) −2.39616e8 −0.281475
\(357\) 3.66074e9 4.25824
\(358\) 1.72567e9 1.98777
\(359\) 9.49411e8 1.08299 0.541494 0.840704i \(-0.317859\pi\)
0.541494 + 0.840704i \(0.317859\pi\)
\(360\) 1.96119e7 0.0221545
\(361\) −4.87249e8 −0.545099
\(362\) −1.63767e7 −0.0181446
\(363\) 1.32453e8 0.145341
\(364\) 0 0
\(365\) 3.95875e7 0.0426121
\(366\) −1.88574e9 −2.01047
\(367\) −6.86490e8 −0.724941 −0.362471 0.931995i \(-0.618067\pi\)
−0.362471 + 0.931995i \(0.618067\pi\)
\(368\) −3.39024e8 −0.354620
\(369\) −1.84252e8 −0.190906
\(370\) 5.96738e7 0.0612460
\(371\) −2.97838e9 −3.02811
\(372\) −1.36819e9 −1.37799
\(373\) −7.55087e8 −0.753384 −0.376692 0.926339i \(-0.622938\pi\)
−0.376692 + 0.926339i \(0.622938\pi\)
\(374\) −3.09285e9 −3.05709
\(375\) −1.40824e8 −0.137901
\(376\) 3.81425e8 0.370043
\(377\) 0 0
\(378\) −1.73824e9 −1.65535
\(379\) −1.24310e9 −1.17292 −0.586459 0.809979i \(-0.699478\pi\)
−0.586459 + 0.809979i \(0.699478\pi\)
\(380\) 5.87973e7 0.0549686
\(381\) −1.61637e9 −1.49728
\(382\) −9.05292e8 −0.830935
\(383\) −9.32249e8 −0.847883 −0.423942 0.905689i \(-0.639354\pi\)
−0.423942 + 0.905689i \(0.639354\pi\)
\(384\) −1.80054e9 −1.62272
\(385\) −1.22362e8 −0.109278
\(386\) 3.39037e9 3.00048
\(387\) −1.48434e8 −0.130181
\(388\) −1.23719e9 −1.07529
\(389\) −3.80482e7 −0.0327726 −0.0163863 0.999866i \(-0.505216\pi\)
−0.0163863 + 0.999866i \(0.505216\pi\)
\(390\) 0 0
\(391\) 2.44429e9 2.06792
\(392\) 2.15102e9 1.80361
\(393\) −1.53177e9 −1.27297
\(394\) −9.83462e7 −0.0810067
\(395\) 5.21994e7 0.0426163
\(396\) −1.04213e9 −0.843315
\(397\) 9.57613e8 0.768110 0.384055 0.923310i \(-0.374527\pi\)
0.384055 + 0.923310i \(0.374527\pi\)
\(398\) −3.78768e9 −3.01150
\(399\) 1.97855e9 1.55934
\(400\) 4.03035e8 0.314871
\(401\) −4.24299e8 −0.328599 −0.164300 0.986410i \(-0.552536\pi\)
−0.164300 + 0.986410i \(0.552536\pi\)
\(402\) −1.27306e9 −0.977363
\(403\) 0 0
\(404\) −1.04958e9 −0.791922
\(405\) −9.27248e7 −0.0693591
\(406\) −1.78044e9 −1.32034
\(407\) −1.00871e9 −0.741627
\(408\) 2.30041e9 1.67685
\(409\) 1.52045e9 1.09886 0.549428 0.835541i \(-0.314846\pi\)
0.549428 + 0.835541i \(0.314846\pi\)
\(410\) −4.27357e7 −0.0306230
\(411\) −1.66658e9 −1.18408
\(412\) −2.21957e9 −1.56361
\(413\) −1.32472e9 −0.925335
\(414\) 1.38520e9 0.959427
\(415\) 4.41188e7 0.0303009
\(416\) 0 0
\(417\) −1.74363e9 −1.17754
\(418\) −1.67162e9 −1.11949
\(419\) 1.12521e9 0.747282 0.373641 0.927573i \(-0.378109\pi\)
0.373641 + 0.927573i \(0.378109\pi\)
\(420\) 2.86096e8 0.188425
\(421\) 1.54255e9 1.00752 0.503758 0.863845i \(-0.331950\pi\)
0.503758 + 0.863845i \(0.331950\pi\)
\(422\) −3.12309e9 −2.02298
\(423\) 4.27778e8 0.274807
\(424\) −1.87161e9 −1.19244
\(425\) −2.90580e9 −1.83613
\(426\) 4.16412e9 2.60969
\(427\) −3.08361e9 −1.91674
\(428\) 2.49376e8 0.153745
\(429\) 0 0
\(430\) −3.44281e7 −0.0208821
\(431\) −4.93342e8 −0.296810 −0.148405 0.988927i \(-0.547414\pi\)
−0.148405 + 0.988927i \(0.547414\pi\)
\(432\) 2.99828e8 0.178928
\(433\) 1.11794e9 0.661777 0.330889 0.943670i \(-0.392652\pi\)
0.330889 + 0.943670i \(0.392652\pi\)
\(434\) −3.76288e9 −2.20956
\(435\) −5.35700e7 −0.0312039
\(436\) 2.74622e9 1.58684
\(437\) 1.32108e9 0.757259
\(438\) 2.63150e9 1.49639
\(439\) 2.00439e8 0.113072 0.0565361 0.998401i \(-0.481994\pi\)
0.0565361 + 0.998401i \(0.481994\pi\)
\(440\) −7.68921e7 −0.0430326
\(441\) 2.41242e9 1.33942
\(442\) 0 0
\(443\) 2.99756e9 1.63815 0.819077 0.573683i \(-0.194486\pi\)
0.819077 + 0.573683i \(0.194486\pi\)
\(444\) 2.35848e9 1.27877
\(445\) −1.98282e7 −0.0106665
\(446\) −6.65665e8 −0.355291
\(447\) 2.99516e8 0.158615
\(448\) −5.71458e9 −3.00270
\(449\) 1.31389e9 0.685009 0.342505 0.939516i \(-0.388725\pi\)
0.342505 + 0.939516i \(0.388725\pi\)
\(450\) −1.64674e9 −0.851888
\(451\) 7.22392e8 0.370813
\(452\) −6.89984e8 −0.351443
\(453\) 1.39837e9 0.706772
\(454\) 3.73804e9 1.87477
\(455\) 0 0
\(456\) 1.24332e9 0.614052
\(457\) 2.19208e8 0.107436 0.0537180 0.998556i \(-0.482893\pi\)
0.0537180 + 0.998556i \(0.482893\pi\)
\(458\) −5.40852e9 −2.63057
\(459\) −2.16169e9 −1.04340
\(460\) 1.91027e8 0.0915045
\(461\) 2.62315e8 0.124701 0.0623504 0.998054i \(-0.480140\pi\)
0.0623504 + 0.998054i \(0.480140\pi\)
\(462\) −8.13376e9 −3.83747
\(463\) 1.34993e9 0.632090 0.316045 0.948744i \(-0.397645\pi\)
0.316045 + 0.948744i \(0.397645\pi\)
\(464\) 3.07108e8 0.142718
\(465\) −1.13217e8 −0.0522190
\(466\) −3.94978e9 −1.80810
\(467\) 2.08017e9 0.945125 0.472563 0.881297i \(-0.343329\pi\)
0.472563 + 0.881297i \(0.343329\pi\)
\(468\) 0 0
\(469\) −2.08173e9 −0.931794
\(470\) 9.92197e7 0.0440814
\(471\) −1.25817e8 −0.0554838
\(472\) −8.32454e8 −0.364387
\(473\) 5.81964e8 0.252861
\(474\) 3.46985e9 1.49654
\(475\) −1.57052e9 −0.672380
\(476\) 1.18251e10 5.02549
\(477\) −2.09906e9 −0.885545
\(478\) 3.50190e9 1.46658
\(479\) 1.47547e9 0.613416 0.306708 0.951804i \(-0.400772\pi\)
0.306708 + 0.951804i \(0.400772\pi\)
\(480\) −2.05590e8 −0.0848513
\(481\) 0 0
\(482\) 5.30807e9 2.15910
\(483\) 6.42812e9 2.59579
\(484\) 4.27853e8 0.171528
\(485\) −1.02378e8 −0.0407482
\(486\) −3.91220e9 −1.54594
\(487\) 1.36444e9 0.535308 0.267654 0.963515i \(-0.413752\pi\)
0.267654 + 0.963515i \(0.413752\pi\)
\(488\) −1.93774e9 −0.754790
\(489\) 1.84332e9 0.712885
\(490\) 5.59541e8 0.214855
\(491\) 9.41414e8 0.358918 0.179459 0.983765i \(-0.442565\pi\)
0.179459 + 0.983765i \(0.442565\pi\)
\(492\) −1.68904e9 −0.639383
\(493\) −2.21418e9 −0.832239
\(494\) 0 0
\(495\) −8.62365e7 −0.0319575
\(496\) 6.49056e8 0.238834
\(497\) 6.80927e9 2.48802
\(498\) 2.93271e9 1.06406
\(499\) 4.44915e9 1.60297 0.801485 0.598015i \(-0.204044\pi\)
0.801485 + 0.598015i \(0.204044\pi\)
\(500\) −4.54894e8 −0.162748
\(501\) −1.40556e9 −0.499365
\(502\) −1.60704e9 −0.566975
\(503\) 2.33266e9 0.817265 0.408633 0.912699i \(-0.366006\pi\)
0.408633 + 0.912699i \(0.366006\pi\)
\(504\) 2.13179e9 0.741714
\(505\) −8.68531e7 −0.0300100
\(506\) −5.43093e9 −1.86358
\(507\) 0 0
\(508\) −5.22125e9 −1.76706
\(509\) 3.07289e9 1.03284 0.516422 0.856334i \(-0.327264\pi\)
0.516422 + 0.856334i \(0.327264\pi\)
\(510\) 5.98402e8 0.199755
\(511\) 4.30310e9 1.42662
\(512\) 1.88141e9 0.619497
\(513\) −1.16835e9 −0.382085
\(514\) 5.95475e9 1.93416
\(515\) −1.83670e8 −0.0592532
\(516\) −1.36070e9 −0.436001
\(517\) −1.67718e9 −0.533781
\(518\) 6.48644e9 2.05047
\(519\) 1.26418e9 0.396937
\(520\) 0 0
\(521\) −1.59236e9 −0.493298 −0.246649 0.969105i \(-0.579330\pi\)
−0.246649 + 0.969105i \(0.579330\pi\)
\(522\) −1.25480e9 −0.386124
\(523\) −2.27098e9 −0.694156 −0.347078 0.937836i \(-0.612826\pi\)
−0.347078 + 0.937836i \(0.612826\pi\)
\(524\) −4.94798e9 −1.50234
\(525\) −7.64183e9 −2.30483
\(526\) 7.78693e8 0.233301
\(527\) −4.67955e9 −1.39273
\(528\) 1.40299e9 0.414796
\(529\) 8.87246e8 0.260585
\(530\) −4.86860e8 −0.142049
\(531\) −9.33618e8 −0.270607
\(532\) 6.39117e9 1.84030
\(533\) 0 0
\(534\) −1.31804e9 −0.374571
\(535\) 2.06358e7 0.00582618
\(536\) −1.30816e9 −0.366931
\(537\) 5.64383e9 1.57276
\(538\) 6.31192e9 1.74753
\(539\) −9.45833e9 −2.60168
\(540\) −1.68942e8 −0.0461699
\(541\) −4.79640e9 −1.30234 −0.651171 0.758931i \(-0.725722\pi\)
−0.651171 + 0.758931i \(0.725722\pi\)
\(542\) −8.70472e9 −2.34832
\(543\) −5.35603e7 −0.0143563
\(544\) −8.49755e9 −2.26307
\(545\) 2.27250e8 0.0601333
\(546\) 0 0
\(547\) 1.04080e9 0.271902 0.135951 0.990716i \(-0.456591\pi\)
0.135951 + 0.990716i \(0.456591\pi\)
\(548\) −5.38344e9 −1.39742
\(549\) −2.17323e9 −0.560534
\(550\) 6.45636e9 1.65470
\(551\) −1.19671e9 −0.304761
\(552\) 4.03943e9 1.02219
\(553\) 5.67399e9 1.42676
\(554\) −5.04964e8 −0.126176
\(555\) 1.95164e8 0.0484590
\(556\) −5.63231e9 −1.38971
\(557\) 3.62664e9 0.889224 0.444612 0.895723i \(-0.353342\pi\)
0.444612 + 0.895723i \(0.353342\pi\)
\(558\) −2.65195e9 −0.646168
\(559\) 0 0
\(560\) −1.35722e8 −0.0326581
\(561\) −1.01152e10 −2.41883
\(562\) 6.36231e9 1.51195
\(563\) −6.84603e9 −1.61681 −0.808405 0.588626i \(-0.799669\pi\)
−0.808405 + 0.588626i \(0.799669\pi\)
\(564\) 3.92144e9 0.920384
\(565\) −5.70962e7 −0.0133179
\(566\) 6.50954e9 1.50901
\(567\) −1.00790e10 −2.32208
\(568\) 4.27894e9 0.979754
\(569\) 4.84834e9 1.10332 0.551659 0.834070i \(-0.313995\pi\)
0.551659 + 0.834070i \(0.313995\pi\)
\(570\) 3.23423e8 0.0731490
\(571\) −1.65781e9 −0.372655 −0.186328 0.982488i \(-0.559659\pi\)
−0.186328 + 0.982488i \(0.559659\pi\)
\(572\) 0 0
\(573\) −2.96077e9 −0.657451
\(574\) −4.64530e9 −1.02523
\(575\) −5.10247e9 −1.11929
\(576\) −4.02744e9 −0.878113
\(577\) −3.67938e9 −0.797370 −0.398685 0.917088i \(-0.630533\pi\)
−0.398685 + 0.917088i \(0.630533\pi\)
\(578\) 1.74424e10 3.75715
\(579\) 1.10882e10 2.37404
\(580\) −1.73043e8 −0.0368262
\(581\) 4.79564e9 1.01445
\(582\) −6.80534e9 −1.43093
\(583\) 8.22974e9 1.72007
\(584\) 2.70406e9 0.561788
\(585\) 0 0
\(586\) 2.92466e8 0.0600390
\(587\) −1.62623e9 −0.331855 −0.165927 0.986138i \(-0.553062\pi\)
−0.165927 + 0.986138i \(0.553062\pi\)
\(588\) 2.21147e10 4.48601
\(589\) −2.52919e9 −0.510009
\(590\) −2.16545e8 −0.0434077
\(591\) −3.21643e8 −0.0640940
\(592\) −1.11884e9 −0.221637
\(593\) 1.07604e7 0.00211903 0.00105952 0.999999i \(-0.499663\pi\)
0.00105952 + 0.999999i \(0.499663\pi\)
\(594\) 4.80304e9 0.940294
\(595\) 9.78522e8 0.190441
\(596\) 9.67507e8 0.187194
\(597\) −1.23877e10 −2.38275
\(598\) 0 0
\(599\) −8.38421e9 −1.59393 −0.796964 0.604027i \(-0.793562\pi\)
−0.796964 + 0.604027i \(0.793562\pi\)
\(600\) −4.80212e9 −0.907619
\(601\) 2.73577e9 0.514066 0.257033 0.966403i \(-0.417255\pi\)
0.257033 + 0.966403i \(0.417255\pi\)
\(602\) −3.74228e9 −0.699115
\(603\) −1.46713e9 −0.272495
\(604\) 4.51707e9 0.834118
\(605\) 3.54048e7 0.00650007
\(606\) −5.77339e9 −1.05384
\(607\) −5.18763e9 −0.941475 −0.470738 0.882273i \(-0.656012\pi\)
−0.470738 + 0.882273i \(0.656012\pi\)
\(608\) −4.59273e9 −0.828721
\(609\) −5.82297e9 −1.04468
\(610\) −5.04062e8 −0.0899144
\(611\) 0 0
\(612\) 8.33389e9 1.46966
\(613\) −2.00248e9 −0.351121 −0.175561 0.984469i \(-0.556174\pi\)
−0.175561 + 0.984469i \(0.556174\pi\)
\(614\) −1.61672e10 −2.81867
\(615\) −1.39768e8 −0.0242295
\(616\) −8.35805e9 −1.44070
\(617\) 2.91244e9 0.499183 0.249591 0.968351i \(-0.419704\pi\)
0.249591 + 0.968351i \(0.419704\pi\)
\(618\) −1.22091e10 −2.08076
\(619\) 4.29088e9 0.727158 0.363579 0.931563i \(-0.381555\pi\)
0.363579 + 0.931563i \(0.381555\pi\)
\(620\) −3.65719e8 −0.0616278
\(621\) −3.79585e9 −0.636046
\(622\) 1.69607e10 2.82604
\(623\) −2.15529e9 −0.357107
\(624\) 0 0
\(625\) 6.04702e9 0.990744
\(626\) 1.11895e10 1.82305
\(627\) −5.46704e9 −0.885760
\(628\) −4.06418e8 −0.0654809
\(629\) 8.06660e9 1.29245
\(630\) 5.54539e8 0.0883568
\(631\) −7.47553e9 −1.18451 −0.592255 0.805750i \(-0.701762\pi\)
−0.592255 + 0.805750i \(0.701762\pi\)
\(632\) 3.56554e9 0.561843
\(633\) −1.02141e10 −1.60062
\(634\) −1.35481e10 −2.11138
\(635\) −4.32058e8 −0.0669629
\(636\) −1.92421e10 −2.96587
\(637\) 0 0
\(638\) 4.91965e9 0.750002
\(639\) 4.79894e9 0.727599
\(640\) −4.81287e8 −0.0725728
\(641\) 7.59758e9 1.13939 0.569695 0.821856i \(-0.307061\pi\)
0.569695 + 0.821856i \(0.307061\pi\)
\(642\) 1.37173e9 0.204595
\(643\) −7.35758e9 −1.09143 −0.545716 0.837970i \(-0.683742\pi\)
−0.545716 + 0.837970i \(0.683742\pi\)
\(644\) 2.07643e10 3.06350
\(645\) −1.12598e8 −0.0165223
\(646\) 1.33678e10 1.95096
\(647\) 4.42469e9 0.642271 0.321135 0.947033i \(-0.395936\pi\)
0.321135 + 0.947033i \(0.395936\pi\)
\(648\) −6.33366e9 −0.914412
\(649\) 3.66042e9 0.525623
\(650\) 0 0
\(651\) −1.23066e10 −1.74825
\(652\) 5.95434e9 0.841332
\(653\) 6.23572e9 0.876376 0.438188 0.898883i \(-0.355620\pi\)
0.438188 + 0.898883i \(0.355620\pi\)
\(654\) 1.51060e10 2.11167
\(655\) −4.09445e8 −0.0569313
\(656\) 8.01264e8 0.110818
\(657\) 3.03268e9 0.417203
\(658\) 1.07850e10 1.47581
\(659\) −6.85996e9 −0.933733 −0.466866 0.884328i \(-0.654617\pi\)
−0.466866 + 0.884328i \(0.654617\pi\)
\(660\) −7.90530e8 −0.107032
\(661\) 1.12545e10 1.51572 0.757861 0.652416i \(-0.226245\pi\)
0.757861 + 0.652416i \(0.226245\pi\)
\(662\) 8.84147e9 1.18446
\(663\) 0 0
\(664\) 3.01358e9 0.399479
\(665\) 5.28869e8 0.0697384
\(666\) 4.57142e9 0.599642
\(667\) −3.88801e9 −0.507326
\(668\) −4.54029e9 −0.589340
\(669\) −2.17707e9 −0.281113
\(670\) −3.40290e8 −0.0437106
\(671\) 8.52052e9 1.08877
\(672\) −2.23473e10 −2.84075
\(673\) 1.04170e10 1.31732 0.658660 0.752441i \(-0.271124\pi\)
0.658660 + 0.752441i \(0.271124\pi\)
\(674\) 1.98210e10 2.49354
\(675\) 4.51255e9 0.564753
\(676\) 0 0
\(677\) 4.39978e9 0.544967 0.272484 0.962160i \(-0.412155\pi\)
0.272484 + 0.962160i \(0.412155\pi\)
\(678\) −3.79535e9 −0.467680
\(679\) −1.11283e10 −1.36422
\(680\) 6.14903e8 0.0749938
\(681\) 1.22253e10 1.48336
\(682\) 1.03974e10 1.25511
\(683\) 7.39005e9 0.887513 0.443757 0.896147i \(-0.353645\pi\)
0.443757 + 0.896147i \(0.353645\pi\)
\(684\) 4.50428e9 0.538182
\(685\) −4.45480e8 −0.0529555
\(686\) 3.61142e10 4.27114
\(687\) −1.76886e10 −2.08135
\(688\) 6.45503e8 0.0755682
\(689\) 0 0
\(690\) 1.05077e9 0.121769
\(691\) −1.58357e10 −1.82584 −0.912921 0.408136i \(-0.866179\pi\)
−0.912921 + 0.408136i \(0.866179\pi\)
\(692\) 4.08358e9 0.468457
\(693\) −9.37376e9 −1.06991
\(694\) 4.13492e9 0.469579
\(695\) −4.66074e8 −0.0526633
\(696\) −3.65915e9 −0.411385
\(697\) −5.77694e9 −0.646224
\(698\) 1.59018e10 1.76991
\(699\) −1.29178e10 −1.43060
\(700\) −2.46849e10 −2.72012
\(701\) −1.64091e10 −1.79917 −0.899586 0.436744i \(-0.856131\pi\)
−0.899586 + 0.436744i \(0.856131\pi\)
\(702\) 0 0
\(703\) 4.35981e9 0.473287
\(704\) 1.57903e10 1.70564
\(705\) 3.24499e8 0.0348780
\(706\) 6.80514e9 0.727814
\(707\) −9.44079e9 −1.00471
\(708\) −8.55848e9 −0.906317
\(709\) −1.50021e10 −1.58084 −0.790422 0.612563i \(-0.790139\pi\)
−0.790422 + 0.612563i \(0.790139\pi\)
\(710\) 1.11307e9 0.116713
\(711\) 3.99884e9 0.417244
\(712\) −1.35438e9 −0.140625
\(713\) −8.21712e9 −0.848997
\(714\) 6.50453e10 6.68763
\(715\) 0 0
\(716\) 1.82309e10 1.85614
\(717\) 1.14530e10 1.16039
\(718\) 1.68695e10 1.70085
\(719\) 8.80929e9 0.883873 0.441936 0.897046i \(-0.354292\pi\)
0.441936 + 0.897046i \(0.354292\pi\)
\(720\) −9.56519e7 −0.00955058
\(721\) −1.99646e10 −1.98375
\(722\) −8.65761e9 −0.856087
\(723\) 1.73601e10 1.70832
\(724\) −1.73012e8 −0.0169431
\(725\) 4.62211e9 0.450461
\(726\) 2.35346e9 0.228260
\(727\) −3.23272e9 −0.312031 −0.156015 0.987755i \(-0.549865\pi\)
−0.156015 + 0.987755i \(0.549865\pi\)
\(728\) 0 0
\(729\) 2.60190e8 0.0248739
\(730\) 7.03405e8 0.0669230
\(731\) −4.65394e9 −0.440666
\(732\) −1.99220e10 −1.87734
\(733\) −1.26439e10 −1.18582 −0.592909 0.805269i \(-0.702021\pi\)
−0.592909 + 0.805269i \(0.702021\pi\)
\(734\) −1.21978e10 −1.13853
\(735\) 1.82999e9 0.169998
\(736\) −1.49214e10 −1.37955
\(737\) 5.75216e9 0.529291
\(738\) −3.27385e9 −0.299820
\(739\) −8.81222e9 −0.803211 −0.401606 0.915813i \(-0.631548\pi\)
−0.401606 + 0.915813i \(0.631548\pi\)
\(740\) 6.30425e8 0.0571903
\(741\) 0 0
\(742\) −5.29209e10 −4.75569
\(743\) −7.85295e8 −0.0702380 −0.0351190 0.999383i \(-0.511181\pi\)
−0.0351190 + 0.999383i \(0.511181\pi\)
\(744\) −7.73343e9 −0.688442
\(745\) 8.00611e7 0.00709373
\(746\) −1.34166e10 −1.18320
\(747\) 3.37980e9 0.296667
\(748\) −3.26745e10 −2.85465
\(749\) 2.24308e9 0.195056
\(750\) −2.50221e9 −0.216575
\(751\) 3.05457e8 0.0263154 0.0131577 0.999913i \(-0.495812\pi\)
0.0131577 + 0.999913i \(0.495812\pi\)
\(752\) −1.86030e9 −0.159522
\(753\) −5.25585e9 −0.448601
\(754\) 0 0
\(755\) 3.73788e8 0.0316090
\(756\) −1.83637e10 −1.54573
\(757\) 1.57774e10 1.32191 0.660953 0.750428i \(-0.270152\pi\)
0.660953 + 0.750428i \(0.270152\pi\)
\(758\) −2.20878e10 −1.84208
\(759\) −1.77619e10 −1.47450
\(760\) 3.32341e8 0.0274623
\(761\) 9.23635e9 0.759721 0.379860 0.925044i \(-0.375972\pi\)
0.379860 + 0.925044i \(0.375972\pi\)
\(762\) −2.87202e10 −2.35150
\(763\) 2.47017e10 2.01322
\(764\) −9.56398e9 −0.775911
\(765\) 6.89629e8 0.0556930
\(766\) −1.65645e10 −1.33161
\(767\) 0 0
\(768\) −6.81758e9 −0.543083
\(769\) −4.33833e9 −0.344017 −0.172009 0.985095i \(-0.555026\pi\)
−0.172009 + 0.985095i \(0.555026\pi\)
\(770\) −2.17417e9 −0.171623
\(771\) 1.94751e10 1.53034
\(772\) 3.58176e10 2.80179
\(773\) 1.34479e9 0.104719 0.0523597 0.998628i \(-0.483326\pi\)
0.0523597 + 0.998628i \(0.483326\pi\)
\(774\) −2.63743e9 −0.204450
\(775\) 9.76861e9 0.753836
\(776\) −6.99300e9 −0.537214
\(777\) 2.12140e10 1.62237
\(778\) −6.76054e8 −0.0514699
\(779\) −3.12230e9 −0.236643
\(780\) 0 0
\(781\) −1.88151e10 −1.41328
\(782\) 4.34309e10 3.24770
\(783\) 3.43850e9 0.255978
\(784\) −1.04910e10 −0.777519
\(785\) −3.36311e7 −0.00248140
\(786\) −2.72170e10 −1.99923
\(787\) −6.66337e9 −0.487284 −0.243642 0.969865i \(-0.578342\pi\)
−0.243642 + 0.969865i \(0.578342\pi\)
\(788\) −1.03898e9 −0.0756425
\(789\) 2.54673e9 0.184592
\(790\) 9.27498e8 0.0669296
\(791\) −6.20626e9 −0.445874
\(792\) −5.89047e9 −0.421320
\(793\) 0 0
\(794\) 1.70152e10 1.20633
\(795\) −1.59228e9 −0.112392
\(796\) −4.00150e10 −2.81208
\(797\) 1.75682e10 1.22920 0.614601 0.788838i \(-0.289317\pi\)
0.614601 + 0.788838i \(0.289317\pi\)
\(798\) 3.51555e10 2.44897
\(799\) 1.34123e10 0.930232
\(800\) 1.77387e10 1.22492
\(801\) −1.51898e9 −0.104433
\(802\) −7.53909e9 −0.516070
\(803\) −1.18902e10 −0.810369
\(804\) −1.34492e10 −0.912643
\(805\) 1.71825e9 0.116091
\(806\) 0 0
\(807\) 2.06432e10 1.38268
\(808\) −5.93259e9 −0.395644
\(809\) −2.39984e10 −1.59354 −0.796770 0.604282i \(-0.793460\pi\)
−0.796770 + 0.604282i \(0.793460\pi\)
\(810\) −1.64757e9 −0.108929
\(811\) 1.29949e10 0.855462 0.427731 0.903906i \(-0.359313\pi\)
0.427731 + 0.903906i \(0.359313\pi\)
\(812\) −1.88095e10 −1.23291
\(813\) −2.84689e10 −1.85804
\(814\) −1.79231e10 −1.16474
\(815\) 4.92722e8 0.0318823
\(816\) −1.12196e10 −0.722874
\(817\) −2.51535e9 −0.161369
\(818\) 2.70159e10 1.72577
\(819\) 0 0
\(820\) −4.51482e8 −0.0285951
\(821\) −3.50357e9 −0.220958 −0.110479 0.993878i \(-0.535238\pi\)
−0.110479 + 0.993878i \(0.535238\pi\)
\(822\) −2.96124e10 −1.85961
\(823\) −8.24920e8 −0.0515837 −0.0257918 0.999667i \(-0.508211\pi\)
−0.0257918 + 0.999667i \(0.508211\pi\)
\(824\) −1.25457e10 −0.781180
\(825\) 2.11156e10 1.30923
\(826\) −2.35381e10 −1.45325
\(827\) −2.02050e10 −1.24220 −0.621098 0.783733i \(-0.713313\pi\)
−0.621098 + 0.783733i \(0.713313\pi\)
\(828\) 1.46340e10 0.895894
\(829\) −2.88093e10 −1.75627 −0.878135 0.478412i \(-0.841212\pi\)
−0.878135 + 0.478412i \(0.841212\pi\)
\(830\) 7.83918e8 0.0475880
\(831\) −1.65149e9 −0.0998327
\(832\) 0 0
\(833\) 7.56379e10 4.53400
\(834\) −3.09813e10 −1.84935
\(835\) −3.75709e8 −0.0223331
\(836\) −1.76598e10 −1.04536
\(837\) 7.26710e9 0.428373
\(838\) 1.99931e10 1.17362
\(839\) 2.61892e10 1.53093 0.765466 0.643476i \(-0.222509\pi\)
0.765466 + 0.643476i \(0.222509\pi\)
\(840\) 1.61711e9 0.0941372
\(841\) −1.37279e10 −0.795825
\(842\) 2.74085e10 1.58232
\(843\) 2.08080e10 1.19628
\(844\) −3.29939e10 −1.88902
\(845\) 0 0
\(846\) 7.60091e9 0.431588
\(847\) 3.84844e9 0.217617
\(848\) 9.12828e9 0.514048
\(849\) 2.12896e10 1.19396
\(850\) −5.16312e10 −2.88367
\(851\) 1.41646e10 0.787865
\(852\) 4.39919e10 2.43688
\(853\) 2.18805e9 0.120708 0.0603539 0.998177i \(-0.480777\pi\)
0.0603539 + 0.998177i \(0.480777\pi\)
\(854\) −5.47907e10 −3.01026
\(855\) 3.72729e8 0.0203944
\(856\) 1.40955e9 0.0768109
\(857\) 1.81674e10 0.985959 0.492979 0.870041i \(-0.335908\pi\)
0.492979 + 0.870041i \(0.335908\pi\)
\(858\) 0 0
\(859\) −1.48867e10 −0.801351 −0.400675 0.916220i \(-0.631225\pi\)
−0.400675 + 0.916220i \(0.631225\pi\)
\(860\) −3.63717e8 −0.0194993
\(861\) −1.51925e10 −0.811183
\(862\) −8.76587e9 −0.466144
\(863\) 2.25805e10 1.19590 0.597951 0.801533i \(-0.295982\pi\)
0.597951 + 0.801533i \(0.295982\pi\)
\(864\) 1.31962e10 0.696069
\(865\) 3.37916e8 0.0177522
\(866\) 1.98640e10 1.03933
\(867\) 5.70456e10 2.97273
\(868\) −3.97530e10 −2.06325
\(869\) −1.56782e10 −0.810449
\(870\) −9.51850e8 −0.0490062
\(871\) 0 0
\(872\) 1.55225e10 0.792783
\(873\) −7.84283e9 −0.398954
\(874\) 2.34734e10 1.18929
\(875\) −4.09167e9 −0.206478
\(876\) 2.78006e10 1.39730
\(877\) 2.06345e10 1.03299 0.516494 0.856291i \(-0.327237\pi\)
0.516494 + 0.856291i \(0.327237\pi\)
\(878\) 3.56147e9 0.177582
\(879\) 9.56514e8 0.0475040
\(880\) 3.75020e8 0.0185509
\(881\) −2.26396e9 −0.111546 −0.0557729 0.998443i \(-0.517762\pi\)
−0.0557729 + 0.998443i \(0.517762\pi\)
\(882\) 4.28647e10 2.10359
\(883\) −1.01551e10 −0.496387 −0.248193 0.968711i \(-0.579837\pi\)
−0.248193 + 0.968711i \(0.579837\pi\)
\(884\) 0 0
\(885\) −7.08214e8 −0.0343450
\(886\) 5.32617e10 2.57275
\(887\) 7.46410e9 0.359124 0.179562 0.983747i \(-0.442532\pi\)
0.179562 + 0.983747i \(0.442532\pi\)
\(888\) 1.33309e10 0.638871
\(889\) −4.69640e10 −2.24186
\(890\) −3.52314e8 −0.0167519
\(891\) 2.78500e10 1.31902
\(892\) −7.03244e9 −0.331764
\(893\) 7.24907e9 0.340645
\(894\) 5.32190e9 0.249107
\(895\) 1.50860e9 0.0703388
\(896\) −5.23151e10 −2.42968
\(897\) 0 0
\(898\) 2.33456e10 1.07582
\(899\) 7.44355e9 0.341681
\(900\) −1.73971e10 −0.795476
\(901\) −6.58129e10 −2.99760
\(902\) 1.28357e10 0.582367
\(903\) −1.22392e10 −0.553153
\(904\) −3.90001e9 −0.175580
\(905\) −1.43168e7 −0.000642058 0
\(906\) 2.48468e10 1.11000
\(907\) 7.98911e9 0.355527 0.177764 0.984073i \(-0.443114\pi\)
0.177764 + 0.984073i \(0.443114\pi\)
\(908\) 3.94906e10 1.75063
\(909\) −6.65355e9 −0.293819
\(910\) 0 0
\(911\) −1.26514e10 −0.554401 −0.277200 0.960812i \(-0.589407\pi\)
−0.277200 + 0.960812i \(0.589407\pi\)
\(912\) −6.06395e9 −0.264712
\(913\) −1.32511e10 −0.576242
\(914\) 3.89496e9 0.168730
\(915\) −1.64854e9 −0.0711420
\(916\) −5.71384e10 −2.45637
\(917\) −4.45060e10 −1.90601
\(918\) −3.84097e10 −1.63867
\(919\) −2.37637e10 −1.00997 −0.504987 0.863127i \(-0.668503\pi\)
−0.504987 + 0.863127i \(0.668503\pi\)
\(920\) 1.07975e9 0.0457156
\(921\) −5.28749e10 −2.23019
\(922\) 4.66090e9 0.195844
\(923\) 0 0
\(924\) −8.59293e10 −3.58335
\(925\) −1.68391e10 −0.699556
\(926\) 2.39861e10 0.992707
\(927\) −1.40704e10 −0.580131
\(928\) 1.35166e10 0.555202
\(929\) −9.87669e8 −0.0404163 −0.0202081 0.999796i \(-0.506433\pi\)
−0.0202081 + 0.999796i \(0.506433\pi\)
\(930\) −2.01169e9 −0.0820106
\(931\) 4.08805e10 1.66032
\(932\) −4.17276e10 −1.68837
\(933\) 5.54703e10 2.23602
\(934\) 3.69611e10 1.48433
\(935\) −2.70382e9 −0.108177
\(936\) 0 0
\(937\) −2.77444e10 −1.10176 −0.550880 0.834584i \(-0.685708\pi\)
−0.550880 + 0.834584i \(0.685708\pi\)
\(938\) −3.69889e10 −1.46340
\(939\) 3.65953e10 1.44243
\(940\) 1.04821e9 0.0411623
\(941\) −4.22093e10 −1.65137 −0.825684 0.564132i \(-0.809211\pi\)
−0.825684 + 0.564132i \(0.809211\pi\)
\(942\) −2.23556e9 −0.0871381
\(943\) −1.01441e10 −0.393932
\(944\) 4.06007e9 0.157084
\(945\) −1.51959e9 −0.0585755
\(946\) 1.03405e10 0.397122
\(947\) 5.20285e10 1.99075 0.995375 0.0960668i \(-0.0306263\pi\)
0.995375 + 0.0960668i \(0.0306263\pi\)
\(948\) 3.66574e10 1.39744
\(949\) 0 0
\(950\) −2.79055e10 −1.05598
\(951\) −4.43093e10 −1.67056
\(952\) 6.68390e10 2.51073
\(953\) −5.60369e9 −0.209724 −0.104862 0.994487i \(-0.533440\pi\)
−0.104862 + 0.994487i \(0.533440\pi\)
\(954\) −3.72968e10 −1.39076
\(955\) −7.91419e8 −0.0294032
\(956\) 3.69959e10 1.36946
\(957\) 1.60898e10 0.593416
\(958\) 2.62166e10 0.963379
\(959\) −4.84229e10 −1.77291
\(960\) −3.05509e9 −0.111449
\(961\) −1.17811e10 −0.428205
\(962\) 0 0
\(963\) 1.58085e9 0.0570425
\(964\) 5.60772e10 2.01612
\(965\) 2.96390e9 0.106174
\(966\) 1.14217e11 4.07672
\(967\) 2.36277e10 0.840289 0.420144 0.907457i \(-0.361979\pi\)
0.420144 + 0.907457i \(0.361979\pi\)
\(968\) 2.41836e9 0.0856953
\(969\) 4.37197e10 1.54363
\(970\) −1.81908e9 −0.0639957
\(971\) −4.26827e10 −1.49618 −0.748092 0.663595i \(-0.769030\pi\)
−0.748092 + 0.663595i \(0.769030\pi\)
\(972\) −4.13305e10 −1.44357
\(973\) −5.06615e10 −1.76312
\(974\) 2.42439e10 0.840709
\(975\) 0 0
\(976\) 9.45081e9 0.325383
\(977\) −3.81913e10 −1.31019 −0.655094 0.755548i \(-0.727371\pi\)
−0.655094 + 0.755548i \(0.727371\pi\)
\(978\) 3.27527e10 1.11960
\(979\) 5.95542e9 0.202849
\(980\) 5.91129e9 0.200628
\(981\) 1.74089e10 0.588748
\(982\) 1.67274e10 0.563686
\(983\) 3.15628e10 1.05983 0.529917 0.848050i \(-0.322223\pi\)
0.529917 + 0.848050i \(0.322223\pi\)
\(984\) −9.54697e9 −0.319435
\(985\) −8.59756e7 −0.00286648
\(986\) −3.93423e10 −1.30704
\(987\) 3.52725e10 1.16769
\(988\) 0 0
\(989\) −8.17213e9 −0.268626
\(990\) −1.53228e9 −0.0501897
\(991\) 5.55554e10 1.81329 0.906647 0.421890i \(-0.138633\pi\)
0.906647 + 0.421890i \(0.138633\pi\)
\(992\) 2.85668e10 0.929117
\(993\) 2.89162e10 0.937170
\(994\) 1.20989e11 3.90746
\(995\) −3.31124e9 −0.106564
\(996\) 3.09827e10 0.993599
\(997\) −3.64736e9 −0.116559 −0.0582795 0.998300i \(-0.518561\pi\)
−0.0582795 + 0.998300i \(0.518561\pi\)
\(998\) 7.90541e10 2.51749
\(999\) −1.25270e10 −0.397528
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.a.i.1.18 yes 21
13.5 odd 4 169.8.b.f.168.6 42
13.8 odd 4 169.8.b.f.168.37 42
13.12 even 2 169.8.a.h.1.4 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.8.a.h.1.4 21 13.12 even 2
169.8.a.i.1.18 yes 21 1.1 even 1 trivial
169.8.b.f.168.6 42 13.5 odd 4
169.8.b.f.168.37 42 13.8 odd 4