Properties

Label 169.8.a.i.1.17
Level $169$
Weight $8$
Character 169.1
Self dual yes
Analytic conductor $52.793$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.3948 q^{2} -46.3939 q^{3} +108.998 q^{4} +391.457 q^{5} -714.223 q^{6} +1742.39 q^{7} -292.525 q^{8} -34.6060 q^{9} +6026.39 q^{10} +4062.66 q^{11} -5056.86 q^{12} +26823.7 q^{14} -18161.2 q^{15} -18455.1 q^{16} +5498.86 q^{17} -532.750 q^{18} +17102.6 q^{19} +42668.2 q^{20} -80836.3 q^{21} +62543.6 q^{22} -76982.9 q^{23} +13571.4 q^{24} +75113.7 q^{25} +103069. q^{27} +189918. q^{28} +148628. q^{29} -279588. q^{30} -99859.9 q^{31} -246669. q^{32} -188483. q^{33} +84653.6 q^{34} +682071. q^{35} -3771.99 q^{36} +165712. q^{37} +263290. q^{38} -114511. q^{40} +275758. q^{41} -1.24446e6 q^{42} +399389. q^{43} +442823. q^{44} -13546.7 q^{45} -1.18513e6 q^{46} -1.12589e6 q^{47} +856206. q^{48} +2.21238e6 q^{49} +1.15636e6 q^{50} -255114. q^{51} +343549. q^{53} +1.58672e6 q^{54} +1.59036e6 q^{55} -509693. q^{56} -793454. q^{57} +2.28809e6 q^{58} +2.45965e6 q^{59} -1.97954e6 q^{60} +414676. q^{61} -1.53732e6 q^{62} -60297.1 q^{63} -1.43515e6 q^{64} -2.90164e6 q^{66} +3.22512e6 q^{67} +599367. q^{68} +3.57154e6 q^{69} +1.05003e7 q^{70} +3.55984e6 q^{71} +10123.1 q^{72} -368557. q^{73} +2.55109e6 q^{74} -3.48482e6 q^{75} +1.86415e6 q^{76} +7.07874e6 q^{77} -3.22544e6 q^{79} -7.22440e6 q^{80} -4.70609e6 q^{81} +4.24522e6 q^{82} +211812. q^{83} -8.81103e6 q^{84} +2.15257e6 q^{85} +6.14850e6 q^{86} -6.89542e6 q^{87} -1.18843e6 q^{88} -723703. q^{89} -208549. q^{90} -8.39102e6 q^{92} +4.63289e6 q^{93} -1.73328e7 q^{94} +6.69492e6 q^{95} +1.14439e7 q^{96} -1.31082e7 q^{97} +3.40591e7 q^{98} -140592. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 31 q^{2} - 26 q^{3} + 1409 q^{4} + 680 q^{5} + 1470 q^{6} + 2929 q^{7} + 4716 q^{8} + 15465 q^{9} - 5167 q^{10} + 14824 q^{11} + 21795 q^{12} - 179 q^{14} + 36398 q^{15} + 113205 q^{16} + 45016 q^{17}+ \cdots + 37605493 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 15.3948 1.36072 0.680358 0.732880i \(-0.261824\pi\)
0.680358 + 0.732880i \(0.261824\pi\)
\(3\) −46.3939 −0.992057 −0.496028 0.868306i \(-0.665209\pi\)
−0.496028 + 0.868306i \(0.665209\pi\)
\(4\) 108.998 0.851550
\(5\) 391.457 1.40052 0.700260 0.713888i \(-0.253067\pi\)
0.700260 + 0.713888i \(0.253067\pi\)
\(6\) −714.223 −1.34991
\(7\) 1742.39 1.92001 0.960003 0.279990i \(-0.0903312\pi\)
0.960003 + 0.279990i \(0.0903312\pi\)
\(8\) −292.525 −0.201999
\(9\) −34.6060 −0.0158235
\(10\) 6026.39 1.90571
\(11\) 4062.66 0.920314 0.460157 0.887838i \(-0.347793\pi\)
0.460157 + 0.887838i \(0.347793\pi\)
\(12\) −5056.86 −0.844786
\(13\) 0 0
\(14\) 26823.7 2.61258
\(15\) −18161.2 −1.38939
\(16\) −18455.1 −1.12641
\(17\) 5498.86 0.271457 0.135729 0.990746i \(-0.456662\pi\)
0.135729 + 0.990746i \(0.456662\pi\)
\(18\) −532.750 −0.0215313
\(19\) 17102.6 0.572036 0.286018 0.958224i \(-0.407668\pi\)
0.286018 + 0.958224i \(0.407668\pi\)
\(20\) 42668.2 1.19261
\(21\) −80836.3 −1.90475
\(22\) 62543.6 1.25229
\(23\) −76982.9 −1.31931 −0.659655 0.751568i \(-0.729298\pi\)
−0.659655 + 0.751568i \(0.729298\pi\)
\(24\) 13571.4 0.200394
\(25\) 75113.7 0.961455
\(26\) 0 0
\(27\) 103069. 1.00775
\(28\) 189918. 1.63498
\(29\) 148628. 1.13164 0.565818 0.824530i \(-0.308561\pi\)
0.565818 + 0.824530i \(0.308561\pi\)
\(30\) −279588. −1.89057
\(31\) −99859.9 −0.602040 −0.301020 0.953618i \(-0.597327\pi\)
−0.301020 + 0.953618i \(0.597327\pi\)
\(32\) −246669. −1.33073
\(33\) −188483. −0.913004
\(34\) 84653.6 0.369376
\(35\) 682071. 2.68901
\(36\) −3771.99 −0.0134745
\(37\) 165712. 0.537832 0.268916 0.963164i \(-0.413335\pi\)
0.268916 + 0.963164i \(0.413335\pi\)
\(38\) 263290. 0.778379
\(39\) 0 0
\(40\) −114511. −0.282903
\(41\) 275758. 0.624862 0.312431 0.949941i \(-0.398857\pi\)
0.312431 + 0.949941i \(0.398857\pi\)
\(42\) −1.24446e6 −2.59183
\(43\) 399389. 0.766050 0.383025 0.923738i \(-0.374882\pi\)
0.383025 + 0.923738i \(0.374882\pi\)
\(44\) 442823. 0.783693
\(45\) −13546.7 −0.0221611
\(46\) −1.18513e6 −1.79521
\(47\) −1.12589e6 −1.58180 −0.790902 0.611943i \(-0.790388\pi\)
−0.790902 + 0.611943i \(0.790388\pi\)
\(48\) 856206. 1.11747
\(49\) 2.21238e6 2.68642
\(50\) 1.15636e6 1.30827
\(51\) −255114. −0.269301
\(52\) 0 0
\(53\) 343549. 0.316974 0.158487 0.987361i \(-0.449338\pi\)
0.158487 + 0.987361i \(0.449338\pi\)
\(54\) 1.58672e6 1.37127
\(55\) 1.59036e6 1.28892
\(56\) −509693. −0.387838
\(57\) −793454. −0.567492
\(58\) 2.28809e6 1.53984
\(59\) 2.45965e6 1.55916 0.779580 0.626302i \(-0.215432\pi\)
0.779580 + 0.626302i \(0.215432\pi\)
\(60\) −1.97954e6 −1.18314
\(61\) 414676. 0.233913 0.116957 0.993137i \(-0.462686\pi\)
0.116957 + 0.993137i \(0.462686\pi\)
\(62\) −1.53732e6 −0.819205
\(63\) −60297.1 −0.0303812
\(64\) −1.43515e6 −0.684334
\(65\) 0 0
\(66\) −2.90164e6 −1.24234
\(67\) 3.22512e6 1.31004 0.655020 0.755612i \(-0.272660\pi\)
0.655020 + 0.755612i \(0.272660\pi\)
\(68\) 599367. 0.231159
\(69\) 3.57154e6 1.30883
\(70\) 1.05003e7 3.65897
\(71\) 3.55984e6 1.18039 0.590196 0.807260i \(-0.299050\pi\)
0.590196 + 0.807260i \(0.299050\pi\)
\(72\) 10123.1 0.00319632
\(73\) −368557. −0.110885 −0.0554427 0.998462i \(-0.517657\pi\)
−0.0554427 + 0.998462i \(0.517657\pi\)
\(74\) 2.55109e6 0.731837
\(75\) −3.48482e6 −0.953818
\(76\) 1.86415e6 0.487117
\(77\) 7.07874e6 1.76701
\(78\) 0 0
\(79\) −3.22544e6 −0.736027 −0.368014 0.929820i \(-0.619962\pi\)
−0.368014 + 0.929820i \(0.619962\pi\)
\(80\) −7.22440e6 −1.57756
\(81\) −4.70609e6 −0.983926
\(82\) 4.24522e6 0.850260
\(83\) 211812. 0.0406610 0.0203305 0.999793i \(-0.493528\pi\)
0.0203305 + 0.999793i \(0.493528\pi\)
\(84\) −8.81103e6 −1.62199
\(85\) 2.15257e6 0.380181
\(86\) 6.14850e6 1.04238
\(87\) −6.89542e6 −1.12265
\(88\) −1.18843e6 −0.185902
\(89\) −723703. −0.108817 −0.0544083 0.998519i \(-0.517327\pi\)
−0.0544083 + 0.998519i \(0.517327\pi\)
\(90\) −208549. −0.0301550
\(91\) 0 0
\(92\) −8.39102e6 −1.12346
\(93\) 4.63289e6 0.597258
\(94\) −1.73328e7 −2.15239
\(95\) 6.69492e6 0.801148
\(96\) 1.14439e7 1.32016
\(97\) −1.31082e7 −1.45828 −0.729140 0.684365i \(-0.760079\pi\)
−0.729140 + 0.684365i \(0.760079\pi\)
\(98\) 3.40591e7 3.65546
\(99\) −140592. −0.0145626
\(100\) 8.18727e6 0.818727
\(101\) −8.64751e6 −0.835154 −0.417577 0.908642i \(-0.637121\pi\)
−0.417577 + 0.908642i \(0.637121\pi\)
\(102\) −3.92741e6 −0.366442
\(103\) −1.64656e7 −1.48473 −0.742365 0.669996i \(-0.766296\pi\)
−0.742365 + 0.669996i \(0.766296\pi\)
\(104\) 0 0
\(105\) −3.16440e7 −2.66765
\(106\) 5.28886e6 0.431312
\(107\) −2.75512e6 −0.217419 −0.108709 0.994074i \(-0.534672\pi\)
−0.108709 + 0.994074i \(0.534672\pi\)
\(108\) 1.12344e7 0.858153
\(109\) −1.01827e7 −0.753133 −0.376566 0.926390i \(-0.622895\pi\)
−0.376566 + 0.926390i \(0.622895\pi\)
\(110\) 2.44832e7 1.75385
\(111\) −7.68801e6 −0.533560
\(112\) −3.21561e7 −2.16272
\(113\) 387303. 0.0252509 0.0126255 0.999920i \(-0.495981\pi\)
0.0126255 + 0.999920i \(0.495981\pi\)
\(114\) −1.22150e7 −0.772196
\(115\) −3.01355e7 −1.84772
\(116\) 1.62002e7 0.963644
\(117\) 0 0
\(118\) 3.78657e7 2.12158
\(119\) 9.58117e6 0.521200
\(120\) 5.31261e6 0.280656
\(121\) −2.98196e6 −0.153022
\(122\) 6.38384e6 0.318290
\(123\) −1.27935e7 −0.619898
\(124\) −1.08846e7 −0.512667
\(125\) −1.17880e6 −0.0539828
\(126\) −928259. −0.0413402
\(127\) 293630. 0.0127200 0.00636001 0.999980i \(-0.497976\pi\)
0.00636001 + 0.999980i \(0.497976\pi\)
\(128\) 9.47984e6 0.399546
\(129\) −1.85292e7 −0.759965
\(130\) 0 0
\(131\) −4.00277e6 −0.155565 −0.0777823 0.996970i \(-0.524784\pi\)
−0.0777823 + 0.996970i \(0.524784\pi\)
\(132\) −2.05443e7 −0.777468
\(133\) 2.97994e7 1.09831
\(134\) 4.96500e7 1.78259
\(135\) 4.03471e7 1.41138
\(136\) −1.60855e6 −0.0548340
\(137\) −1.93045e6 −0.0641410 −0.0320705 0.999486i \(-0.510210\pi\)
−0.0320705 + 0.999486i \(0.510210\pi\)
\(138\) 5.49830e7 1.78095
\(139\) 4.84164e7 1.52912 0.764558 0.644555i \(-0.222957\pi\)
0.764558 + 0.644555i \(0.222957\pi\)
\(140\) 7.43447e7 2.28982
\(141\) 5.22343e7 1.56924
\(142\) 5.48029e7 1.60618
\(143\) 0 0
\(144\) 638658. 0.0178238
\(145\) 5.81813e7 1.58488
\(146\) −5.67384e6 −0.150884
\(147\) −1.02641e8 −2.66508
\(148\) 1.80623e7 0.457991
\(149\) 6.37957e7 1.57993 0.789967 0.613149i \(-0.210097\pi\)
0.789967 + 0.613149i \(0.210097\pi\)
\(150\) −5.36479e7 −1.29788
\(151\) −4.18711e7 −0.989681 −0.494841 0.868984i \(-0.664774\pi\)
−0.494841 + 0.868984i \(0.664774\pi\)
\(152\) −5.00293e6 −0.115550
\(153\) −190293. −0.00429540
\(154\) 1.08976e8 2.40440
\(155\) −3.90909e7 −0.843168
\(156\) 0 0
\(157\) 3.62001e7 0.746554 0.373277 0.927720i \(-0.378234\pi\)
0.373277 + 0.927720i \(0.378234\pi\)
\(158\) −4.96548e7 −1.00152
\(159\) −1.59386e7 −0.314456
\(160\) −9.65604e7 −1.86371
\(161\) −1.34134e8 −2.53308
\(162\) −7.24491e7 −1.33884
\(163\) −6.89262e7 −1.24660 −0.623301 0.781982i \(-0.714209\pi\)
−0.623301 + 0.781982i \(0.714209\pi\)
\(164\) 3.00571e7 0.532101
\(165\) −7.37829e7 −1.27868
\(166\) 3.26080e6 0.0553281
\(167\) −6.74572e7 −1.12078 −0.560390 0.828229i \(-0.689349\pi\)
−0.560390 + 0.828229i \(0.689349\pi\)
\(168\) 2.36467e7 0.384758
\(169\) 0 0
\(170\) 3.31383e7 0.517319
\(171\) −591851. −0.00905161
\(172\) 4.35328e7 0.652329
\(173\) 9.65797e6 0.141816 0.0709079 0.997483i \(-0.477410\pi\)
0.0709079 + 0.997483i \(0.477410\pi\)
\(174\) −1.06153e8 −1.52760
\(175\) 1.30877e8 1.84600
\(176\) −7.49770e7 −1.03665
\(177\) −1.14113e8 −1.54678
\(178\) −1.11412e7 −0.148069
\(179\) −7.17176e7 −0.934630 −0.467315 0.884091i \(-0.654779\pi\)
−0.467315 + 0.884091i \(0.654779\pi\)
\(180\) −1.47657e6 −0.0188713
\(181\) 2.62286e7 0.328776 0.164388 0.986396i \(-0.447435\pi\)
0.164388 + 0.986396i \(0.447435\pi\)
\(182\) 0 0
\(183\) −1.92385e7 −0.232055
\(184\) 2.25194e7 0.266499
\(185\) 6.48690e7 0.753244
\(186\) 7.13222e7 0.812698
\(187\) 2.23400e7 0.249826
\(188\) −1.22720e8 −1.34698
\(189\) 1.79586e8 1.93489
\(190\) 1.03067e8 1.09014
\(191\) 6.39932e7 0.664534 0.332267 0.943185i \(-0.392187\pi\)
0.332267 + 0.943185i \(0.392187\pi\)
\(192\) 6.65823e7 0.678898
\(193\) −1.72506e8 −1.72725 −0.863623 0.504138i \(-0.831810\pi\)
−0.863623 + 0.504138i \(0.831810\pi\)
\(194\) −2.01797e8 −1.98430
\(195\) 0 0
\(196\) 2.41146e8 2.28762
\(197\) 2.61866e7 0.244032 0.122016 0.992528i \(-0.461064\pi\)
0.122016 + 0.992528i \(0.461064\pi\)
\(198\) −2.16438e6 −0.0198155
\(199\) −5.60235e7 −0.503947 −0.251973 0.967734i \(-0.581080\pi\)
−0.251973 + 0.967734i \(0.581080\pi\)
\(200\) −2.19726e7 −0.194213
\(201\) −1.49626e8 −1.29963
\(202\) −1.33126e8 −1.13641
\(203\) 2.58967e8 2.17275
\(204\) −2.78070e7 −0.229323
\(205\) 1.07947e8 0.875131
\(206\) −2.53484e8 −2.02030
\(207\) 2.66407e6 0.0208761
\(208\) 0 0
\(209\) 6.94819e7 0.526453
\(210\) −4.87151e8 −3.62991
\(211\) 2.11600e8 1.55070 0.775349 0.631533i \(-0.217574\pi\)
0.775349 + 0.631533i \(0.217574\pi\)
\(212\) 3.74463e7 0.269919
\(213\) −1.65155e8 −1.17102
\(214\) −4.24143e7 −0.295845
\(215\) 1.56344e8 1.07287
\(216\) −3.01503e7 −0.203565
\(217\) −1.73995e8 −1.15592
\(218\) −1.56761e8 −1.02480
\(219\) 1.70988e7 0.110005
\(220\) 1.73346e8 1.09758
\(221\) 0 0
\(222\) −1.18355e8 −0.726024
\(223\) −2.35833e7 −0.142409 −0.0712046 0.997462i \(-0.522684\pi\)
−0.0712046 + 0.997462i \(0.522684\pi\)
\(224\) −4.29794e8 −2.55501
\(225\) −2.59938e6 −0.0152136
\(226\) 5.96244e6 0.0343593
\(227\) 2.56116e6 0.0145327 0.00726634 0.999974i \(-0.497687\pi\)
0.00726634 + 0.999974i \(0.497687\pi\)
\(228\) −8.64853e7 −0.483248
\(229\) 4.19687e7 0.230941 0.115471 0.993311i \(-0.463162\pi\)
0.115471 + 0.993311i \(0.463162\pi\)
\(230\) −4.63929e8 −2.51422
\(231\) −3.28411e8 −1.75297
\(232\) −4.34773e7 −0.228589
\(233\) −3.85893e7 −0.199858 −0.0999289 0.994995i \(-0.531862\pi\)
−0.0999289 + 0.994995i \(0.531862\pi\)
\(234\) 0 0
\(235\) −4.40737e8 −2.21535
\(236\) 2.68098e8 1.32770
\(237\) 1.49641e8 0.730181
\(238\) 1.47500e8 0.709205
\(239\) 6.11018e7 0.289508 0.144754 0.989468i \(-0.453761\pi\)
0.144754 + 0.989468i \(0.453761\pi\)
\(240\) 3.35168e8 1.56503
\(241\) 1.81320e8 0.834422 0.417211 0.908810i \(-0.363008\pi\)
0.417211 + 0.908810i \(0.363008\pi\)
\(242\) −4.59066e7 −0.208219
\(243\) −7.07804e6 −0.0316440
\(244\) 4.51991e7 0.199189
\(245\) 8.66054e8 3.76239
\(246\) −1.96952e8 −0.843506
\(247\) 0 0
\(248\) 2.92115e7 0.121611
\(249\) −9.82680e6 −0.0403380
\(250\) −1.81474e7 −0.0734553
\(251\) −4.38290e8 −1.74946 −0.874730 0.484611i \(-0.838961\pi\)
−0.874730 + 0.484611i \(0.838961\pi\)
\(252\) −6.57229e6 −0.0258711
\(253\) −3.12756e8 −1.21418
\(254\) 4.52036e6 0.0173083
\(255\) −9.98660e7 −0.377161
\(256\) 3.29639e8 1.22800
\(257\) −7.24465e7 −0.266227 −0.133113 0.991101i \(-0.542497\pi\)
−0.133113 + 0.991101i \(0.542497\pi\)
\(258\) −2.85253e8 −1.03410
\(259\) 2.88734e8 1.03264
\(260\) 0 0
\(261\) −5.14340e6 −0.0179064
\(262\) −6.16216e7 −0.211679
\(263\) 1.06467e8 0.360886 0.180443 0.983585i \(-0.442247\pi\)
0.180443 + 0.983585i \(0.442247\pi\)
\(264\) 5.51359e7 0.184425
\(265\) 1.34485e8 0.443928
\(266\) 4.58754e8 1.49449
\(267\) 3.35754e7 0.107952
\(268\) 3.51533e8 1.11556
\(269\) −3.49491e8 −1.09472 −0.547359 0.836898i \(-0.684367\pi\)
−0.547359 + 0.836898i \(0.684367\pi\)
\(270\) 6.21133e8 1.92049
\(271\) −4.77567e8 −1.45761 −0.728806 0.684720i \(-0.759925\pi\)
−0.728806 + 0.684720i \(0.759925\pi\)
\(272\) −1.01482e8 −0.305773
\(273\) 0 0
\(274\) −2.97187e7 −0.0872777
\(275\) 3.05161e8 0.884841
\(276\) 3.89292e8 1.11453
\(277\) 2.30507e8 0.651636 0.325818 0.945432i \(-0.394360\pi\)
0.325818 + 0.945432i \(0.394360\pi\)
\(278\) 7.45358e8 2.08069
\(279\) 3.45575e6 0.00952637
\(280\) −1.99523e8 −0.543175
\(281\) −1.05592e8 −0.283896 −0.141948 0.989874i \(-0.545337\pi\)
−0.141948 + 0.989874i \(0.545337\pi\)
\(282\) 8.04134e8 2.13529
\(283\) 1.68144e8 0.440991 0.220496 0.975388i \(-0.429233\pi\)
0.220496 + 0.975388i \(0.429233\pi\)
\(284\) 3.88017e8 1.00516
\(285\) −3.10603e8 −0.794784
\(286\) 0 0
\(287\) 4.80477e8 1.19974
\(288\) 8.53622e6 0.0210568
\(289\) −3.80101e8 −0.926311
\(290\) 8.95687e8 2.15657
\(291\) 6.08139e8 1.44670
\(292\) −4.01721e7 −0.0944244
\(293\) −3.47837e8 −0.807866 −0.403933 0.914789i \(-0.632357\pi\)
−0.403933 + 0.914789i \(0.632357\pi\)
\(294\) −1.58013e9 −3.62642
\(295\) 9.62846e8 2.18363
\(296\) −4.84748e7 −0.108641
\(297\) 4.18734e8 0.927451
\(298\) 9.82118e8 2.14984
\(299\) 0 0
\(300\) −3.79839e8 −0.812224
\(301\) 6.95892e8 1.47082
\(302\) −6.44596e8 −1.34668
\(303\) 4.01192e8 0.828520
\(304\) −3.15630e8 −0.644349
\(305\) 1.62328e8 0.327600
\(306\) −2.92952e6 −0.00584482
\(307\) 3.94077e8 0.777315 0.388658 0.921382i \(-0.372939\pi\)
0.388658 + 0.921382i \(0.372939\pi\)
\(308\) 7.71572e8 1.50470
\(309\) 7.63904e8 1.47294
\(310\) −6.01794e8 −1.14731
\(311\) −1.67240e8 −0.315267 −0.157634 0.987498i \(-0.550386\pi\)
−0.157634 + 0.987498i \(0.550386\pi\)
\(312\) 0 0
\(313\) 4.26545e8 0.786249 0.393124 0.919485i \(-0.371394\pi\)
0.393124 + 0.919485i \(0.371394\pi\)
\(314\) 5.57292e8 1.01585
\(315\) −2.36037e7 −0.0425494
\(316\) −3.51568e8 −0.626764
\(317\) −6.23487e8 −1.09931 −0.549655 0.835392i \(-0.685241\pi\)
−0.549655 + 0.835392i \(0.685241\pi\)
\(318\) −2.45371e8 −0.427886
\(319\) 6.03824e8 1.04146
\(320\) −5.61800e8 −0.958423
\(321\) 1.27821e8 0.215692
\(322\) −2.06497e9 −3.44681
\(323\) 9.40446e7 0.155283
\(324\) −5.12956e8 −0.837862
\(325\) 0 0
\(326\) −1.06110e9 −1.69627
\(327\) 4.72417e8 0.747150
\(328\) −8.06660e7 −0.126221
\(329\) −1.96174e9 −3.03707
\(330\) −1.13587e9 −1.73992
\(331\) −5.24479e8 −0.794932 −0.397466 0.917617i \(-0.630110\pi\)
−0.397466 + 0.917617i \(0.630110\pi\)
\(332\) 2.30872e7 0.0346249
\(333\) −5.73461e6 −0.00851038
\(334\) −1.03849e9 −1.52506
\(335\) 1.26250e9 1.83474
\(336\) 1.49185e9 2.14554
\(337\) −8.13193e8 −1.15741 −0.578707 0.815535i \(-0.696443\pi\)
−0.578707 + 0.815535i \(0.696443\pi\)
\(338\) 0 0
\(339\) −1.79685e7 −0.0250503
\(340\) 2.34626e8 0.323743
\(341\) −4.05697e8 −0.554066
\(342\) −9.11139e6 −0.0123167
\(343\) 2.41990e9 3.23794
\(344\) −1.16831e8 −0.154741
\(345\) 1.39810e9 1.83304
\(346\) 1.48682e8 0.192971
\(347\) 6.91267e8 0.888163 0.444081 0.895986i \(-0.353530\pi\)
0.444081 + 0.895986i \(0.353530\pi\)
\(348\) −7.51589e8 −0.955990
\(349\) −9.35641e8 −1.17820 −0.589102 0.808059i \(-0.700518\pi\)
−0.589102 + 0.808059i \(0.700518\pi\)
\(350\) 2.01483e9 2.51188
\(351\) 0 0
\(352\) −1.00213e9 −1.22469
\(353\) −1.31459e9 −1.59067 −0.795335 0.606170i \(-0.792705\pi\)
−0.795335 + 0.606170i \(0.792705\pi\)
\(354\) −1.75674e9 −2.10472
\(355\) 1.39353e9 1.65316
\(356\) −7.88824e7 −0.0926628
\(357\) −4.44508e8 −0.517059
\(358\) −1.10407e9 −1.27177
\(359\) 1.38709e8 0.158225 0.0791124 0.996866i \(-0.474791\pi\)
0.0791124 + 0.996866i \(0.474791\pi\)
\(360\) 3.96276e6 0.00447651
\(361\) −6.01374e8 −0.672775
\(362\) 4.03783e8 0.447371
\(363\) 1.38345e8 0.151806
\(364\) 0 0
\(365\) −1.44274e8 −0.155297
\(366\) −2.96171e8 −0.315762
\(367\) 1.64118e9 1.73311 0.866554 0.499084i \(-0.166330\pi\)
0.866554 + 0.499084i \(0.166330\pi\)
\(368\) 1.42073e9 1.48609
\(369\) −9.54285e6 −0.00988749
\(370\) 9.98642e8 1.02495
\(371\) 5.98597e8 0.608592
\(372\) 5.04977e8 0.508595
\(373\) −1.18561e8 −0.118293 −0.0591466 0.998249i \(-0.518838\pi\)
−0.0591466 + 0.998249i \(0.518838\pi\)
\(374\) 3.43919e8 0.339942
\(375\) 5.46892e7 0.0535540
\(376\) 3.29350e8 0.319522
\(377\) 0 0
\(378\) 2.76469e9 2.63284
\(379\) −9.89138e8 −0.933297 −0.466648 0.884443i \(-0.654539\pi\)
−0.466648 + 0.884443i \(0.654539\pi\)
\(380\) 7.29735e8 0.682217
\(381\) −1.36226e7 −0.0126190
\(382\) 9.85159e8 0.904242
\(383\) −1.12236e8 −0.102079 −0.0510395 0.998697i \(-0.516253\pi\)
−0.0510395 + 0.998697i \(0.516253\pi\)
\(384\) −4.39807e8 −0.396372
\(385\) 2.77102e9 2.47473
\(386\) −2.65569e9 −2.35029
\(387\) −1.38213e7 −0.0121216
\(388\) −1.42877e9 −1.24180
\(389\) −1.22645e9 −1.05640 −0.528199 0.849120i \(-0.677133\pi\)
−0.528199 + 0.849120i \(0.677133\pi\)
\(390\) 0 0
\(391\) −4.23318e8 −0.358136
\(392\) −6.47178e8 −0.542653
\(393\) 1.85704e8 0.154329
\(394\) 4.03136e8 0.332059
\(395\) −1.26262e9 −1.03082
\(396\) −1.53243e7 −0.0124008
\(397\) −3.43926e8 −0.275866 −0.137933 0.990442i \(-0.544046\pi\)
−0.137933 + 0.990442i \(0.544046\pi\)
\(398\) −8.62468e8 −0.685729
\(399\) −1.38251e9 −1.08959
\(400\) −1.38623e9 −1.08300
\(401\) −2.01823e9 −1.56303 −0.781513 0.623889i \(-0.785552\pi\)
−0.781513 + 0.623889i \(0.785552\pi\)
\(402\) −2.30346e9 −1.76843
\(403\) 0 0
\(404\) −9.42565e8 −0.711175
\(405\) −1.84223e9 −1.37801
\(406\) 3.98674e9 2.95649
\(407\) 6.73230e8 0.494975
\(408\) 7.46271e7 0.0543984
\(409\) 5.88275e8 0.425157 0.212578 0.977144i \(-0.431814\pi\)
0.212578 + 0.977144i \(0.431814\pi\)
\(410\) 1.66182e9 1.19081
\(411\) 8.95609e7 0.0636315
\(412\) −1.79472e9 −1.26432
\(413\) 4.28567e9 2.99360
\(414\) 4.10127e7 0.0284064
\(415\) 8.29155e7 0.0569465
\(416\) 0 0
\(417\) −2.24622e9 −1.51697
\(418\) 1.06966e9 0.716353
\(419\) −1.20796e9 −0.802236 −0.401118 0.916026i \(-0.631378\pi\)
−0.401118 + 0.916026i \(0.631378\pi\)
\(420\) −3.44914e9 −2.27163
\(421\) −6.43226e8 −0.420123 −0.210061 0.977688i \(-0.567366\pi\)
−0.210061 + 0.977688i \(0.567366\pi\)
\(422\) 3.25753e9 2.11006
\(423\) 3.89624e7 0.0250296
\(424\) −1.00497e8 −0.0640283
\(425\) 4.13040e8 0.260994
\(426\) −2.54252e9 −1.59342
\(427\) 7.22529e8 0.449115
\(428\) −3.00303e8 −0.185143
\(429\) 0 0
\(430\) 2.40687e9 1.45987
\(431\) 3.28675e9 1.97741 0.988704 0.149884i \(-0.0478901\pi\)
0.988704 + 0.149884i \(0.0478901\pi\)
\(432\) −1.90215e9 −1.13515
\(433\) −6.43138e8 −0.380712 −0.190356 0.981715i \(-0.560964\pi\)
−0.190356 + 0.981715i \(0.560964\pi\)
\(434\) −2.67861e9 −1.57288
\(435\) −2.69926e9 −1.57229
\(436\) −1.10990e9 −0.641330
\(437\) −1.31661e9 −0.754693
\(438\) 2.63231e8 0.149685
\(439\) −2.16062e8 −0.121886 −0.0609428 0.998141i \(-0.519411\pi\)
−0.0609428 + 0.998141i \(0.519411\pi\)
\(440\) −4.65220e8 −0.260360
\(441\) −7.65617e7 −0.0425086
\(442\) 0 0
\(443\) −7.03717e8 −0.384579 −0.192289 0.981338i \(-0.561591\pi\)
−0.192289 + 0.981338i \(0.561591\pi\)
\(444\) −8.37980e8 −0.454353
\(445\) −2.83299e8 −0.152400
\(446\) −3.63060e8 −0.193779
\(447\) −2.95973e9 −1.56738
\(448\) −2.50060e9 −1.31392
\(449\) −2.59771e9 −1.35434 −0.677171 0.735826i \(-0.736794\pi\)
−0.677171 + 0.735826i \(0.736794\pi\)
\(450\) −4.00168e7 −0.0207014
\(451\) 1.12031e9 0.575069
\(452\) 4.22155e7 0.0215024
\(453\) 1.94256e9 0.981820
\(454\) 3.94284e7 0.0197749
\(455\) 0 0
\(456\) 2.32105e8 0.114633
\(457\) −2.24698e9 −1.10126 −0.550632 0.834748i \(-0.685613\pi\)
−0.550632 + 0.834748i \(0.685613\pi\)
\(458\) 6.46098e8 0.314246
\(459\) 5.66762e8 0.273562
\(460\) −3.28472e9 −1.57343
\(461\) −9.55280e8 −0.454127 −0.227063 0.973880i \(-0.572912\pi\)
−0.227063 + 0.973880i \(0.572912\pi\)
\(462\) −5.05580e9 −2.38530
\(463\) 3.41522e9 1.59914 0.799569 0.600575i \(-0.205061\pi\)
0.799569 + 0.600575i \(0.205061\pi\)
\(464\) −2.74294e9 −1.27469
\(465\) 1.81358e9 0.836471
\(466\) −5.94073e8 −0.271950
\(467\) 1.28591e9 0.584254 0.292127 0.956380i \(-0.405637\pi\)
0.292127 + 0.956380i \(0.405637\pi\)
\(468\) 0 0
\(469\) 5.61942e9 2.51528
\(470\) −6.78503e9 −3.01446
\(471\) −1.67946e9 −0.740624
\(472\) −7.19509e8 −0.314948
\(473\) 1.62258e9 0.705006
\(474\) 2.30368e9 0.993569
\(475\) 1.28464e9 0.549987
\(476\) 1.04433e9 0.443827
\(477\) −1.18889e7 −0.00501563
\(478\) 9.40647e8 0.393939
\(479\) 3.08956e9 1.28446 0.642232 0.766510i \(-0.278008\pi\)
0.642232 + 0.766510i \(0.278008\pi\)
\(480\) 4.47981e9 1.84891
\(481\) 0 0
\(482\) 2.79138e9 1.13541
\(483\) 6.22302e9 2.51296
\(484\) −3.25029e8 −0.130306
\(485\) −5.13128e9 −2.04235
\(486\) −1.08965e8 −0.0430585
\(487\) −4.40727e9 −1.72909 −0.864546 0.502555i \(-0.832394\pi\)
−0.864546 + 0.502555i \(0.832394\pi\)
\(488\) −1.21303e8 −0.0472502
\(489\) 3.19776e9 1.23670
\(490\) 1.33327e10 5.11954
\(491\) 5.27327e8 0.201046 0.100523 0.994935i \(-0.467948\pi\)
0.100523 + 0.994935i \(0.467948\pi\)
\(492\) −1.39447e9 −0.527874
\(493\) 8.17283e8 0.307191
\(494\) 0 0
\(495\) −5.50358e7 −0.0203952
\(496\) 1.84293e9 0.678145
\(497\) 6.20264e9 2.26636
\(498\) −1.51281e8 −0.0548886
\(499\) 4.53287e9 1.63313 0.816566 0.577252i \(-0.195875\pi\)
0.816566 + 0.577252i \(0.195875\pi\)
\(500\) −1.28487e8 −0.0459691
\(501\) 3.12960e9 1.11188
\(502\) −6.74737e9 −2.38052
\(503\) −1.82521e9 −0.639478 −0.319739 0.947506i \(-0.603595\pi\)
−0.319739 + 0.947506i \(0.603595\pi\)
\(504\) 1.76384e7 0.00613695
\(505\) −3.38513e9 −1.16965
\(506\) −4.81479e9 −1.65216
\(507\) 0 0
\(508\) 3.20052e7 0.0108317
\(509\) 2.42206e9 0.814089 0.407045 0.913408i \(-0.366559\pi\)
0.407045 + 0.913408i \(0.366559\pi\)
\(510\) −1.53741e9 −0.513210
\(511\) −6.42170e8 −0.212901
\(512\) 3.86130e9 1.27142
\(513\) 1.76274e9 0.576472
\(514\) −1.11530e9 −0.362259
\(515\) −6.44558e9 −2.07939
\(516\) −2.01966e9 −0.647148
\(517\) −4.57410e9 −1.45576
\(518\) 4.44499e9 1.40513
\(519\) −4.48071e8 −0.140689
\(520\) 0 0
\(521\) 2.47043e9 0.765315 0.382658 0.923890i \(-0.375009\pi\)
0.382658 + 0.923890i \(0.375009\pi\)
\(522\) −7.91814e7 −0.0243656
\(523\) 1.46575e9 0.448027 0.224013 0.974586i \(-0.428084\pi\)
0.224013 + 0.974586i \(0.428084\pi\)
\(524\) −4.36295e8 −0.132471
\(525\) −6.07191e9 −1.83134
\(526\) 1.63904e9 0.491064
\(527\) −5.49116e8 −0.163428
\(528\) 3.47847e9 1.02842
\(529\) 2.52155e9 0.740580
\(530\) 2.07036e9 0.604061
\(531\) −8.51185e7 −0.0246713
\(532\) 3.24808e9 0.935268
\(533\) 0 0
\(534\) 5.16885e8 0.146892
\(535\) −1.07851e9 −0.304499
\(536\) −9.43429e8 −0.264626
\(537\) 3.32726e9 0.927206
\(538\) −5.38032e9 −1.48960
\(539\) 8.98817e9 2.47235
\(540\) 4.39777e9 1.20186
\(541\) −2.22699e9 −0.604683 −0.302342 0.953200i \(-0.597768\pi\)
−0.302342 + 0.953200i \(0.597768\pi\)
\(542\) −7.35203e9 −1.98340
\(543\) −1.21685e9 −0.326165
\(544\) −1.35640e9 −0.361236
\(545\) −3.98610e9 −1.05478
\(546\) 0 0
\(547\) −1.77912e9 −0.464781 −0.232391 0.972623i \(-0.574655\pi\)
−0.232391 + 0.972623i \(0.574655\pi\)
\(548\) −2.10415e8 −0.0546193
\(549\) −1.43503e7 −0.00370132
\(550\) 4.69788e9 1.20402
\(551\) 2.54191e9 0.647336
\(552\) −1.04476e9 −0.264382
\(553\) −5.61997e9 −1.41318
\(554\) 3.54860e9 0.886692
\(555\) −3.00952e9 −0.747261
\(556\) 5.27731e9 1.30212
\(557\) 3.58268e9 0.878445 0.439222 0.898378i \(-0.355254\pi\)
0.439222 + 0.898378i \(0.355254\pi\)
\(558\) 5.32004e7 0.0129627
\(559\) 0 0
\(560\) −1.25877e10 −3.02893
\(561\) −1.03644e9 −0.247842
\(562\) −1.62557e9 −0.386302
\(563\) 5.14381e9 1.21480 0.607401 0.794396i \(-0.292212\pi\)
0.607401 + 0.794396i \(0.292212\pi\)
\(564\) 5.69346e9 1.33629
\(565\) 1.51613e8 0.0353644
\(566\) 2.58854e9 0.600064
\(567\) −8.19985e9 −1.88914
\(568\) −1.04134e9 −0.238438
\(569\) −7.75397e9 −1.76454 −0.882269 0.470745i \(-0.843985\pi\)
−0.882269 + 0.470745i \(0.843985\pi\)
\(570\) −4.78166e9 −1.08148
\(571\) −1.59816e9 −0.359249 −0.179624 0.983735i \(-0.557488\pi\)
−0.179624 + 0.983735i \(0.557488\pi\)
\(572\) 0 0
\(573\) −2.96889e9 −0.659255
\(574\) 7.39683e9 1.63250
\(575\) −5.78247e9 −1.26846
\(576\) 4.96648e7 0.0108285
\(577\) 3.75139e9 0.812974 0.406487 0.913657i \(-0.366754\pi\)
0.406487 + 0.913657i \(0.366754\pi\)
\(578\) −5.85156e9 −1.26045
\(579\) 8.00324e9 1.71353
\(580\) 6.34167e9 1.34960
\(581\) 3.69060e8 0.0780693
\(582\) 9.36214e9 1.96854
\(583\) 1.39572e9 0.291716
\(584\) 1.07812e8 0.0223987
\(585\) 0 0
\(586\) −5.35487e9 −1.09928
\(587\) −6.89634e9 −1.40730 −0.703648 0.710548i \(-0.748447\pi\)
−0.703648 + 0.710548i \(0.748447\pi\)
\(588\) −1.11877e10 −2.26945
\(589\) −1.70786e9 −0.344389
\(590\) 1.48228e10 2.97131
\(591\) −1.21490e9 −0.242094
\(592\) −3.05823e9 −0.605821
\(593\) 4.03921e9 0.795435 0.397718 0.917508i \(-0.369802\pi\)
0.397718 + 0.917508i \(0.369802\pi\)
\(594\) 6.44631e9 1.26200
\(595\) 3.75062e9 0.729950
\(596\) 6.95362e9 1.34539
\(597\) 2.59915e9 0.499944
\(598\) 0 0
\(599\) −6.23761e9 −1.18584 −0.592918 0.805263i \(-0.702024\pi\)
−0.592918 + 0.805263i \(0.702024\pi\)
\(600\) 1.01940e9 0.192670
\(601\) 5.89985e9 1.10861 0.554307 0.832312i \(-0.312983\pi\)
0.554307 + 0.832312i \(0.312983\pi\)
\(602\) 1.07131e10 2.00137
\(603\) −1.11608e8 −0.0207294
\(604\) −4.56389e9 −0.842763
\(605\) −1.16731e9 −0.214310
\(606\) 6.17625e9 1.12738
\(607\) 8.39238e8 0.152309 0.0761543 0.997096i \(-0.475736\pi\)
0.0761543 + 0.997096i \(0.475736\pi\)
\(608\) −4.21867e9 −0.761226
\(609\) −1.20145e10 −2.15549
\(610\) 2.49900e9 0.445771
\(611\) 0 0
\(612\) −2.07417e7 −0.00365775
\(613\) −3.62141e9 −0.634988 −0.317494 0.948260i \(-0.602841\pi\)
−0.317494 + 0.948260i \(0.602841\pi\)
\(614\) 6.06672e9 1.05771
\(615\) −5.00809e9 −0.868180
\(616\) −2.07071e9 −0.356933
\(617\) −6.19739e8 −0.106221 −0.0531105 0.998589i \(-0.516914\pi\)
−0.0531105 + 0.998589i \(0.516914\pi\)
\(618\) 1.17601e10 2.00425
\(619\) 4.55108e9 0.771254 0.385627 0.922655i \(-0.373985\pi\)
0.385627 + 0.922655i \(0.373985\pi\)
\(620\) −4.26084e9 −0.718000
\(621\) −7.93455e9 −1.32954
\(622\) −2.57462e9 −0.428989
\(623\) −1.26097e9 −0.208929
\(624\) 0 0
\(625\) −6.32971e9 −1.03706
\(626\) 6.56656e9 1.06986
\(627\) −3.22354e9 −0.522271
\(628\) 3.94575e9 0.635728
\(629\) 9.11225e8 0.145998
\(630\) −3.63374e8 −0.0578977
\(631\) 8.13531e9 1.28905 0.644527 0.764581i \(-0.277054\pi\)
0.644527 + 0.764581i \(0.277054\pi\)
\(632\) 9.43522e8 0.148676
\(633\) −9.81695e9 −1.53838
\(634\) −9.59843e9 −1.49585
\(635\) 1.14944e8 0.0178146
\(636\) −1.73728e9 −0.267775
\(637\) 0 0
\(638\) 9.29571e9 1.41713
\(639\) −1.23192e8 −0.0186779
\(640\) 3.71095e9 0.559571
\(641\) 1.58796e9 0.238142 0.119071 0.992886i \(-0.462008\pi\)
0.119071 + 0.992886i \(0.462008\pi\)
\(642\) 1.96777e9 0.293495
\(643\) 1.12354e10 1.66667 0.833335 0.552768i \(-0.186428\pi\)
0.833335 + 0.552768i \(0.186428\pi\)
\(644\) −1.46204e10 −2.15705
\(645\) −7.25340e9 −1.06435
\(646\) 1.44779e9 0.211297
\(647\) −9.93285e9 −1.44181 −0.720906 0.693033i \(-0.756274\pi\)
−0.720906 + 0.693033i \(0.756274\pi\)
\(648\) 1.37665e9 0.198752
\(649\) 9.99271e9 1.43492
\(650\) 0 0
\(651\) 8.07231e9 1.14674
\(652\) −7.51285e9 −1.06154
\(653\) 6.28507e8 0.0883311 0.0441656 0.999024i \(-0.485937\pi\)
0.0441656 + 0.999024i \(0.485937\pi\)
\(654\) 7.27274e9 1.01666
\(655\) −1.56691e9 −0.217871
\(656\) −5.08915e9 −0.703852
\(657\) 1.27543e7 0.00175459
\(658\) −3.02004e10 −4.13259
\(659\) 1.23032e10 1.67463 0.837315 0.546721i \(-0.184124\pi\)
0.837315 + 0.546721i \(0.184124\pi\)
\(660\) −8.04222e9 −1.08886
\(661\) 1.18989e10 1.60252 0.801259 0.598318i \(-0.204164\pi\)
0.801259 + 0.598318i \(0.204164\pi\)
\(662\) −8.07422e9 −1.08168
\(663\) 0 0
\(664\) −6.19604e7 −0.00821346
\(665\) 1.16652e10 1.53821
\(666\) −8.82829e7 −0.0115802
\(667\) −1.14418e10 −1.49298
\(668\) −7.35272e9 −0.954401
\(669\) 1.09412e9 0.141278
\(670\) 1.94358e10 2.49656
\(671\) 1.68469e9 0.215274
\(672\) 1.99398e10 2.53471
\(673\) −1.44651e9 −0.182923 −0.0914613 0.995809i \(-0.529154\pi\)
−0.0914613 + 0.995809i \(0.529154\pi\)
\(674\) −1.25189e10 −1.57491
\(675\) 7.74189e9 0.968911
\(676\) 0 0
\(677\) −6.60976e9 −0.818701 −0.409351 0.912377i \(-0.634245\pi\)
−0.409351 + 0.912377i \(0.634245\pi\)
\(678\) −2.76621e8 −0.0340864
\(679\) −2.28395e10 −2.79990
\(680\) −6.29680e8 −0.0767961
\(681\) −1.18822e8 −0.0144172
\(682\) −6.24560e9 −0.753926
\(683\) 2.92558e9 0.351349 0.175675 0.984448i \(-0.443789\pi\)
0.175675 + 0.984448i \(0.443789\pi\)
\(684\) −6.45108e7 −0.00770789
\(685\) −7.55687e8 −0.0898307
\(686\) 3.72538e10 4.40592
\(687\) −1.94709e9 −0.229107
\(688\) −7.37079e9 −0.862888
\(689\) 0 0
\(690\) 2.15235e10 2.49425
\(691\) 1.15973e9 0.133716 0.0668579 0.997763i \(-0.478703\pi\)
0.0668579 + 0.997763i \(0.478703\pi\)
\(692\) 1.05270e9 0.120763
\(693\) −2.44967e8 −0.0279602
\(694\) 1.06419e10 1.20854
\(695\) 1.89529e10 2.14156
\(696\) 2.01708e9 0.226773
\(697\) 1.51635e9 0.169623
\(698\) −1.44040e10 −1.60320
\(699\) 1.79031e9 0.198270
\(700\) 1.42654e10 1.57196
\(701\) 5.69383e8 0.0624297 0.0312149 0.999513i \(-0.490062\pi\)
0.0312149 + 0.999513i \(0.490062\pi\)
\(702\) 0 0
\(703\) 2.83409e9 0.307659
\(704\) −5.83054e9 −0.629802
\(705\) 2.04475e10 2.19775
\(706\) −2.02378e10 −2.16445
\(707\) −1.50673e10 −1.60350
\(708\) −1.24381e10 −1.31716
\(709\) −1.83393e10 −1.93250 −0.966252 0.257600i \(-0.917068\pi\)
−0.966252 + 0.257600i \(0.917068\pi\)
\(710\) 2.14530e10 2.24949
\(711\) 1.11619e8 0.0116465
\(712\) 2.11701e8 0.0219808
\(713\) 7.68751e9 0.794277
\(714\) −6.84309e9 −0.703571
\(715\) 0 0
\(716\) −7.81710e9 −0.795884
\(717\) −2.83475e9 −0.287209
\(718\) 2.13539e9 0.215299
\(719\) −2.83967e9 −0.284916 −0.142458 0.989801i \(-0.545501\pi\)
−0.142458 + 0.989801i \(0.545501\pi\)
\(720\) 2.50007e8 0.0249625
\(721\) −2.86895e10 −2.85069
\(722\) −9.25801e9 −0.915456
\(723\) −8.41214e9 −0.827794
\(724\) 2.85888e9 0.279969
\(725\) 1.11640e10 1.08802
\(726\) 2.12978e9 0.206565
\(727\) −6.58137e9 −0.635251 −0.317626 0.948216i \(-0.602886\pi\)
−0.317626 + 0.948216i \(0.602886\pi\)
\(728\) 0 0
\(729\) 1.06206e10 1.01532
\(730\) −2.22106e9 −0.211315
\(731\) 2.19619e9 0.207950
\(732\) −2.09696e9 −0.197607
\(733\) −2.01542e10 −1.89017 −0.945087 0.326818i \(-0.894023\pi\)
−0.945087 + 0.326818i \(0.894023\pi\)
\(734\) 2.52656e10 2.35827
\(735\) −4.01796e10 −3.73250
\(736\) 1.89893e10 1.75565
\(737\) 1.31026e10 1.20565
\(738\) −1.46910e8 −0.0134541
\(739\) −1.77114e10 −1.61435 −0.807176 0.590311i \(-0.799005\pi\)
−0.807176 + 0.590311i \(0.799005\pi\)
\(740\) 7.07061e9 0.641425
\(741\) 0 0
\(742\) 9.21526e9 0.828121
\(743\) 1.00196e10 0.896164 0.448082 0.893992i \(-0.352107\pi\)
0.448082 + 0.893992i \(0.352107\pi\)
\(744\) −1.35524e9 −0.120645
\(745\) 2.49733e10 2.21273
\(746\) −1.82521e9 −0.160963
\(747\) −7.32997e6 −0.000643399 0
\(748\) 2.43502e9 0.212739
\(749\) −4.80049e9 −0.417445
\(750\) 8.41926e8 0.0728718
\(751\) 2.67720e9 0.230643 0.115322 0.993328i \(-0.463210\pi\)
0.115322 + 0.993328i \(0.463210\pi\)
\(752\) 2.07784e10 1.78176
\(753\) 2.03340e10 1.73556
\(754\) 0 0
\(755\) −1.63908e10 −1.38607
\(756\) 1.95746e10 1.64766
\(757\) −2.31024e10 −1.93563 −0.967815 0.251662i \(-0.919023\pi\)
−0.967815 + 0.251662i \(0.919023\pi\)
\(758\) −1.52275e10 −1.26995
\(759\) 1.45099e10 1.20454
\(760\) −1.95843e9 −0.161831
\(761\) −9.32276e9 −0.766829 −0.383414 0.923576i \(-0.625252\pi\)
−0.383414 + 0.923576i \(0.625252\pi\)
\(762\) −2.09717e8 −0.0171709
\(763\) −1.77423e10 −1.44602
\(764\) 6.97515e9 0.565883
\(765\) −7.44917e7 −0.00601579
\(766\) −1.72784e9 −0.138901
\(767\) 0 0
\(768\) −1.52933e10 −1.21825
\(769\) −1.29575e10 −1.02749 −0.513745 0.857943i \(-0.671742\pi\)
−0.513745 + 0.857943i \(0.671742\pi\)
\(770\) 4.26592e10 3.36741
\(771\) 3.36108e9 0.264112
\(772\) −1.88029e10 −1.47084
\(773\) 1.43468e10 1.11719 0.558594 0.829441i \(-0.311341\pi\)
0.558594 + 0.829441i \(0.311341\pi\)
\(774\) −2.12775e8 −0.0164940
\(775\) −7.50084e9 −0.578834
\(776\) 3.83447e9 0.294570
\(777\) −1.33955e10 −1.02444
\(778\) −1.88810e10 −1.43746
\(779\) 4.71616e9 0.357443
\(780\) 0 0
\(781\) 1.44624e10 1.08633
\(782\) −6.51688e9 −0.487322
\(783\) 1.53189e10 1.14041
\(784\) −4.08299e10 −3.02602
\(785\) 1.41708e10 1.04556
\(786\) 2.85887e9 0.209998
\(787\) 2.67966e7 0.00195960 0.000979800 1.00000i \(-0.499688\pi\)
0.000979800 1.00000i \(0.499688\pi\)
\(788\) 2.85430e9 0.207806
\(789\) −4.93943e9 −0.358020
\(790\) −1.94377e10 −1.40265
\(791\) 6.74834e8 0.0484819
\(792\) 4.11268e7 0.00294162
\(793\) 0 0
\(794\) −5.29466e9 −0.375376
\(795\) −6.23928e9 −0.440402
\(796\) −6.10648e9 −0.429136
\(797\) 2.23570e10 1.56426 0.782130 0.623116i \(-0.214133\pi\)
0.782130 + 0.623116i \(0.214133\pi\)
\(798\) −2.12834e10 −1.48262
\(799\) −6.19110e9 −0.429392
\(800\) −1.85282e10 −1.27944
\(801\) 2.50444e7 0.00172186
\(802\) −3.10702e10 −2.12684
\(803\) −1.49732e9 −0.102049
\(804\) −1.63090e10 −1.10670
\(805\) −5.25079e10 −3.54763
\(806\) 0 0
\(807\) 1.62142e10 1.08602
\(808\) 2.52961e9 0.168700
\(809\) 2.09973e10 1.39426 0.697130 0.716944i \(-0.254460\pi\)
0.697130 + 0.716944i \(0.254460\pi\)
\(810\) −2.83607e10 −1.87508
\(811\) −1.13973e10 −0.750292 −0.375146 0.926966i \(-0.622407\pi\)
−0.375146 + 0.926966i \(0.622407\pi\)
\(812\) 2.82270e10 1.85020
\(813\) 2.21562e10 1.44603
\(814\) 1.03642e10 0.673520
\(815\) −2.69817e10 −1.74589
\(816\) 4.70816e9 0.303344
\(817\) 6.83058e9 0.438208
\(818\) 9.05636e9 0.578518
\(819\) 0 0
\(820\) 1.17661e10 0.745218
\(821\) −2.52022e10 −1.58941 −0.794707 0.606993i \(-0.792376\pi\)
−0.794707 + 0.606993i \(0.792376\pi\)
\(822\) 1.37877e9 0.0865844
\(823\) 2.03342e10 1.27153 0.635765 0.771883i \(-0.280685\pi\)
0.635765 + 0.771883i \(0.280685\pi\)
\(824\) 4.81660e9 0.299913
\(825\) −1.41576e10 −0.877812
\(826\) 6.59768e10 4.07344
\(827\) 2.63091e10 1.61747 0.808735 0.588174i \(-0.200153\pi\)
0.808735 + 0.588174i \(0.200153\pi\)
\(828\) 2.90379e8 0.0177770
\(829\) 2.51842e10 1.53528 0.767641 0.640880i \(-0.221431\pi\)
0.767641 + 0.640880i \(0.221431\pi\)
\(830\) 1.27646e9 0.0774881
\(831\) −1.06941e10 −0.646460
\(832\) 0 0
\(833\) 1.21656e10 0.729249
\(834\) −3.45801e10 −2.06417
\(835\) −2.64066e10 −1.56968
\(836\) 7.57341e9 0.448301
\(837\) −1.02925e10 −0.606708
\(838\) −1.85962e10 −1.09162
\(839\) 1.42680e10 0.834055 0.417028 0.908894i \(-0.363072\pi\)
0.417028 + 0.908894i \(0.363072\pi\)
\(840\) 9.25665e9 0.538861
\(841\) 4.84030e9 0.280599
\(842\) −9.90230e9 −0.571668
\(843\) 4.89883e9 0.281641
\(844\) 2.30641e10 1.32050
\(845\) 0 0
\(846\) 5.99817e8 0.0340583
\(847\) −5.19574e9 −0.293803
\(848\) −6.34025e9 −0.357044
\(849\) −7.80088e9 −0.437488
\(850\) 6.35864e9 0.355139
\(851\) −1.27570e10 −0.709568
\(852\) −1.80016e10 −0.997179
\(853\) −3.11924e10 −1.72078 −0.860392 0.509632i \(-0.829781\pi\)
−0.860392 + 0.509632i \(0.829781\pi\)
\(854\) 1.11231e10 0.611118
\(855\) −2.31684e8 −0.0126770
\(856\) 8.05941e8 0.0439182
\(857\) 2.06191e10 1.11902 0.559509 0.828824i \(-0.310990\pi\)
0.559509 + 0.828824i \(0.310990\pi\)
\(858\) 0 0
\(859\) 1.79442e10 0.965935 0.482967 0.875638i \(-0.339559\pi\)
0.482967 + 0.875638i \(0.339559\pi\)
\(860\) 1.70412e10 0.913600
\(861\) −2.22912e10 −1.19021
\(862\) 5.05987e10 2.69069
\(863\) 1.86934e10 0.990036 0.495018 0.868883i \(-0.335161\pi\)
0.495018 + 0.868883i \(0.335161\pi\)
\(864\) −2.54239e10 −1.34105
\(865\) 3.78068e9 0.198616
\(866\) −9.90095e9 −0.518041
\(867\) 1.76344e10 0.918953
\(868\) −1.89652e10 −0.984323
\(869\) −1.31039e10 −0.677376
\(870\) −4.15544e10 −2.13944
\(871\) 0 0
\(872\) 2.97870e9 0.152132
\(873\) 4.53620e8 0.0230751
\(874\) −2.02688e10 −1.02692
\(875\) −2.05393e9 −0.103647
\(876\) 1.86374e9 0.0936744
\(877\) 2.23792e10 1.12033 0.560164 0.828382i \(-0.310738\pi\)
0.560164 + 0.828382i \(0.310738\pi\)
\(878\) −3.32622e9 −0.165852
\(879\) 1.61375e10 0.801449
\(880\) −2.93503e10 −1.45185
\(881\) −1.28714e10 −0.634174 −0.317087 0.948396i \(-0.602705\pi\)
−0.317087 + 0.948396i \(0.602705\pi\)
\(882\) −1.17865e9 −0.0578421
\(883\) 2.70734e10 1.32337 0.661685 0.749782i \(-0.269842\pi\)
0.661685 + 0.749782i \(0.269842\pi\)
\(884\) 0 0
\(885\) −4.46702e10 −2.16629
\(886\) −1.08336e10 −0.523303
\(887\) 5.45686e9 0.262549 0.131274 0.991346i \(-0.458093\pi\)
0.131274 + 0.991346i \(0.458093\pi\)
\(888\) 2.24893e9 0.107778
\(889\) 5.11619e8 0.0244225
\(890\) −4.36131e9 −0.207373
\(891\) −1.91192e10 −0.905521
\(892\) −2.57055e9 −0.121269
\(893\) −1.92556e10 −0.904849
\(894\) −4.55643e10 −2.13277
\(895\) −2.80743e10 −1.30897
\(896\) 1.65176e10 0.767130
\(897\) 0 0
\(898\) −3.99911e10 −1.84288
\(899\) −1.48419e10 −0.681290
\(900\) −2.83328e8 −0.0129551
\(901\) 1.88913e9 0.0860449
\(902\) 1.72469e10 0.782506
\(903\) −3.22852e10 −1.45914
\(904\) −1.13296e8 −0.00510065
\(905\) 1.02674e10 0.460458
\(906\) 2.99053e10 1.33598
\(907\) 1.25119e10 0.556796 0.278398 0.960466i \(-0.410197\pi\)
0.278398 + 0.960466i \(0.410197\pi\)
\(908\) 2.79162e8 0.0123753
\(909\) 2.99255e8 0.0132150
\(910\) 0 0
\(911\) 2.67041e10 1.17021 0.585106 0.810957i \(-0.301053\pi\)
0.585106 + 0.810957i \(0.301053\pi\)
\(912\) 1.46433e10 0.639231
\(913\) 8.60522e8 0.0374209
\(914\) −3.45916e10 −1.49851
\(915\) −7.53103e9 −0.324998
\(916\) 4.57453e9 0.196658
\(917\) −6.97438e9 −0.298685
\(918\) 8.72516e9 0.372241
\(919\) 3.23480e9 0.137481 0.0687406 0.997635i \(-0.478102\pi\)
0.0687406 + 0.997635i \(0.478102\pi\)
\(920\) 8.81540e9 0.373237
\(921\) −1.82828e10 −0.771141
\(922\) −1.47063e10 −0.617938
\(923\) 0 0
\(924\) −3.57962e10 −1.49274
\(925\) 1.24472e10 0.517101
\(926\) 5.25765e10 2.17597
\(927\) 5.69808e8 0.0234936
\(928\) −3.66619e10 −1.50590
\(929\) 3.49201e10 1.42896 0.714480 0.699656i \(-0.246663\pi\)
0.714480 + 0.699656i \(0.246663\pi\)
\(930\) 2.79196e10 1.13820
\(931\) 3.78374e10 1.53673
\(932\) −4.20617e9 −0.170189
\(933\) 7.75891e9 0.312763
\(934\) 1.97963e10 0.795004
\(935\) 8.74515e9 0.349886
\(936\) 0 0
\(937\) −3.59978e10 −1.42951 −0.714756 0.699374i \(-0.753462\pi\)
−0.714756 + 0.699374i \(0.753462\pi\)
\(938\) 8.65096e10 3.42259
\(939\) −1.97891e10 −0.780003
\(940\) −4.80396e10 −1.88648
\(941\) 3.00932e10 1.17735 0.588674 0.808371i \(-0.299650\pi\)
0.588674 + 0.808371i \(0.299650\pi\)
\(942\) −2.58549e10 −1.00778
\(943\) −2.12286e10 −0.824387
\(944\) −4.53931e10 −1.75626
\(945\) 7.03004e10 2.70986
\(946\) 2.49793e10 0.959314
\(947\) −1.15710e10 −0.442737 −0.221368 0.975190i \(-0.571052\pi\)
−0.221368 + 0.975190i \(0.571052\pi\)
\(948\) 1.63106e10 0.621785
\(949\) 0 0
\(950\) 1.97767e10 0.748377
\(951\) 2.89260e10 1.09058
\(952\) −2.80273e9 −0.105282
\(953\) 2.16596e10 0.810636 0.405318 0.914176i \(-0.367161\pi\)
0.405318 + 0.914176i \(0.367161\pi\)
\(954\) −1.83026e8 −0.00682486
\(955\) 2.50506e10 0.930692
\(956\) 6.66000e9 0.246531
\(957\) −2.80137e10 −1.03319
\(958\) 4.75630e10 1.74779
\(959\) −3.36359e9 −0.123151
\(960\) 2.60641e10 0.950810
\(961\) −1.75406e10 −0.637548
\(962\) 0 0
\(963\) 9.53435e7 0.00344032
\(964\) 1.97636e10 0.710552
\(965\) −6.75288e10 −2.41904
\(966\) 9.58018e10 3.41943
\(967\) 1.28792e10 0.458031 0.229016 0.973423i \(-0.426449\pi\)
0.229016 + 0.973423i \(0.426449\pi\)
\(968\) 8.72299e8 0.0309102
\(969\) −4.36310e9 −0.154050
\(970\) −7.89948e10 −2.77906
\(971\) −2.88983e10 −1.01299 −0.506495 0.862243i \(-0.669059\pi\)
−0.506495 + 0.862243i \(0.669059\pi\)
\(972\) −7.71495e8 −0.0269464
\(973\) 8.43603e10 2.93591
\(974\) −6.78488e10 −2.35280
\(975\) 0 0
\(976\) −7.65291e9 −0.263483
\(977\) −3.58124e10 −1.22858 −0.614288 0.789082i \(-0.710557\pi\)
−0.614288 + 0.789082i \(0.710557\pi\)
\(978\) 4.92287e10 1.68280
\(979\) −2.94016e9 −0.100145
\(980\) 9.43984e10 3.20386
\(981\) 3.52383e8 0.0119172
\(982\) 8.11806e9 0.273566
\(983\) 1.35420e10 0.454723 0.227361 0.973810i \(-0.426990\pi\)
0.227361 + 0.973810i \(0.426990\pi\)
\(984\) 3.74241e9 0.125219
\(985\) 1.02509e10 0.341772
\(986\) 1.25819e10 0.417999
\(987\) 9.10126e10 3.01295
\(988\) 0 0
\(989\) −3.07462e10 −1.01066
\(990\) −8.47263e8 −0.0277521
\(991\) 1.54107e10 0.502997 0.251498 0.967858i \(-0.419077\pi\)
0.251498 + 0.967858i \(0.419077\pi\)
\(992\) 2.46324e10 0.801152
\(993\) 2.43326e10 0.788618
\(994\) 9.54880e10 3.08387
\(995\) −2.19308e10 −0.705788
\(996\) −1.07111e9 −0.0343498
\(997\) 2.02192e10 0.646147 0.323074 0.946374i \(-0.395284\pi\)
0.323074 + 0.946374i \(0.395284\pi\)
\(998\) 6.97824e10 2.22223
\(999\) 1.70797e10 0.542003
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.a.i.1.17 yes 21
13.5 odd 4 169.8.b.f.168.8 42
13.8 odd 4 169.8.b.f.168.35 42
13.12 even 2 169.8.a.h.1.5 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.8.a.h.1.5 21 13.12 even 2
169.8.a.i.1.17 yes 21 1.1 even 1 trivial
169.8.b.f.168.8 42 13.5 odd 4
169.8.b.f.168.35 42 13.8 odd 4