Properties

Label 169.8.a.h
Level $169$
Weight $8$
Character orbit 169.a
Self dual yes
Analytic conductor $52.793$
Analytic rank $1$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,8,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.7930693068\)
Analytic rank: \(1\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 21 q - 31 q^{2} - 26 q^{3} + 1409 q^{4} - 680 q^{5} - 1470 q^{6} - 2929 q^{7} - 4716 q^{8} + 15465 q^{9} - 5167 q^{10} - 14824 q^{11} + 21795 q^{12} - 179 q^{14} - 36398 q^{15} + 113205 q^{16} + 45016 q^{17}+ \cdots - 37605493 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −21.6353 79.0768 340.087 120.676 −1710.85 −240.114 −4588.56 4066.15 −2610.86
1.2 −21.5931 28.3750 338.261 −473.706 −612.705 99.1966 −4540.19 −1381.86 10228.8
1.3 −19.6237 −72.4635 257.091 413.760 1422.00 1005.88 −2533.24 3063.96 −8119.51
1.4 −17.7683 58.1116 187.714 −15.5333 −1032.55 −1688.45 −1061.02 1189.96 276.002
1.5 −15.3948 −46.3939 108.998 −391.457 714.223 −1742.39 292.525 −34.6060 6026.39
1.6 −13.1620 −21.4559 45.2387 344.184 282.403 168.957 1089.31 −1726.64 −4530.16
1.7 −11.8381 −26.1495 12.1398 422.131 309.560 1215.99 1371.56 −1503.20 −4997.21
1.8 −10.5911 −6.51000 −15.8290 −397.099 68.9480 1187.35 1523.30 −2144.62 4205.71
1.9 −5.77104 82.1608 −94.6950 17.6329 −474.154 −888.558 1285.18 4563.40 −101.761
1.10 −3.19657 −57.0706 −117.782 −431.499 182.430 −225.139 785.660 1070.05 1379.32
1.11 −2.91821 44.2582 −119.484 −197.474 −129.155 303.075 722.210 −228.212 576.269
1.12 −1.25436 8.41428 −126.427 307.776 −10.5545 −83.6974 319.143 −2116.20 −386.063
1.13 2.90053 −90.5117 −119.587 −240.795 −262.532 −1391.07 −718.132 6005.38 −698.433
1.14 6.93821 −64.5145 −79.8613 33.5113 −447.615 −160.658 −1442.18 1975.12 232.508
1.15 8.58294 18.1259 −54.3331 37.6136 155.574 711.860 −1564.95 −1858.45 322.835
1.16 8.99747 87.5208 −47.0455 −190.033 787.466 −44.6495 −1574.97 5472.89 −1709.81
1.17 13.2906 38.7978 48.6390 274.097 515.644 −774.181 −1054.75 −681.732 3642.90
1.18 15.0231 −85.3884 97.6921 439.379 −1282.79 −536.518 −455.317 5104.17 6600.82
1.19 16.7260 −13.7721 151.758 −0.583029 −230.352 274.333 397.369 −1997.33 −9.75172
1.20 20.4423 −14.6497 289.887 −478.639 −299.473 1197.76 3309.33 −1972.39 −9784.47
See all 21 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.21
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.8.a.h 21
13.b even 2 1 169.8.a.i yes 21
13.d odd 4 2 169.8.b.f 42
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.8.a.h 21 1.a even 1 1 trivial
169.8.a.i yes 21 13.b even 2 1
169.8.b.f 42 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{21} + 31 T_{2}^{20} - 1568 T_{2}^{19} - 54321 T_{2}^{18} + 947492 T_{2}^{17} + \cdots - 61\!\cdots\!68 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(169))\). Copy content Toggle raw display