Properties

Label 169.8.a.h
Level 169169
Weight 88
Character orbit 169.a
Self dual yes
Analytic conductor 52.79352.793
Analytic rank 11
Dimension 2121
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,8,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 52.793069306852.7930693068
Analytic rank: 11
Dimension: 2121
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 21q31q226q3+1409q4680q51470q62929q74716q8+15465q95167q1014824q11+21795q12179q1436398q15+113205q16+45016q17+37605493q99+O(q100) 21 q - 31 q^{2} - 26 q^{3} + 1409 q^{4} - 680 q^{5} - 1470 q^{6} - 2929 q^{7} - 4716 q^{8} + 15465 q^{9} - 5167 q^{10} - 14824 q^{11} + 21795 q^{12} - 179 q^{14} - 36398 q^{15} + 113205 q^{16} + 45016 q^{17}+ \cdots - 37605493 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −21.6353 79.0768 340.087 120.676 −1710.85 −240.114 −4588.56 4066.15 −2610.86
1.2 −21.5931 28.3750 338.261 −473.706 −612.705 99.1966 −4540.19 −1381.86 10228.8
1.3 −19.6237 −72.4635 257.091 413.760 1422.00 1005.88 −2533.24 3063.96 −8119.51
1.4 −17.7683 58.1116 187.714 −15.5333 −1032.55 −1688.45 −1061.02 1189.96 276.002
1.5 −15.3948 −46.3939 108.998 −391.457 714.223 −1742.39 292.525 −34.6060 6026.39
1.6 −13.1620 −21.4559 45.2387 344.184 282.403 168.957 1089.31 −1726.64 −4530.16
1.7 −11.8381 −26.1495 12.1398 422.131 309.560 1215.99 1371.56 −1503.20 −4997.21
1.8 −10.5911 −6.51000 −15.8290 −397.099 68.9480 1187.35 1523.30 −2144.62 4205.71
1.9 −5.77104 82.1608 −94.6950 17.6329 −474.154 −888.558 1285.18 4563.40 −101.761
1.10 −3.19657 −57.0706 −117.782 −431.499 182.430 −225.139 785.660 1070.05 1379.32
1.11 −2.91821 44.2582 −119.484 −197.474 −129.155 303.075 722.210 −228.212 576.269
1.12 −1.25436 8.41428 −126.427 307.776 −10.5545 −83.6974 319.143 −2116.20 −386.063
1.13 2.90053 −90.5117 −119.587 −240.795 −262.532 −1391.07 −718.132 6005.38 −698.433
1.14 6.93821 −64.5145 −79.8613 33.5113 −447.615 −160.658 −1442.18 1975.12 232.508
1.15 8.58294 18.1259 −54.3331 37.6136 155.574 711.860 −1564.95 −1858.45 322.835
1.16 8.99747 87.5208 −47.0455 −190.033 787.466 −44.6495 −1574.97 5472.89 −1709.81
1.17 13.2906 38.7978 48.6390 274.097 515.644 −774.181 −1054.75 −681.732 3642.90
1.18 15.0231 −85.3884 97.6921 439.379 −1282.79 −536.518 −455.317 5104.17 6600.82
1.19 16.7260 −13.7721 151.758 −0.583029 −230.352 274.333 397.369 −1997.33 −9.75172
1.20 20.4423 −14.6497 289.887 −478.639 −299.473 1197.76 3309.33 −1972.39 −9784.47
See all 21 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.21
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.8.a.h 21
13.b even 2 1 169.8.a.i yes 21
13.d odd 4 2 169.8.b.f 42
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.8.a.h 21 1.a even 1 1 trivial
169.8.a.i yes 21 13.b even 2 1
169.8.b.f 42 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T221+31T2201568T21954321T218+947492T217+61 ⁣ ⁣68 T_{2}^{21} + 31 T_{2}^{20} - 1568 T_{2}^{19} - 54321 T_{2}^{18} + 947492 T_{2}^{17} + \cdots - 61\!\cdots\!68 acting on S8new(Γ0(169))S_{8}^{\mathrm{new}}(\Gamma_0(169)). Copy content Toggle raw display