Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,8,Mod(1,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(52.7930693068\) |
Analytic rank: | \(1\) |
Dimension: | \(21\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −21.6353 | 79.0768 | 340.087 | 120.676 | −1710.85 | −240.114 | −4588.56 | 4066.15 | −2610.86 | ||||||||||||||||||
1.2 | −21.5931 | 28.3750 | 338.261 | −473.706 | −612.705 | 99.1966 | −4540.19 | −1381.86 | 10228.8 | ||||||||||||||||||
1.3 | −19.6237 | −72.4635 | 257.091 | 413.760 | 1422.00 | 1005.88 | −2533.24 | 3063.96 | −8119.51 | ||||||||||||||||||
1.4 | −17.7683 | 58.1116 | 187.714 | −15.5333 | −1032.55 | −1688.45 | −1061.02 | 1189.96 | 276.002 | ||||||||||||||||||
1.5 | −15.3948 | −46.3939 | 108.998 | −391.457 | 714.223 | −1742.39 | 292.525 | −34.6060 | 6026.39 | ||||||||||||||||||
1.6 | −13.1620 | −21.4559 | 45.2387 | 344.184 | 282.403 | 168.957 | 1089.31 | −1726.64 | −4530.16 | ||||||||||||||||||
1.7 | −11.8381 | −26.1495 | 12.1398 | 422.131 | 309.560 | 1215.99 | 1371.56 | −1503.20 | −4997.21 | ||||||||||||||||||
1.8 | −10.5911 | −6.51000 | −15.8290 | −397.099 | 68.9480 | 1187.35 | 1523.30 | −2144.62 | 4205.71 | ||||||||||||||||||
1.9 | −5.77104 | 82.1608 | −94.6950 | 17.6329 | −474.154 | −888.558 | 1285.18 | 4563.40 | −101.761 | ||||||||||||||||||
1.10 | −3.19657 | −57.0706 | −117.782 | −431.499 | 182.430 | −225.139 | 785.660 | 1070.05 | 1379.32 | ||||||||||||||||||
1.11 | −2.91821 | 44.2582 | −119.484 | −197.474 | −129.155 | 303.075 | 722.210 | −228.212 | 576.269 | ||||||||||||||||||
1.12 | −1.25436 | 8.41428 | −126.427 | 307.776 | −10.5545 | −83.6974 | 319.143 | −2116.20 | −386.063 | ||||||||||||||||||
1.13 | 2.90053 | −90.5117 | −119.587 | −240.795 | −262.532 | −1391.07 | −718.132 | 6005.38 | −698.433 | ||||||||||||||||||
1.14 | 6.93821 | −64.5145 | −79.8613 | 33.5113 | −447.615 | −160.658 | −1442.18 | 1975.12 | 232.508 | ||||||||||||||||||
1.15 | 8.58294 | 18.1259 | −54.3331 | 37.6136 | 155.574 | 711.860 | −1564.95 | −1858.45 | 322.835 | ||||||||||||||||||
1.16 | 8.99747 | 87.5208 | −47.0455 | −190.033 | 787.466 | −44.6495 | −1574.97 | 5472.89 | −1709.81 | ||||||||||||||||||
1.17 | 13.2906 | 38.7978 | 48.6390 | 274.097 | 515.644 | −774.181 | −1054.75 | −681.732 | 3642.90 | ||||||||||||||||||
1.18 | 15.0231 | −85.3884 | 97.6921 | 439.379 | −1282.79 | −536.518 | −455.317 | 5104.17 | 6600.82 | ||||||||||||||||||
1.19 | 16.7260 | −13.7721 | 151.758 | −0.583029 | −230.352 | 274.333 | 397.369 | −1997.33 | −9.75172 | ||||||||||||||||||
1.20 | 20.4423 | −14.6497 | 289.887 | −478.639 | −299.473 | 1197.76 | 3309.33 | −1972.39 | −9784.47 | ||||||||||||||||||
See all 21 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(13\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.8.a.h | ✓ | 21 |
13.b | even | 2 | 1 | 169.8.a.i | yes | 21 | |
13.d | odd | 4 | 2 | 169.8.b.f | 42 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.8.a.h | ✓ | 21 | 1.a | even | 1 | 1 | trivial |
169.8.a.i | yes | 21 | 13.b | even | 2 | 1 | |
169.8.b.f | 42 | 13.d | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{21} + 31 T_{2}^{20} - 1568 T_{2}^{19} - 54321 T_{2}^{18} + 947492 T_{2}^{17} + \cdots - 61\!\cdots\!68 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(169))\).