Properties

Label 169.5.d.c.99.6
Level $169$
Weight $5$
Character 169.99
Analytic conductor $17.470$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,5,Mod(70,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.70"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 169.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.4695237612\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 152 x^{14} + 9190 x^{12} + 285720 x^{10} + 4862025 x^{8} + 43573680 x^{6} + 169417008 x^{4} + \cdots + 3779136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2}\cdot 13^{2} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 99.6
Root \(-0.816521i\) of defining polynomial
Character \(\chi\) \(=\) 169.99
Dual form 169.5.d.c.70.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.74699 + 1.74699i) q^{2} -8.51417 q^{3} -9.89603i q^{4} +(-16.9748 - 16.9748i) q^{5} +(-14.8742 - 14.8742i) q^{6} +(-36.7630 + 36.7630i) q^{7} +(45.2402 - 45.2402i) q^{8} -8.50884 q^{9} -59.3096i q^{10} +(63.9068 - 63.9068i) q^{11} +84.2565i q^{12} -128.449 q^{14} +(144.526 + 144.526i) q^{15} -0.267886 q^{16} +252.147i q^{17} +(-14.8649 - 14.8649i) q^{18} +(251.226 + 251.226i) q^{19} +(-167.983 + 167.983i) q^{20} +(313.007 - 313.007i) q^{21} +223.289 q^{22} +848.711i q^{23} +(-385.183 + 385.183i) q^{24} -48.7139i q^{25} +762.094 q^{27} +(363.808 + 363.808i) q^{28} +887.583 q^{29} +504.973i q^{30} +(-407.191 - 407.191i) q^{31} +(-724.311 - 724.311i) q^{32} +(-544.114 + 544.114i) q^{33} +(-440.500 + 440.500i) q^{34} +1248.09 q^{35} +84.2038i q^{36} +(-1879.26 + 1879.26i) q^{37} +877.782i q^{38} -1535.88 q^{40} +(-549.240 - 549.240i) q^{41} +1093.64 q^{42} +2425.04i q^{43} +(-632.424 - 632.424i) q^{44} +(144.436 + 144.436i) q^{45} +(-1482.69 + 1482.69i) q^{46} +(858.063 - 858.063i) q^{47} +2.28083 q^{48} -302.036i q^{49} +(85.1029 - 85.1029i) q^{50} -2146.83i q^{51} +39.2320 q^{53} +(1331.37 + 1331.37i) q^{54} -2169.61 q^{55} +3326.33i q^{56} +(-2138.99 - 2138.99i) q^{57} +(1550.60 + 1550.60i) q^{58} +(838.081 - 838.081i) q^{59} +(1430.24 - 1430.24i) q^{60} +4821.85 q^{61} -1422.72i q^{62} +(312.811 - 312.811i) q^{63} -2526.45i q^{64} -1901.13 q^{66} +(-2576.35 - 2576.35i) q^{67} +2495.26 q^{68} -7226.07i q^{69} +(2180.40 + 2180.40i) q^{70} +(451.353 + 451.353i) q^{71} +(-384.942 + 384.942i) q^{72} +(-1000.63 + 1000.63i) q^{73} -6566.11 q^{74} +414.759i q^{75} +(2486.14 - 2486.14i) q^{76} +4698.81i q^{77} +3698.19 q^{79} +(4.54730 + 4.54730i) q^{80} -5799.38 q^{81} -1919.04i q^{82} +(3629.57 + 3629.57i) q^{83} +(-3097.52 - 3097.52i) q^{84} +(4280.14 - 4280.14i) q^{85} +(-4236.52 + 4236.52i) q^{86} -7557.04 q^{87} -5782.31i q^{88} +(2105.28 - 2105.28i) q^{89} +504.656i q^{90} +8398.87 q^{92} +(3466.90 + 3466.90i) q^{93} +2998.06 q^{94} -8529.02i q^{95} +(6166.91 + 6166.91i) q^{96} +(-77.3660 - 77.3660i) q^{97} +(527.655 - 527.655i) q^{98} +(-543.773 + 543.773i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{3} - 8 q^{5} + 128 q^{6} - 56 q^{7} - 90 q^{8} + 328 q^{9} - 500 q^{11} + 808 q^{14} - 844 q^{15} - 460 q^{16} - 2434 q^{18} - 1712 q^{19} - 838 q^{20} + 1076 q^{21} + 3048 q^{22}+ \cdots + 21632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74699 + 1.74699i 0.436748 + 0.436748i 0.890916 0.454168i \(-0.150063\pi\)
−0.454168 + 0.890916i \(0.650063\pi\)
\(3\) −8.51417 −0.946019 −0.473010 0.881057i \(-0.656832\pi\)
−0.473010 + 0.881057i \(0.656832\pi\)
\(4\) 9.89603i 0.618502i
\(5\) −16.9748 16.9748i −0.678991 0.678991i 0.280781 0.959772i \(-0.409407\pi\)
−0.959772 + 0.280781i \(0.909407\pi\)
\(6\) −14.8742 14.8742i −0.413172 0.413172i
\(7\) −36.7630 + 36.7630i −0.750265 + 0.750265i −0.974529 0.224263i \(-0.928002\pi\)
0.224263 + 0.974529i \(0.428002\pi\)
\(8\) 45.2402 45.2402i 0.706878 0.706878i
\(9\) −8.50884 −0.105047
\(10\) 59.3096i 0.593096i
\(11\) 63.9068 63.9068i 0.528155 0.528155i −0.391867 0.920022i \(-0.628171\pi\)
0.920022 + 0.391867i \(0.128171\pi\)
\(12\) 84.2565i 0.585115i
\(13\) 0 0
\(14\) −128.449 −0.655354
\(15\) 144.526 + 144.526i 0.642339 + 0.642339i
\(16\) −0.267886 −0.00104643
\(17\) 252.147i 0.872482i 0.899830 + 0.436241i \(0.143691\pi\)
−0.899830 + 0.436241i \(0.856309\pi\)
\(18\) −14.8649 14.8649i −0.0458793 0.0458793i
\(19\) 251.226 + 251.226i 0.695918 + 0.695918i 0.963527 0.267609i \(-0.0862337\pi\)
−0.267609 + 0.963527i \(0.586234\pi\)
\(20\) −167.983 + 167.983i −0.419957 + 0.419957i
\(21\) 313.007 313.007i 0.709765 0.709765i
\(22\) 223.289 0.461342
\(23\) 848.711i 1.60437i 0.597077 + 0.802184i \(0.296329\pi\)
−0.597077 + 0.802184i \(0.703671\pi\)
\(24\) −385.183 + 385.183i −0.668720 + 0.668720i
\(25\) 48.7139i 0.0779423i
\(26\) 0 0
\(27\) 762.094 1.04540
\(28\) 363.808 + 363.808i 0.464040 + 0.464040i
\(29\) 887.583 1.05539 0.527695 0.849434i \(-0.323056\pi\)
0.527695 + 0.849434i \(0.323056\pi\)
\(30\) 504.973i 0.561081i
\(31\) −407.191 407.191i −0.423716 0.423716i 0.462765 0.886481i \(-0.346857\pi\)
−0.886481 + 0.462765i \(0.846857\pi\)
\(32\) −724.311 724.311i −0.707335 0.707335i
\(33\) −544.114 + 544.114i −0.499645 + 0.499645i
\(34\) −440.500 + 440.500i −0.381055 + 0.381055i
\(35\) 1248.09 1.01885
\(36\) 84.2038i 0.0649720i
\(37\) −1879.26 + 1879.26i −1.37273 + 1.37273i −0.516344 + 0.856381i \(0.672707\pi\)
−0.856381 + 0.516344i \(0.827293\pi\)
\(38\) 877.782i 0.607882i
\(39\) 0 0
\(40\) −1535.88 −0.959928
\(41\) −549.240 549.240i −0.326734 0.326734i 0.524609 0.851343i \(-0.324211\pi\)
−0.851343 + 0.524609i \(0.824211\pi\)
\(42\) 1093.64 0.619978
\(43\) 2425.04i 1.31154i 0.754961 + 0.655769i \(0.227656\pi\)
−0.754961 + 0.655769i \(0.772344\pi\)
\(44\) −632.424 632.424i −0.326665 0.326665i
\(45\) 144.436 + 144.436i 0.0713263 + 0.0713263i
\(46\) −1482.69 + 1482.69i −0.700705 + 0.700705i
\(47\) 858.063 858.063i 0.388440 0.388440i −0.485691 0.874131i \(-0.661432\pi\)
0.874131 + 0.485691i \(0.161432\pi\)
\(48\) 2.28083 0.000989942
\(49\) 302.036i 0.125796i
\(50\) 85.1029 85.1029i 0.0340412 0.0340412i
\(51\) 2146.83i 0.825385i
\(52\) 0 0
\(53\) 39.2320 0.0139665 0.00698326 0.999976i \(-0.497777\pi\)
0.00698326 + 0.999976i \(0.497777\pi\)
\(54\) 1331.37 + 1331.37i 0.456575 + 0.456575i
\(55\) −2169.61 −0.717225
\(56\) 3326.33i 1.06069i
\(57\) −2138.99 2138.99i −0.658352 0.658352i
\(58\) 1550.60 + 1550.60i 0.460940 + 0.460940i
\(59\) 838.081 838.081i 0.240759 0.240759i −0.576405 0.817164i \(-0.695545\pi\)
0.817164 + 0.576405i \(0.195545\pi\)
\(60\) 1430.24 1430.24i 0.397288 0.397288i
\(61\) 4821.85 1.29585 0.647923 0.761705i \(-0.275638\pi\)
0.647923 + 0.761705i \(0.275638\pi\)
\(62\) 1422.72i 0.370114i
\(63\) 312.811 312.811i 0.0788135 0.0788135i
\(64\) 2526.45i 0.616808i
\(65\) 0 0
\(66\) −1901.13 −0.436438
\(67\) −2576.35 2576.35i −0.573926 0.573926i 0.359297 0.933223i \(-0.383016\pi\)
−0.933223 + 0.359297i \(0.883016\pi\)
\(68\) 2495.26 0.539632
\(69\) 7226.07i 1.51776i
\(70\) 2180.40 + 2180.40i 0.444980 + 0.444980i
\(71\) 451.353 + 451.353i 0.0895363 + 0.0895363i 0.750456 0.660920i \(-0.229834\pi\)
−0.660920 + 0.750456i \(0.729834\pi\)
\(72\) −384.942 + 384.942i −0.0742557 + 0.0742557i
\(73\) −1000.63 + 1000.63i −0.187771 + 0.187771i −0.794732 0.606961i \(-0.792388\pi\)
0.606961 + 0.794732i \(0.292388\pi\)
\(74\) −6566.11 −1.19907
\(75\) 414.759i 0.0737349i
\(76\) 2486.14 2486.14i 0.430427 0.430427i
\(77\) 4698.81i 0.792513i
\(78\) 0 0
\(79\) 3698.19 0.592564 0.296282 0.955100i \(-0.404253\pi\)
0.296282 + 0.955100i \(0.404253\pi\)
\(80\) 4.54730 + 4.54730i 0.000710516 + 0.000710516i
\(81\) −5799.38 −0.883918
\(82\) 1919.04i 0.285401i
\(83\) 3629.57 + 3629.57i 0.526865 + 0.526865i 0.919636 0.392771i \(-0.128484\pi\)
−0.392771 + 0.919636i \(0.628484\pi\)
\(84\) −3097.52 3097.52i −0.438991 0.438991i
\(85\) 4280.14 4280.14i 0.592408 0.592408i
\(86\) −4236.52 + 4236.52i −0.572812 + 0.572812i
\(87\) −7557.04 −0.998420
\(88\) 5782.31i 0.746683i
\(89\) 2105.28 2105.28i 0.265785 0.265785i −0.561614 0.827399i \(-0.689820\pi\)
0.827399 + 0.561614i \(0.189820\pi\)
\(90\) 504.656i 0.0623033i
\(91\) 0 0
\(92\) 8398.87 0.992305
\(93\) 3466.90 + 3466.90i 0.400844 + 0.400844i
\(94\) 2998.06 0.339301
\(95\) 8529.02i 0.945044i
\(96\) 6166.91 + 6166.91i 0.669153 + 0.669153i
\(97\) −77.3660 77.3660i −0.00822255 0.00822255i 0.702984 0.711206i \(-0.251851\pi\)
−0.711206 + 0.702984i \(0.751851\pi\)
\(98\) 527.655 527.655i 0.0549411 0.0549411i
\(99\) −543.773 + 543.773i −0.0554814 + 0.0554814i
\(100\) −482.074 −0.0482074
\(101\) 18200.3i 1.78417i 0.451871 + 0.892083i \(0.350757\pi\)
−0.451871 + 0.892083i \(0.649243\pi\)
\(102\) 3750.49 3750.49i 0.360485 0.360485i
\(103\) 12486.6i 1.17698i 0.808505 + 0.588489i \(0.200277\pi\)
−0.808505 + 0.588489i \(0.799723\pi\)
\(104\) 0 0
\(105\) −10626.4 −0.963849
\(106\) 68.5380 + 68.5380i 0.00609986 + 0.00609986i
\(107\) −9365.30 −0.818001 −0.409001 0.912534i \(-0.634123\pi\)
−0.409001 + 0.912534i \(0.634123\pi\)
\(108\) 7541.70i 0.646580i
\(109\) −5548.06 5548.06i −0.466969 0.466969i 0.433962 0.900931i \(-0.357115\pi\)
−0.900931 + 0.433962i \(0.857115\pi\)
\(110\) −3790.29 3790.29i −0.313247 0.313247i
\(111\) 16000.4 16000.4i 1.29862 1.29862i
\(112\) 9.84828 9.84828i 0.000785099 0.000785099i
\(113\) −7951.37 −0.622709 −0.311355 0.950294i \(-0.600783\pi\)
−0.311355 + 0.950294i \(0.600783\pi\)
\(114\) 7473.59i 0.575068i
\(115\) 14406.7 14406.7i 1.08935 1.08935i
\(116\) 8783.55i 0.652761i
\(117\) 0 0
\(118\) 2928.24 0.210302
\(119\) −9269.69 9269.69i −0.654593 0.654593i
\(120\) 13076.8 0.908110
\(121\) 6472.84i 0.442104i
\(122\) 8423.73 + 8423.73i 0.565959 + 0.565959i
\(123\) 4676.32 + 4676.32i 0.309097 + 0.309097i
\(124\) −4029.57 + 4029.57i −0.262069 + 0.262069i
\(125\) −11436.1 + 11436.1i −0.731913 + 0.731913i
\(126\) 1092.96 0.0688433
\(127\) 18915.3i 1.17275i −0.810039 0.586376i \(-0.800554\pi\)
0.810039 0.586376i \(-0.199446\pi\)
\(128\) −7175.29 + 7175.29i −0.437945 + 0.437945i
\(129\) 20647.2i 1.24074i
\(130\) 0 0
\(131\) −3296.47 −0.192091 −0.0960454 0.995377i \(-0.530619\pi\)
−0.0960454 + 0.995377i \(0.530619\pi\)
\(132\) 5384.56 + 5384.56i 0.309031 + 0.309031i
\(133\) −18471.7 −1.04425
\(134\) 9001.74i 0.501322i
\(135\) −12936.4 12936.4i −0.709815 0.709815i
\(136\) 11407.2 + 11407.2i 0.616738 + 0.616738i
\(137\) −17255.4 + 17255.4i −0.919355 + 0.919355i −0.996982 0.0776272i \(-0.975266\pi\)
0.0776272 + 0.996982i \(0.475266\pi\)
\(138\) 12623.9 12623.9i 0.662881 0.662881i
\(139\) 1576.13 0.0815758 0.0407879 0.999168i \(-0.487013\pi\)
0.0407879 + 0.999168i \(0.487013\pi\)
\(140\) 12351.1i 0.630159i
\(141\) −7305.70 + 7305.70i −0.367471 + 0.367471i
\(142\) 1577.02i 0.0782097i
\(143\) 0 0
\(144\) 2.27940 0.000109925
\(145\) −15066.5 15066.5i −0.716601 0.716601i
\(146\) −3496.19 −0.164017
\(147\) 2571.59i 0.119005i
\(148\) 18597.2 + 18597.2i 0.849033 + 0.849033i
\(149\) −5559.67 5559.67i −0.250424 0.250424i 0.570720 0.821145i \(-0.306664\pi\)
−0.821145 + 0.570720i \(0.806664\pi\)
\(150\) −724.581 + 724.581i −0.0322036 + 0.0322036i
\(151\) 13112.6 13112.6i 0.575089 0.575089i −0.358457 0.933546i \(-0.616697\pi\)
0.933546 + 0.358457i \(0.116697\pi\)
\(152\) 22731.1 0.983858
\(153\) 2145.48i 0.0916520i
\(154\) −8208.79 + 8208.79i −0.346129 + 0.346129i
\(155\) 13824.0i 0.575399i
\(156\) 0 0
\(157\) 212.325 0.00861394 0.00430697 0.999991i \(-0.498629\pi\)
0.00430697 + 0.999991i \(0.498629\pi\)
\(158\) 6460.72 + 6460.72i 0.258802 + 0.258802i
\(159\) −334.028 −0.0132126
\(160\) 24590.0i 0.960548i
\(161\) −31201.2 31201.2i −1.20370 1.20370i
\(162\) −10131.5 10131.5i −0.386049 0.386049i
\(163\) 3851.14 3851.14i 0.144948 0.144948i −0.630909 0.775857i \(-0.717318\pi\)
0.775857 + 0.630909i \(0.217318\pi\)
\(164\) −5435.29 + 5435.29i −0.202086 + 0.202086i
\(165\) 18472.4 0.678509
\(166\) 12681.7i 0.460215i
\(167\) −16193.2 + 16193.2i −0.580629 + 0.580629i −0.935076 0.354447i \(-0.884669\pi\)
0.354447 + 0.935076i \(0.384669\pi\)
\(168\) 28320.9i 1.00343i
\(169\) 0 0
\(170\) 14954.8 0.517466
\(171\) −2137.65 2137.65i −0.0731044 0.0731044i
\(172\) 23998.2 0.811189
\(173\) 35476.3i 1.18535i 0.805443 + 0.592674i \(0.201928\pi\)
−0.805443 + 0.592674i \(0.798072\pi\)
\(174\) −13202.1 13202.1i −0.436058 0.436058i
\(175\) 1790.87 + 1790.87i 0.0584774 + 0.0584774i
\(176\) −17.1197 + 17.1197i −0.000552677 + 0.000552677i
\(177\) −7135.57 + 7135.57i −0.227762 + 0.227762i
\(178\) 7355.82 0.232162
\(179\) 49231.4i 1.53651i 0.640142 + 0.768256i \(0.278875\pi\)
−0.640142 + 0.768256i \(0.721125\pi\)
\(180\) 1429.34 1429.34i 0.0441154 0.0441154i
\(181\) 45485.8i 1.38841i 0.719775 + 0.694207i \(0.244245\pi\)
−0.719775 + 0.694207i \(0.755755\pi\)
\(182\) 0 0
\(183\) −41054.0 −1.22590
\(184\) 38395.8 + 38395.8i 1.13409 + 1.13409i
\(185\) 63800.1 1.86414
\(186\) 12113.3i 0.350135i
\(187\) 16113.9 + 16113.9i 0.460806 + 0.460806i
\(188\) −8491.42 8491.42i −0.240251 0.240251i
\(189\) −28016.9 + 28016.9i −0.784324 + 0.784324i
\(190\) 14900.1 14900.1i 0.412746 0.412746i
\(191\) −19068.1 −0.522686 −0.261343 0.965246i \(-0.584165\pi\)
−0.261343 + 0.965246i \(0.584165\pi\)
\(192\) 21510.6i 0.583512i
\(193\) −18288.4 + 18288.4i −0.490976 + 0.490976i −0.908614 0.417638i \(-0.862858\pi\)
0.417638 + 0.908614i \(0.362858\pi\)
\(194\) 270.316i 0.00718237i
\(195\) 0 0
\(196\) −2988.96 −0.0778050
\(197\) 12689.3 + 12689.3i 0.326969 + 0.326969i 0.851433 0.524464i \(-0.175734\pi\)
−0.524464 + 0.851433i \(0.675734\pi\)
\(198\) −1899.94 −0.0484628
\(199\) 3020.21i 0.0762660i 0.999273 + 0.0381330i \(0.0121410\pi\)
−0.999273 + 0.0381330i \(0.987859\pi\)
\(200\) −2203.83 2203.83i −0.0550957 0.0550957i
\(201\) 21935.5 + 21935.5i 0.542945 + 0.542945i
\(202\) −31795.8 + 31795.8i −0.779232 + 0.779232i
\(203\) −32630.2 + 32630.2i −0.791823 + 0.791823i
\(204\) −21245.1 −0.510502
\(205\) 18646.4i 0.443699i
\(206\) −21813.9 + 21813.9i −0.514043 + 0.514043i
\(207\) 7221.55i 0.168535i
\(208\) 0 0
\(209\) 32110.1 0.735106
\(210\) −18564.3 18564.3i −0.420959 0.420959i
\(211\) −76384.5 −1.71570 −0.857848 0.513903i \(-0.828199\pi\)
−0.857848 + 0.513903i \(0.828199\pi\)
\(212\) 388.241i 0.00863832i
\(213\) −3842.90 3842.90i −0.0847031 0.0847031i
\(214\) −16361.1 16361.1i −0.357261 0.357261i
\(215\) 41164.4 41164.4i 0.890523 0.890523i
\(216\) 34477.3 34477.3i 0.738968 0.738968i
\(217\) 29939.1 0.635799
\(218\) 19384.8i 0.407896i
\(219\) 8519.54 8519.54i 0.177635 0.177635i
\(220\) 21470.5i 0.443605i
\(221\) 0 0
\(222\) 55905.0 1.13434
\(223\) 13445.1 + 13445.1i 0.270367 + 0.270367i 0.829248 0.558881i \(-0.188769\pi\)
−0.558881 + 0.829248i \(0.688769\pi\)
\(224\) 53255.7 1.06138
\(225\) 414.499i 0.00818764i
\(226\) −13891.0 13891.0i −0.271967 0.271967i
\(227\) −2679.72 2679.72i −0.0520041 0.0520041i 0.680626 0.732631i \(-0.261708\pi\)
−0.732631 + 0.680626i \(0.761708\pi\)
\(228\) −21167.5 + 21167.5i −0.407192 + 0.407192i
\(229\) 57344.9 57344.9i 1.09351 1.09351i 0.0983628 0.995151i \(-0.468639\pi\)
0.995151 0.0983628i \(-0.0313606\pi\)
\(230\) 50336.7 0.951545
\(231\) 40006.5i 0.749733i
\(232\) 40154.4 40154.4i 0.746032 0.746032i
\(233\) 6475.98i 0.119287i 0.998220 + 0.0596436i \(0.0189964\pi\)
−0.998220 + 0.0596436i \(0.981004\pi\)
\(234\) 0 0
\(235\) −29130.9 −0.527494
\(236\) −8293.68 8293.68i −0.148910 0.148910i
\(237\) −31487.1 −0.560577
\(238\) 32388.2i 0.571785i
\(239\) 34428.3 + 34428.3i 0.602725 + 0.602725i 0.941035 0.338310i \(-0.109855\pi\)
−0.338310 + 0.941035i \(0.609855\pi\)
\(240\) −38.7165 38.7165i −0.000672162 0.000672162i
\(241\) 5044.21 5044.21i 0.0868478 0.0868478i −0.662348 0.749196i \(-0.730440\pi\)
0.749196 + 0.662348i \(0.230440\pi\)
\(242\) −11308.0 + 11308.0i −0.193088 + 0.193088i
\(243\) −12352.6 −0.209193
\(244\) 47717.1i 0.801484i
\(245\) −5126.99 + 5126.99i −0.0854143 + 0.0854143i
\(246\) 16339.0i 0.269995i
\(247\) 0 0
\(248\) −36842.8 −0.599031
\(249\) −30902.8 30902.8i −0.498425 0.498425i
\(250\) −39957.7 −0.639324
\(251\) 85899.5i 1.36346i −0.731603 0.681731i \(-0.761227\pi\)
0.731603 0.681731i \(-0.238773\pi\)
\(252\) −3095.58 3095.58i −0.0487463 0.0487463i
\(253\) 54238.4 + 54238.4i 0.847356 + 0.847356i
\(254\) 33044.9 33044.9i 0.512197 0.512197i
\(255\) −36441.9 + 36441.9i −0.560429 + 0.560429i
\(256\) −65493.5 −0.999352
\(257\) 25727.8i 0.389525i 0.980850 + 0.194763i \(0.0623937\pi\)
−0.980850 + 0.194763i \(0.937606\pi\)
\(258\) 36070.5 36070.5i 0.541892 0.541892i
\(259\) 138175.i 2.05982i
\(260\) 0 0
\(261\) −7552.31 −0.110866
\(262\) −5758.91 5758.91i −0.0838953 0.0838953i
\(263\) 27569.5 0.398582 0.199291 0.979940i \(-0.436136\pi\)
0.199291 + 0.979940i \(0.436136\pi\)
\(264\) 49231.6i 0.706376i
\(265\) −665.954 665.954i −0.00948315 0.00948315i
\(266\) −32269.9 32269.9i −0.456073 0.456073i
\(267\) −17924.7 + 17924.7i −0.251437 + 0.251437i
\(268\) −25495.7 + 25495.7i −0.354974 + 0.354974i
\(269\) −48109.2 −0.664849 −0.332425 0.943130i \(-0.607867\pi\)
−0.332425 + 0.943130i \(0.607867\pi\)
\(270\) 45199.5i 0.620021i
\(271\) 18041.9 18041.9i 0.245665 0.245665i −0.573524 0.819189i \(-0.694424\pi\)
0.819189 + 0.573524i \(0.194424\pi\)
\(272\) 67.5467i 0.000912990i
\(273\) 0 0
\(274\) −60290.1 −0.803054
\(275\) −3113.15 3113.15i −0.0411656 0.0411656i
\(276\) −71509.4 −0.938739
\(277\) 52704.1i 0.686886i 0.939174 + 0.343443i \(0.111593\pi\)
−0.939174 + 0.343443i \(0.888407\pi\)
\(278\) 2753.48 + 2753.48i 0.0356281 + 0.0356281i
\(279\) 3464.73 + 3464.73i 0.0445103 + 0.0445103i
\(280\) 56463.7 56463.7i 0.720200 0.720200i
\(281\) −88394.7 + 88394.7i −1.11947 + 1.11947i −0.127654 + 0.991819i \(0.540745\pi\)
−0.991819 + 0.127654i \(0.959255\pi\)
\(282\) −25526.0 −0.320985
\(283\) 60370.6i 0.753794i −0.926255 0.376897i \(-0.876991\pi\)
0.926255 0.376897i \(-0.123009\pi\)
\(284\) 4466.60 4466.60i 0.0553784 0.0553784i
\(285\) 72617.6i 0.894030i
\(286\) 0 0
\(287\) 40383.4 0.490274
\(288\) 6163.05 + 6163.05i 0.0743037 + 0.0743037i
\(289\) 19942.7 0.238775
\(290\) 52642.2i 0.625948i
\(291\) 658.708 + 658.708i 0.00777869 + 0.00777869i
\(292\) 9902.26 + 9902.26i 0.116136 + 0.116136i
\(293\) 47402.3 47402.3i 0.552159 0.552159i −0.374905 0.927063i \(-0.622325\pi\)
0.927063 + 0.374905i \(0.122325\pi\)
\(294\) −4492.54 + 4492.54i −0.0519754 + 0.0519754i
\(295\) −28452.5 −0.326946
\(296\) 170036.i 1.94070i
\(297\) 48703.0 48703.0i 0.552132 0.552132i
\(298\) 19425.4i 0.218745i
\(299\) 0 0
\(300\) 4104.46 0.0456052
\(301\) −89151.6 89151.6i −0.984002 0.984002i
\(302\) 45815.3 0.502339
\(303\) 154960.i 1.68786i
\(304\) −67.3000 67.3000i −0.000728228 0.000728228i
\(305\) −81849.8 81849.8i −0.879868 0.879868i
\(306\) 3748.14 3748.14i 0.0400289 0.0400289i
\(307\) 56466.7 56466.7i 0.599122 0.599122i −0.340957 0.940079i \(-0.610751\pi\)
0.940079 + 0.340957i \(0.110751\pi\)
\(308\) 46499.6 0.490171
\(309\) 106313.i 1.11344i
\(310\) −24150.4 + 24150.4i −0.251304 + 0.251304i
\(311\) 23649.5i 0.244513i 0.992499 + 0.122256i \(0.0390130\pi\)
−0.992499 + 0.122256i \(0.960987\pi\)
\(312\) 0 0
\(313\) 86256.6 0.880447 0.440224 0.897888i \(-0.354899\pi\)
0.440224 + 0.897888i \(0.354899\pi\)
\(314\) 370.930 + 370.930i 0.00376212 + 0.00376212i
\(315\) −10619.8 −0.107027
\(316\) 36597.4i 0.366502i
\(317\) 108363. + 108363.i 1.07836 + 1.07836i 0.996657 + 0.0817010i \(0.0260353\pi\)
0.0817010 + 0.996657i \(0.473965\pi\)
\(318\) −583.544 583.544i −0.00577058 0.00577058i
\(319\) 56722.6 56722.6i 0.557410 0.557410i
\(320\) −42885.9 + 42885.9i −0.418807 + 0.418807i
\(321\) 79737.8 0.773845
\(322\) 109016.i 1.05143i
\(323\) −63346.1 + 63346.1i −0.607176 + 0.607176i
\(324\) 57390.9i 0.546705i
\(325\) 0 0
\(326\) 13455.8 0.126612
\(327\) 47237.2 + 47237.2i 0.441762 + 0.441762i
\(328\) −49695.4 −0.461922
\(329\) 63089.9i 0.582866i
\(330\) 32271.2 + 32271.2i 0.296338 + 0.296338i
\(331\) −69512.0 69512.0i −0.634459 0.634459i 0.314724 0.949183i \(-0.398088\pi\)
−0.949183 + 0.314724i \(0.898088\pi\)
\(332\) 35918.4 35918.4i 0.325867 0.325867i
\(333\) 15990.3 15990.3i 0.144201 0.144201i
\(334\) −56578.6 −0.507177
\(335\) 87466.0i 0.779381i
\(336\) −83.8500 + 83.8500i −0.000742719 + 0.000742719i
\(337\) 30291.6i 0.266725i −0.991067 0.133362i \(-0.957423\pi\)
0.991067 0.133362i \(-0.0425774\pi\)
\(338\) 0 0
\(339\) 67699.4 0.589095
\(340\) −42356.4 42356.4i −0.366405 0.366405i
\(341\) −52044.5 −0.447576
\(342\) 7468.91i 0.0638565i
\(343\) −77164.2 77164.2i −0.655885 0.655885i
\(344\) 109709. + 109709.i 0.927098 + 0.927098i
\(345\) −122661. + 122661.i −1.03055 + 1.03055i
\(346\) −61976.8 + 61976.8i −0.517699 + 0.517699i
\(347\) −185945. −1.54428 −0.772141 0.635452i \(-0.780814\pi\)
−0.772141 + 0.635452i \(0.780814\pi\)
\(348\) 74784.7i 0.617524i
\(349\) 113915. 113915.i 0.935252 0.935252i −0.0627755 0.998028i \(-0.519995\pi\)
0.998028 + 0.0627755i \(0.0199952\pi\)
\(350\) 6257.27i 0.0510798i
\(351\) 0 0
\(352\) −92576.8 −0.747165
\(353\) 135896. + 135896.i 1.09058 + 1.09058i 0.995467 + 0.0951102i \(0.0303203\pi\)
0.0951102 + 0.995467i \(0.469680\pi\)
\(354\) −24931.6 −0.198950
\(355\) 15323.2i 0.121589i
\(356\) −20833.9 20833.9i −0.164388 0.164388i
\(357\) 78923.8 + 78923.8i 0.619258 + 0.619258i
\(358\) −86006.9 + 86006.9i −0.671069 + 0.671069i
\(359\) 111215. 111215.i 0.862925 0.862925i −0.128751 0.991677i \(-0.541097\pi\)
0.991677 + 0.128751i \(0.0410970\pi\)
\(360\) 13068.6 0.100838
\(361\) 4091.59i 0.0313963i
\(362\) −79463.5 + 79463.5i −0.606388 + 0.606388i
\(363\) 55110.9i 0.418239i
\(364\) 0 0
\(365\) 33970.9 0.254989
\(366\) −71721.1 71721.1i −0.535408 0.535408i
\(367\) 224411. 1.66614 0.833072 0.553165i \(-0.186580\pi\)
0.833072 + 0.553165i \(0.186580\pi\)
\(368\) 227.357i 0.00167886i
\(369\) 4673.39 + 4673.39i 0.0343226 + 0.0343226i
\(370\) 111458. + 111458.i 0.814158 + 0.814158i
\(371\) −1442.29 + 1442.29i −0.0104786 + 0.0104786i
\(372\) 34308.5 34308.5i 0.247922 0.247922i
\(373\) 201930. 1.45139 0.725693 0.688019i \(-0.241519\pi\)
0.725693 + 0.688019i \(0.241519\pi\)
\(374\) 56301.8i 0.402512i
\(375\) 97369.3 97369.3i 0.692404 0.692404i
\(376\) 77637.9i 0.549159i
\(377\) 0 0
\(378\) −97890.5 −0.685105
\(379\) 98134.8 + 98134.8i 0.683195 + 0.683195i 0.960719 0.277524i \(-0.0895138\pi\)
−0.277524 + 0.960719i \(0.589514\pi\)
\(380\) −84403.5 −0.584512
\(381\) 161048.i 1.10945i
\(382\) −33311.9 33311.9i −0.228282 0.228282i
\(383\) −124265. 124265.i −0.847134 0.847134i 0.142641 0.989775i \(-0.454441\pi\)
−0.989775 + 0.142641i \(0.954441\pi\)
\(384\) 61091.7 61091.7i 0.414304 0.414304i
\(385\) 79761.3 79761.3i 0.538109 0.538109i
\(386\) −63899.3 −0.428866
\(387\) 20634.2i 0.137774i
\(388\) −765.616 + 765.616i −0.00508566 + 0.00508566i
\(389\) 172903.i 1.14262i 0.820733 + 0.571312i \(0.193565\pi\)
−0.820733 + 0.571312i \(0.806435\pi\)
\(390\) 0 0
\(391\) −214000. −1.39978
\(392\) −13664.2 13664.2i −0.0889223 0.0889223i
\(393\) 28066.7 0.181722
\(394\) 44336.4i 0.285606i
\(395\) −62776.0 62776.0i −0.402346 0.402346i
\(396\) 5381.19 + 5381.19i 0.0343153 + 0.0343153i
\(397\) −115477. + 115477.i −0.732683 + 0.732683i −0.971150 0.238467i \(-0.923355\pi\)
0.238467 + 0.971150i \(0.423355\pi\)
\(398\) −5276.28 + 5276.28i −0.0333090 + 0.0333090i
\(399\) 157271. 0.987877
\(400\) 13.0498i 8.15610e-5i
\(401\) −150205. + 150205.i −0.934104 + 0.934104i −0.997959 0.0638548i \(-0.979661\pi\)
0.0638548 + 0.997959i \(0.479661\pi\)
\(402\) 76642.4i 0.474260i
\(403\) 0 0
\(404\) 180111. 1.10351
\(405\) 98443.2 + 98443.2i 0.600172 + 0.600172i
\(406\) −114010. −0.691654
\(407\) 240195.i 1.45002i
\(408\) −97122.8 97122.8i −0.583446 0.583446i
\(409\) −86795.0 86795.0i −0.518857 0.518857i 0.398368 0.917226i \(-0.369577\pi\)
−0.917226 + 0.398368i \(0.869577\pi\)
\(410\) −32575.2 + 32575.2i −0.193785 + 0.193785i
\(411\) 146915. 146915.i 0.869728 0.869728i
\(412\) 123567. 0.727963
\(413\) 61620.8i 0.361266i
\(414\) 12616.0 12616.0i 0.0736073 0.0736073i
\(415\) 123222.i 0.715474i
\(416\) 0 0
\(417\) −13419.4 −0.0771723
\(418\) 56096.2 + 56096.2i 0.321056 + 0.321056i
\(419\) 228319. 1.30051 0.650254 0.759717i \(-0.274662\pi\)
0.650254 + 0.759717i \(0.274662\pi\)
\(420\) 105159.i 0.596142i
\(421\) −29630.8 29630.8i −0.167178 0.167178i 0.618560 0.785738i \(-0.287716\pi\)
−0.785738 + 0.618560i \(0.787716\pi\)
\(422\) −133443. 133443.i −0.749327 0.749327i
\(423\) −7301.13 + 7301.13i −0.0408046 + 0.0408046i
\(424\) 1774.86 1774.86i 0.00987263 0.00987263i
\(425\) 12283.1 0.0680032
\(426\) 13427.0i 0.0739879i
\(427\) −177266. + 177266.i −0.972229 + 0.972229i
\(428\) 92679.2i 0.505935i
\(429\) 0 0
\(430\) 143828. 0.777869
\(431\) −101306. 101306.i −0.545358 0.545358i 0.379737 0.925095i \(-0.376015\pi\)
−0.925095 + 0.379737i \(0.876015\pi\)
\(432\) −204.154 −0.00109393
\(433\) 202761.i 1.08146i −0.841198 0.540728i \(-0.818149\pi\)
0.841198 0.540728i \(-0.181851\pi\)
\(434\) 52303.5 + 52303.5i 0.277684 + 0.277684i
\(435\) 128279. + 128279.i 0.677918 + 0.677918i
\(436\) −54903.8 + 54903.8i −0.288821 + 0.288821i
\(437\) −213219. + 213219.i −1.11651 + 1.11651i
\(438\) 29767.1 0.155163
\(439\) 5953.77i 0.0308932i −0.999881 0.0154466i \(-0.995083\pi\)
0.999881 0.0154466i \(-0.00491700\pi\)
\(440\) −98153.4 + 98153.4i −0.506991 + 0.506991i
\(441\) 2569.98i 0.0132145i
\(442\) 0 0
\(443\) −25178.3 −0.128298 −0.0641489 0.997940i \(-0.520433\pi\)
−0.0641489 + 0.997940i \(0.520433\pi\)
\(444\) −158340. 158340.i −0.803202 0.803202i
\(445\) −71473.3 −0.360931
\(446\) 46977.0i 0.236165i
\(447\) 47336.0 + 47336.0i 0.236906 + 0.236906i
\(448\) 92879.7 + 92879.7i 0.462770 + 0.462770i
\(449\) −143200. + 143200.i −0.710315 + 0.710315i −0.966601 0.256286i \(-0.917501\pi\)
0.256286 + 0.966601i \(0.417501\pi\)
\(450\) −724.127 + 724.127i −0.00357594 + 0.00357594i
\(451\) −70200.3 −0.345132
\(452\) 78687.0i 0.385147i
\(453\) −111643. + 111643.i −0.544046 + 0.544046i
\(454\) 9362.91i 0.0454254i
\(455\) 0 0
\(456\) −193536. −0.930749
\(457\) −22101.2 22101.2i −0.105824 0.105824i 0.652212 0.758036i \(-0.273841\pi\)
−0.758036 + 0.652212i \(0.773841\pi\)
\(458\) 200362. 0.955180
\(459\) 192160.i 0.912090i
\(460\) −142569. 142569.i −0.673766 0.673766i
\(461\) −37293.6 37293.6i −0.175482 0.175482i 0.613901 0.789383i \(-0.289599\pi\)
−0.789383 + 0.613901i \(0.789599\pi\)
\(462\) 69891.1 69891.1i 0.327444 0.327444i
\(463\) −81704.7 + 81704.7i −0.381140 + 0.381140i −0.871513 0.490372i \(-0.836861\pi\)
0.490372 + 0.871513i \(0.336861\pi\)
\(464\) −237.771 −0.00110439
\(465\) 117700.i 0.544338i
\(466\) −11313.5 + 11313.5i −0.0520985 + 0.0520985i
\(467\) 267324.i 1.22576i −0.790177 0.612878i \(-0.790012\pi\)
0.790177 0.612878i \(-0.209988\pi\)
\(468\) 0 0
\(469\) 189429. 0.861193
\(470\) −50891.4 50891.4i −0.230382 0.230382i
\(471\) −1807.77 −0.00814895
\(472\) 75829.9i 0.340374i
\(473\) 154976. + 154976.i 0.692696 + 0.692696i
\(474\) −55007.7 55007.7i −0.244831 0.244831i
\(475\) 12238.2 12238.2i 0.0542414 0.0542414i
\(476\) −91733.1 + 91733.1i −0.404867 + 0.404867i
\(477\) −333.819 −0.00146715
\(478\) 120292.i 0.526478i
\(479\) −74292.0 + 74292.0i −0.323796 + 0.323796i −0.850221 0.526425i \(-0.823532\pi\)
0.526425 + 0.850221i \(0.323532\pi\)
\(480\) 209364.i 0.908697i
\(481\) 0 0
\(482\) 17624.4 0.0758613
\(483\) 265652. + 265652.i 1.13873 + 1.13873i
\(484\) 64055.5 0.273442
\(485\) 2626.54i 0.0111661i
\(486\) −21580.0 21580.0i −0.0913647 0.0913647i
\(487\) −120533. 120533.i −0.508216 0.508216i 0.405762 0.913979i \(-0.367006\pi\)
−0.913979 + 0.405762i \(0.867006\pi\)
\(488\) 218141. 218141.i 0.916006 0.916006i
\(489\) −32789.2 + 32789.2i −0.137124 + 0.137124i
\(490\) −17913.6 −0.0746091
\(491\) 32615.3i 0.135288i 0.997710 + 0.0676439i \(0.0215482\pi\)
−0.997710 + 0.0676439i \(0.978452\pi\)
\(492\) 46277.0 46277.0i 0.191177 0.191177i
\(493\) 223802.i 0.920809i
\(494\) 0 0
\(495\) 18460.8 0.0753427
\(496\) 109.081 + 109.081i 0.000443388 + 0.000443388i
\(497\) −33186.2 −0.134352
\(498\) 107974.i 0.435372i
\(499\) 39397.8 + 39397.8i 0.158223 + 0.158223i 0.781779 0.623556i \(-0.214313\pi\)
−0.623556 + 0.781779i \(0.714313\pi\)
\(500\) 113172. + 113172.i 0.452690 + 0.452690i
\(501\) 137871. 137871.i 0.549286 0.549286i
\(502\) 150066. 150066.i 0.595490 0.595490i
\(503\) 390430. 1.54315 0.771573 0.636141i \(-0.219470\pi\)
0.771573 + 0.636141i \(0.219470\pi\)
\(504\) 28303.2i 0.111423i
\(505\) 308946. 308946.i 1.21143 1.21143i
\(506\) 189508.i 0.740162i
\(507\) 0 0
\(508\) −187186. −0.725349
\(509\) −329416. 329416.i −1.27148 1.27148i −0.945313 0.326165i \(-0.894243\pi\)
−0.326165 0.945313i \(-0.605757\pi\)
\(510\) −127327. −0.489533
\(511\) 73572.3i 0.281756i
\(512\) 387.940 + 387.940i 0.00147987 + 0.00147987i
\(513\) 191458. + 191458.i 0.727510 + 0.727510i
\(514\) −44946.2 + 44946.2i −0.170125 + 0.170125i
\(515\) 211957. 211957.i 0.799157 0.799157i
\(516\) −204325. −0.767401
\(517\) 109672.i 0.410313i
\(518\) 241390. 241390.i 0.899621 0.899621i
\(519\) 302051.i 1.12136i
\(520\) 0 0
\(521\) 66489.1 0.244949 0.122474 0.992472i \(-0.460917\pi\)
0.122474 + 0.992472i \(0.460917\pi\)
\(522\) −13193.8 13193.8i −0.0484206 0.0484206i
\(523\) −199419. −0.729061 −0.364530 0.931192i \(-0.618770\pi\)
−0.364530 + 0.931192i \(0.618770\pi\)
\(524\) 32622.0i 0.118809i
\(525\) −15247.8 15247.8i −0.0553207 0.0553207i
\(526\) 48163.7 + 48163.7i 0.174080 + 0.174080i
\(527\) 102672. 102672.i 0.369685 0.369685i
\(528\) 145.760 145.760i 0.000522843 0.000522843i
\(529\) −440469. −1.57400
\(530\) 2326.83i 0.00828350i
\(531\) −7131.10 + 7131.10i −0.0252911 + 0.0252911i
\(532\) 182796.i 0.645868i
\(533\) 0 0
\(534\) −62628.7 −0.219630
\(535\) 158974. + 158974.i 0.555416 + 0.555416i
\(536\) −233109. −0.811391
\(537\) 419165.i 1.45357i
\(538\) −84046.4 84046.4i −0.290372 0.290372i
\(539\) −19302.1 19302.1i −0.0664397 0.0664397i
\(540\) −128019. + 128019.i −0.439022 + 0.439022i
\(541\) −142965. + 142965.i −0.488467 + 0.488467i −0.907822 0.419355i \(-0.862256\pi\)
0.419355 + 0.907822i \(0.362256\pi\)
\(542\) 63038.1 0.214588
\(543\) 387274.i 1.31347i
\(544\) 182633. 182633.i 0.617137 0.617137i
\(545\) 188354.i 0.634136i
\(546\) 0 0
\(547\) −34633.5 −0.115750 −0.0578750 0.998324i \(-0.518432\pi\)
−0.0578750 + 0.998324i \(0.518432\pi\)
\(548\) 170760. + 170760.i 0.568623 + 0.568623i
\(549\) −41028.3 −0.136125
\(550\) 10877.3i 0.0359580i
\(551\) 222984. + 222984.i 0.734465 + 0.734465i
\(552\) −326909. 326909.i −1.07287 1.07287i
\(553\) −135957. + 135957.i −0.444581 + 0.444581i
\(554\) −92073.7 + 92073.7i −0.299996 + 0.299996i
\(555\) −543205. −1.76351
\(556\) 15597.4i 0.0504548i
\(557\) 284385. 284385.i 0.916635 0.916635i −0.0801481 0.996783i \(-0.525539\pi\)
0.996783 + 0.0801481i \(0.0255393\pi\)
\(558\) 12105.7i 0.0388796i
\(559\) 0 0
\(560\) −334.345 −0.00106615
\(561\) −137197. 137197.i −0.435931 0.435931i
\(562\) −308850. −0.977856
\(563\) 282597.i 0.891562i −0.895142 0.445781i \(-0.852926\pi\)
0.895142 0.445781i \(-0.147074\pi\)
\(564\) 72297.4 + 72297.4i 0.227282 + 0.227282i
\(565\) 134973. + 134973.i 0.422814 + 0.422814i
\(566\) 105467. 105467.i 0.329218 0.329218i
\(567\) 213203. 213203.i 0.663173 0.663173i
\(568\) 40838.6 0.126583
\(569\) 115427.i 0.356520i −0.983983 0.178260i \(-0.942953\pi\)
0.983983 0.178260i \(-0.0570467\pi\)
\(570\) −126862. + 126862.i −0.390466 + 0.390466i
\(571\) 75184.3i 0.230598i 0.993331 + 0.115299i \(0.0367826\pi\)
−0.993331 + 0.115299i \(0.963217\pi\)
\(572\) 0 0
\(573\) 162349. 0.494471
\(574\) 70549.5 + 70549.5i 0.214126 + 0.214126i
\(575\) 41344.0 0.125048
\(576\) 21497.1i 0.0647941i
\(577\) 198197. + 198197.i 0.595313 + 0.595313i 0.939062 0.343749i \(-0.111697\pi\)
−0.343749 + 0.939062i \(0.611697\pi\)
\(578\) 34839.8 + 34839.8i 0.104285 + 0.104285i
\(579\) 155710. 155710.i 0.464473 0.464473i
\(580\) −149099. + 149099.i −0.443219 + 0.443219i
\(581\) −266868. −0.790577
\(582\) 2301.52i 0.00679466i
\(583\) 2507.19 2507.19i 0.00737650 0.00737650i
\(584\) 90537.4i 0.265462i
\(585\) 0 0
\(586\) 165623. 0.482309
\(587\) −18461.4 18461.4i −0.0535784 0.0535784i 0.679810 0.733388i \(-0.262062\pi\)
−0.733388 + 0.679810i \(0.762062\pi\)
\(588\) 25448.5 0.0736050
\(589\) 204594.i 0.589743i
\(590\) −49706.3 49706.3i −0.142793 0.142793i
\(591\) −108039. 108039.i −0.309319 0.309319i
\(592\) 503.427 503.427i 0.00143646 0.00143646i
\(593\) −444924. + 444924.i −1.26525 + 1.26525i −0.316736 + 0.948514i \(0.602587\pi\)
−0.948514 + 0.316736i \(0.897413\pi\)
\(594\) 170168. 0.482285
\(595\) 314702.i 0.888926i
\(596\) −55018.6 + 55018.6i −0.154888 + 0.154888i
\(597\) 25714.6i 0.0721491i
\(598\) 0 0
\(599\) −174476. −0.486275 −0.243138 0.969992i \(-0.578177\pi\)
−0.243138 + 0.969992i \(0.578177\pi\)
\(600\) 18763.8 + 18763.8i 0.0521216 + 0.0521216i
\(601\) 503463. 1.39386 0.696929 0.717140i \(-0.254549\pi\)
0.696929 + 0.717140i \(0.254549\pi\)
\(602\) 311494.i 0.859522i
\(603\) 21921.8 + 21921.8i 0.0602894 + 0.0602894i
\(604\) −129763. 129763.i −0.355694 0.355694i
\(605\) 109875. 109875.i 0.300185 0.300185i
\(606\) 270715. 270715.i 0.737168 0.737168i
\(607\) −54701.1 −0.148463 −0.0742316 0.997241i \(-0.523650\pi\)
−0.0742316 + 0.997241i \(0.523650\pi\)
\(608\) 363932.i 0.984494i
\(609\) 277819. 277819.i 0.749080 0.749080i
\(610\) 285982.i 0.768562i
\(611\) 0 0
\(612\) −21231.8 −0.0566869
\(613\) −394238. 394238.i −1.04915 1.04915i −0.998728 0.0504228i \(-0.983943\pi\)
−0.0504228 0.998728i \(-0.516057\pi\)
\(614\) 197294. 0.523331
\(615\) 158759.i 0.419748i
\(616\) 212575. + 212575.i 0.560210 + 0.560210i
\(617\) 128366. + 128366.i 0.337193 + 0.337193i 0.855310 0.518117i \(-0.173367\pi\)
−0.518117 + 0.855310i \(0.673367\pi\)
\(618\) 185728. 185728.i 0.486295 0.486295i
\(619\) −44147.8 + 44147.8i −0.115220 + 0.115220i −0.762366 0.647146i \(-0.775962\pi\)
0.647146 + 0.762366i \(0.275962\pi\)
\(620\) 136802. 0.355885
\(621\) 646797.i 1.67720i
\(622\) −41315.5 + 41315.5i −0.106790 + 0.106790i
\(623\) 154793.i 0.398818i
\(624\) 0 0
\(625\) 357806. 0.915983
\(626\) 150690. + 150690.i 0.384534 + 0.384534i
\(627\) −273391. −0.695424
\(628\) 2101.17i 0.00532774i
\(629\) −473851. 473851.i −1.19768 1.19768i
\(630\) −18552.7 18552.7i −0.0467440 0.0467440i
\(631\) 376659. 376659.i 0.945998 0.945998i −0.0526170 0.998615i \(-0.516756\pi\)
0.998615 + 0.0526170i \(0.0167563\pi\)
\(632\) 167307. 167307.i 0.418871 0.418871i
\(633\) 650351. 1.62308
\(634\) 378619.i 0.941942i
\(635\) −321083. + 321083.i −0.796288 + 0.796288i
\(636\) 3305.55i 0.00817202i
\(637\) 0 0
\(638\) 198188. 0.486896
\(639\) −3840.49 3840.49i −0.00940556 0.00940556i
\(640\) 243598. 0.594721
\(641\) 789963.i 1.92261i 0.275490 + 0.961304i \(0.411160\pi\)
−0.275490 + 0.961304i \(0.588840\pi\)
\(642\) 139301. + 139301.i 0.337975 + 0.337975i
\(643\) 310418. + 310418.i 0.750801 + 0.750801i 0.974629 0.223827i \(-0.0718552\pi\)
−0.223827 + 0.974629i \(0.571855\pi\)
\(644\) −308768. + 308768.i −0.744492 + 0.744492i
\(645\) −350481. + 350481.i −0.842452 + 0.842452i
\(646\) −221330. −0.530366
\(647\) 172300.i 0.411601i 0.978594 + 0.205801i \(0.0659798\pi\)
−0.978594 + 0.205801i \(0.934020\pi\)
\(648\) −262365. + 262365.i −0.624822 + 0.624822i
\(649\) 107118.i 0.254316i
\(650\) 0 0
\(651\) −254907. −0.601478
\(652\) −38111.0 38111.0i −0.0896509 0.0896509i
\(653\) −438961. −1.02944 −0.514718 0.857359i \(-0.672103\pi\)
−0.514718 + 0.857359i \(0.672103\pi\)
\(654\) 165046.i 0.385877i
\(655\) 55956.8 + 55956.8i 0.130428 + 0.130428i
\(656\) 147.133 + 147.133i 0.000341904 + 0.000341904i
\(657\) 8514.20 8514.20i 0.0197248 0.0197248i
\(658\) −110218. + 110218.i −0.254566 + 0.254566i
\(659\) −42262.6 −0.0973163 −0.0486581 0.998815i \(-0.515494\pi\)
−0.0486581 + 0.998815i \(0.515494\pi\)
\(660\) 182804.i 0.419659i
\(661\) −136635. + 136635.i −0.312721 + 0.312721i −0.845963 0.533242i \(-0.820974\pi\)
0.533242 + 0.845963i \(0.320974\pi\)
\(662\) 242874.i 0.554198i
\(663\) 0 0
\(664\) 328405. 0.744859
\(665\) 313552. + 313552.i 0.709034 + 0.709034i
\(666\) 55870.0 0.125959
\(667\) 753302.i 1.69323i
\(668\) 160248. + 160248.i 0.359120 + 0.359120i
\(669\) −114474. 114474.i −0.255773 0.255773i
\(670\) −152803. + 152803.i −0.340393 + 0.340393i
\(671\) 308149. 308149.i 0.684408 0.684408i
\(672\) −453428. −1.00408
\(673\) 548835.i 1.21175i −0.795562 0.605873i \(-0.792824\pi\)
0.795562 0.605873i \(-0.207176\pi\)
\(674\) 52919.3 52919.3i 0.116491 0.116491i
\(675\) 37124.6i 0.0814805i
\(676\) 0 0
\(677\) −427627. −0.933014 −0.466507 0.884518i \(-0.654488\pi\)
−0.466507 + 0.884518i \(0.654488\pi\)
\(678\) 118270. + 118270.i 0.257286 + 0.257286i
\(679\) 5688.41 0.0123382
\(680\) 387269.i 0.837520i
\(681\) 22815.6 + 22815.6i 0.0491969 + 0.0491969i
\(682\) −90921.5 90921.5i −0.195478 0.195478i
\(683\) −348779. + 348779.i −0.747668 + 0.747668i −0.974041 0.226373i \(-0.927313\pi\)
0.226373 + 0.974041i \(0.427313\pi\)
\(684\) −21154.2 + 21154.2i −0.0452152 + 0.0452152i
\(685\) 585812. 1.24847
\(686\) 269611.i 0.572913i
\(687\) −488245. + 488245.i −1.03448 + 1.03448i
\(688\) 649.632i 0.00137243i
\(689\) 0 0
\(690\) −428576. −0.900180
\(691\) −291105. 291105.i −0.609669 0.609669i 0.333191 0.942860i \(-0.391875\pi\)
−0.942860 + 0.333191i \(0.891875\pi\)
\(692\) 351074. 0.733140
\(693\) 39981.4i 0.0832515i
\(694\) −324845. 324845.i −0.674462 0.674462i
\(695\) −26754.4 26754.4i −0.0553892 0.0553892i
\(696\) −341882. + 341882.i −0.705761 + 0.705761i
\(697\) 138489. 138489.i 0.285069 0.285069i
\(698\) 398016. 0.816940
\(699\) 55137.6i 0.112848i
\(700\) 17722.5 17722.5i 0.0361684 0.0361684i
\(701\) 44529.2i 0.0906169i −0.998973 0.0453085i \(-0.985573\pi\)
0.998973 0.0453085i \(-0.0144271\pi\)
\(702\) 0 0
\(703\) −944240. −1.91061
\(704\) −161457. 161457.i −0.325771 0.325771i
\(705\) 248025. 0.499020
\(706\) 474818.i 0.952615i
\(707\) −669097. 669097.i −1.33860 1.33860i
\(708\) 70613.8 + 70613.8i 0.140871 + 0.140871i
\(709\) −279385. + 279385.i −0.555791 + 0.555791i −0.928106 0.372316i \(-0.878564\pi\)
0.372316 + 0.928106i \(0.378564\pi\)
\(710\) 26769.6 26769.6i 0.0531037 0.0531037i
\(711\) −31467.4 −0.0622474
\(712\) 190487.i 0.375755i
\(713\) 345587. 345587.i 0.679796 0.679796i
\(714\) 275759.i 0.540919i
\(715\) 0 0
\(716\) 487195. 0.950336
\(717\) −293128. 293128.i −0.570190 0.570190i
\(718\) 388583. 0.753762
\(719\) 280011.i 0.541648i −0.962629 0.270824i \(-0.912704\pi\)
0.962629 0.270824i \(-0.0872961\pi\)
\(720\) −38.6923 38.6923i −7.46379e−5 7.46379e-5i
\(721\) −459043. 459043.i −0.883045 0.883045i
\(722\) 7147.99 7147.99i 0.0137123 0.0137123i
\(723\) −42947.3 + 42947.3i −0.0821597 + 0.0821597i
\(724\) 450129. 0.858737
\(725\) 43237.7i 0.0822595i
\(726\) 96278.4 96278.4i 0.182665 0.182665i
\(727\) 133105.i 0.251840i 0.992040 + 0.125920i \(0.0401882\pi\)
−0.992040 + 0.125920i \(0.959812\pi\)
\(728\) 0 0
\(729\) 574923. 1.08182
\(730\) 59347.0 + 59347.0i 0.111366 + 0.111366i
\(731\) −611466. −1.14429
\(732\) 406272.i 0.758219i
\(733\) −313844. 313844.i −0.584125 0.584125i 0.351909 0.936034i \(-0.385533\pi\)
−0.936034 + 0.351909i \(0.885533\pi\)
\(734\) 392045. + 392045.i 0.727685 + 0.727685i
\(735\) 43652.1 43652.1i 0.0808035 0.0808035i
\(736\) 614731. 614731.i 1.13483 1.13483i
\(737\) −329293. −0.606244
\(738\) 16328.8i 0.0299806i
\(739\) −464338. + 464338.i −0.850247 + 0.850247i −0.990163 0.139916i \(-0.955317\pi\)
0.139916 + 0.990163i \(0.455317\pi\)
\(740\) 631367.i 1.15297i
\(741\) 0 0
\(742\) −5039.32 −0.00915302
\(743\) 733957. + 733957.i 1.32951 + 1.32951i 0.905792 + 0.423723i \(0.139277\pi\)
0.423723 + 0.905792i \(0.360723\pi\)
\(744\) 313686. 0.566695
\(745\) 188748.i 0.340072i
\(746\) 352770. + 352770.i 0.633890 + 0.633890i
\(747\) −30883.5 30883.5i −0.0553458 0.0553458i
\(748\) 159464. 159464.i 0.285009 0.285009i
\(749\) 344296. 344296.i 0.613718 0.613718i
\(750\) 340207. 0.604813
\(751\) 233455.i 0.413927i 0.978349 + 0.206964i \(0.0663582\pi\)
−0.978349 + 0.206964i \(0.933642\pi\)
\(752\) −229.863 + 229.863i −0.000406474 + 0.000406474i
\(753\) 731363.i 1.28986i
\(754\) 0 0
\(755\) −445167. −0.780961
\(756\) 277256. + 277256.i 0.485106 + 0.485106i
\(757\) −853576. −1.48953 −0.744767 0.667325i \(-0.767439\pi\)
−0.744767 + 0.667325i \(0.767439\pi\)
\(758\) 342882.i 0.596768i
\(759\) −461795. 461795.i −0.801615 0.801615i
\(760\) −385855. 385855.i −0.668031 0.668031i
\(761\) −779276. + 779276.i −1.34562 + 1.34562i −0.455260 + 0.890359i \(0.650454\pi\)
−0.890359 + 0.455260i \(0.849546\pi\)
\(762\) −281350. + 281350.i −0.484548 + 0.484548i
\(763\) 407927. 0.700702
\(764\) 188699.i 0.323283i
\(765\) −36419.1 + 36419.1i −0.0622309 + 0.0622309i
\(766\) 434181.i 0.739969i
\(767\) 0 0
\(768\) 557623. 0.945406
\(769\) −39890.5 39890.5i −0.0674555 0.0674555i 0.672574 0.740030i \(-0.265189\pi\)
−0.740030 + 0.672574i \(0.765189\pi\)
\(770\) 278685. 0.470037
\(771\) 219051.i 0.368499i
\(772\) 180982. + 180982.i 0.303669 + 0.303669i
\(773\) 558787. + 558787.i 0.935163 + 0.935163i 0.998022 0.0628590i \(-0.0200218\pi\)
−0.0628590 + 0.998022i \(0.520022\pi\)
\(774\) 36047.9 36047.9i 0.0601725 0.0601725i
\(775\) −19835.9 + 19835.9i −0.0330254 + 0.0330254i
\(776\) −7000.10 −0.0116247
\(777\) 1.17644e6i 1.94863i
\(778\) −302060. + 302060.i −0.499039 + 0.499039i
\(779\) 275967.i 0.454760i
\(780\) 0 0
\(781\) 57689.0 0.0945782
\(782\) −373857. 373857.i −0.611353 0.611353i
\(783\) 676422. 1.10330
\(784\) 80.9111i 0.000131636i
\(785\) −3604.17 3604.17i −0.00584879 0.00584879i
\(786\) 49032.4 + 49032.4i 0.0793666 + 0.0793666i
\(787\) 705380. 705380.i 1.13887 1.13887i 0.150216 0.988653i \(-0.452003\pi\)
0.988653 0.150216i \(-0.0479968\pi\)
\(788\) 125574. 125574.i 0.202231 0.202231i
\(789\) −234732. −0.377066
\(790\) 219339.i 0.351448i
\(791\) 292316. 292316.i 0.467197 0.467197i
\(792\) 49200.8i 0.0784371i
\(793\) 0 0
\(794\) −403477. −0.639996
\(795\) 5670.05 + 5670.05i 0.00897124 + 0.00897124i
\(796\) 29888.1 0.0471706
\(797\) 28611.8i 0.0450432i −0.999746 0.0225216i \(-0.992831\pi\)
0.999746 0.0225216i \(-0.00716945\pi\)
\(798\) 274751. + 274751.i 0.431454 + 0.431454i
\(799\) 216358. + 216358.i 0.338907 + 0.338907i
\(800\) −35284.0 + 35284.0i −0.0551313 + 0.0551313i
\(801\) −17913.5 + 17913.5i −0.0279200 + 0.0279200i
\(802\) −524814. −0.815937
\(803\) 127894.i 0.198344i
\(804\) 217074. 217074.i 0.335812 0.335812i
\(805\) 1.05927e6i 1.63461i
\(806\) 0 0
\(807\) 409610. 0.628960
\(808\) 823384. + 823384.i 1.26119 + 1.26119i
\(809\) −349664. −0.534261 −0.267131 0.963660i \(-0.586076\pi\)
−0.267131 + 0.963660i \(0.586076\pi\)
\(810\) 343959.i 0.524248i
\(811\) 765373. + 765373.i 1.16367 + 1.16367i 0.983665 + 0.180009i \(0.0576127\pi\)
0.180009 + 0.983665i \(0.442387\pi\)
\(812\) 322910. + 322910.i 0.489744 + 0.489744i
\(813\) −153612. + 153612.i −0.232404 + 0.232404i
\(814\) −419619. + 419619.i −0.633296 + 0.633296i
\(815\) −130744. −0.196837
\(816\) 575.104i 0.000863706i
\(817\) −609233. + 609233.i −0.912724 + 0.912724i
\(818\) 303261.i 0.453220i
\(819\) 0 0
\(820\) 184526. 0.274429
\(821\) −223350. 223350.i −0.331360 0.331360i 0.521743 0.853103i \(-0.325282\pi\)
−0.853103 + 0.521743i \(0.825282\pi\)
\(822\) 513320. 0.759704
\(823\) 546927.i 0.807477i −0.914874 0.403738i \(-0.867711\pi\)
0.914874 0.403738i \(-0.132289\pi\)
\(824\) 564894. + 564894.i 0.831980 + 0.831980i
\(825\) 26505.9 + 26505.9i 0.0389435 + 0.0389435i
\(826\) −107651. + 107651.i −0.157782 + 0.157782i
\(827\) 322764. 322764.i 0.471926 0.471926i −0.430612 0.902537i \(-0.641702\pi\)
0.902537 + 0.430612i \(0.141702\pi\)
\(828\) −71464.6 −0.104239
\(829\) 378171.i 0.550274i 0.961405 + 0.275137i \(0.0887233\pi\)
−0.961405 + 0.275137i \(0.911277\pi\)
\(830\) 215269. 215269.i 0.312482 0.312482i
\(831\) 448732.i 0.649808i
\(832\) 0 0
\(833\) 76157.5 0.109755
\(834\) −23443.6 23443.6i −0.0337049 0.0337049i
\(835\) 549750. 0.788483
\(836\) 317763.i 0.454664i
\(837\) −310318. 310318.i −0.442951 0.442951i
\(838\) 398871. + 398871.i 0.567995 + 0.567995i
\(839\) 708994. 708994.i 1.00721 1.00721i 0.00723336 0.999974i \(-0.497698\pi\)
0.999974 0.00723336i \(-0.00230247\pi\)
\(840\) −480742. + 480742.i −0.681323 + 0.681323i
\(841\) 80523.2 0.113849
\(842\) 103530.i 0.146030i
\(843\) 752608. 752608.i 1.05904 1.05904i
\(844\) 755903.i 1.06116i
\(845\) 0 0
\(846\) −25510.0 −0.0356427
\(847\) −237961. 237961.i −0.331695 0.331695i
\(848\) −10.5097 −1.46150e−5
\(849\) 514006.i 0.713104i
\(850\) 21458.5 + 21458.5i 0.0297003 + 0.0297003i
\(851\) −1.59495e6 1.59495e6i −2.20236 2.20236i
\(852\) −38029.4 + 38029.4i −0.0523890 + 0.0523890i
\(853\) −743379. + 743379.i −1.02167 + 1.02167i −0.0219142 + 0.999760i \(0.506976\pi\)
−0.999760 + 0.0219142i \(0.993024\pi\)
\(854\) −619363. −0.849239
\(855\) 72572.1i 0.0992745i
\(856\) −423688. + 423688.i −0.578227 + 0.578227i
\(857\) 424271.i 0.577672i 0.957379 + 0.288836i \(0.0932683\pi\)
−0.957379 + 0.288836i \(0.906732\pi\)
\(858\) 0 0
\(859\) 396196. 0.536938 0.268469 0.963288i \(-0.413482\pi\)
0.268469 + 0.963288i \(0.413482\pi\)
\(860\) −407364. 407364.i −0.550790 0.550790i
\(861\) −343831. −0.463809
\(862\) 353963.i 0.476368i
\(863\) −908405. 908405.i −1.21971 1.21971i −0.967732 0.251982i \(-0.918918\pi\)
−0.251982 0.967732i \(-0.581082\pi\)
\(864\) −551993. 551993.i −0.739445 0.739445i
\(865\) 602202. 602202.i 0.804840 0.804840i
\(866\) 354222. 354222.i 0.472324 0.472324i
\(867\) −169796. −0.225886
\(868\) 296278.i 0.393243i
\(869\) 236340. 236340.i 0.312966 0.312966i
\(870\) 448205.i 0.592159i
\(871\) 0 0
\(872\) −501991. −0.660180
\(873\) 658.295 + 658.295i 0.000863758 + 0.000863758i
\(874\) −744983. −0.975267
\(875\) 840854.i 1.09826i
\(876\) −84309.6 84309.6i −0.109867 0.109867i
\(877\) 139989. + 139989.i 0.182009 + 0.182009i 0.792231 0.610222i \(-0.208920\pi\)
−0.610222 + 0.792231i \(0.708920\pi\)
\(878\) 10401.2 10401.2i 0.0134926 0.0134926i
\(879\) −403591. + 403591.i −0.522353 + 0.522353i
\(880\) 581.207 0.000750525
\(881\) 1.25593e6i 1.61813i −0.587717 0.809066i \(-0.699973\pi\)
0.587717 0.809066i \(-0.300027\pi\)
\(882\) −4489.73 + 4489.73i −0.00577143 + 0.00577143i
\(883\) 781993.i 1.00296i −0.865171 0.501478i \(-0.832790\pi\)
0.865171 0.501478i \(-0.167210\pi\)
\(884\) 0 0
\(885\) 242249. 0.309297
\(886\) −43986.3 43986.3i −0.0560338 0.0560338i
\(887\) −903167. −1.14794 −0.573972 0.818875i \(-0.694598\pi\)
−0.573972 + 0.818875i \(0.694598\pi\)
\(888\) 1.44772e6i 1.83594i
\(889\) 695384. + 695384.i 0.879875 + 0.879875i
\(890\) −124863. 124863.i −0.157636 0.157636i
\(891\) −370620. + 370620.i −0.466846 + 0.466846i
\(892\) 133053. 133053.i 0.167223 0.167223i
\(893\) 431136. 0.540644
\(894\) 165391.i 0.206937i
\(895\) 835692. 835692.i 1.04328 1.04328i
\(896\) 527570.i 0.657150i
\(897\) 0 0
\(898\) −500340. −0.620458
\(899\) −361416. 361416.i −0.447186 0.447186i
\(900\) 4101.90 0.00506407
\(901\) 9892.24i 0.0121855i
\(902\) −122639. 122639.i −0.150736 0.150736i
\(903\) 759052. + 759052.i 0.930885 + 0.930885i
\(904\) −359722. + 359722.i −0.440179 + 0.440179i
\(905\) 772112. 772112.i 0.942721 0.942721i
\(906\) −390079. −0.475222
\(907\) 286766.i 0.348589i 0.984694 + 0.174294i \(0.0557644\pi\)
−0.984694 + 0.174294i \(0.944236\pi\)
\(908\) −26518.6 + 26518.6i −0.0321646 + 0.0321646i
\(909\) 154863.i 0.187422i
\(910\) 0 0
\(911\) 463939. 0.559016 0.279508 0.960143i \(-0.409829\pi\)
0.279508 + 0.960143i \(0.409829\pi\)
\(912\) 573.004 + 573.004i 0.000688918 + 0.000688918i
\(913\) 463909. 0.556533
\(914\) 77221.2i 0.0924367i
\(915\) 696883. + 696883.i 0.832373 + 0.832373i
\(916\) −567487. 567487.i −0.676340 0.676340i
\(917\) 121188. 121188.i 0.144119 0.144119i
\(918\) −335702. + 335702.i −0.398354 + 0.398354i
\(919\) −827217. −0.979464 −0.489732 0.871873i \(-0.662905\pi\)
−0.489732 + 0.871873i \(0.662905\pi\)
\(920\) 1.30352e6i 1.54008i
\(921\) −480767. + 480767.i −0.566781 + 0.566781i
\(922\) 130303.i 0.153283i
\(923\) 0 0
\(924\) −395905. −0.463711
\(925\) 91546.2 + 91546.2i 0.106993 + 0.106993i
\(926\) −285475. −0.332925
\(927\) 106246.i 0.123639i
\(928\) −642886. 642886.i −0.746515 0.746515i
\(929\) 895025. + 895025.i 1.03706 + 1.03706i 0.999286 + 0.0377735i \(0.0120265\pi\)
0.0377735 + 0.999286i \(0.487973\pi\)
\(930\) 205620. 205620.i 0.237739 0.237739i
\(931\) 75879.4 75879.4i 0.0875436 0.0875436i
\(932\) 64086.5 0.0737793
\(933\) 201356.i 0.231314i
\(934\) 467013. 467013.i 0.535347 0.535347i
\(935\) 547061.i 0.625766i
\(936\) 0 0
\(937\) −134570. −0.153275 −0.0766374 0.997059i \(-0.524418\pi\)
−0.0766374 + 0.997059i \(0.524418\pi\)
\(938\) 330931. + 330931.i 0.376125 + 0.376125i
\(939\) −734403. −0.832920
\(940\) 288280.i 0.326256i
\(941\) −211534. 211534.i −0.238891 0.238891i 0.577500 0.816391i \(-0.304028\pi\)
−0.816391 + 0.577500i \(0.804028\pi\)
\(942\) −3158.17 3158.17i −0.00355904 0.00355904i
\(943\) 466146. 466146.i 0.524201 0.524201i
\(944\) −224.510 + 224.510i −0.000251937 + 0.000251937i
\(945\) 951160. 1.06510
\(946\) 541485.i 0.605068i
\(947\) 1.12230e6 1.12230e6i 1.25144 1.25144i 0.296368 0.955074i \(-0.404224\pi\)
0.955074 0.296368i \(-0.0957756\pi\)
\(948\) 311597.i 0.346718i
\(949\) 0 0
\(950\) 42760.2 0.0473797
\(951\) −922622. 922622.i −1.02015 1.02015i
\(952\) −838725. −0.925435
\(953\) 252952.i 0.278517i 0.990256 + 0.139259i \(0.0444720\pi\)
−0.990256 + 0.139259i \(0.955528\pi\)
\(954\) −583.179 583.179i −0.000640775 0.000640775i
\(955\) 323677. + 323677.i 0.354899 + 0.354899i
\(956\) 340703. 340703.i 0.372787 0.372787i
\(957\) −482946. + 482946.i −0.527321 + 0.527321i
\(958\) −259575. −0.282835
\(959\) 1.26872e6i 1.37952i
\(960\) 365138. 365138.i 0.396200 0.396200i
\(961\) 591912.i 0.640930i
\(962\) 0 0
\(963\) 79687.8 0.0859289
\(964\) −49917.6 49917.6i −0.0537155 0.0537155i
\(965\) 620882. 0.666736
\(966\) 928185.i 0.994672i
\(967\) 422826. + 422826.i 0.452177 + 0.452177i 0.896077 0.443899i \(-0.146405\pi\)
−0.443899 + 0.896077i \(0.646405\pi\)
\(968\) 292833. + 292833.i 0.312514 + 0.312514i
\(969\) 539339. 539339.i 0.574400 0.574400i
\(970\) −4588.55 + 4588.55i −0.00487677 + 0.00487677i
\(971\) −1.47528e6 −1.56472 −0.782360 0.622826i \(-0.785984\pi\)
−0.782360 + 0.622826i \(0.785984\pi\)
\(972\) 122242.i 0.129386i
\(973\) −57943.1 + 57943.1i −0.0612035 + 0.0612035i
\(974\) 421141.i 0.443925i
\(975\) 0 0
\(976\) −1291.70 −0.00135601
\(977\) −222446. 222446.i −0.233043 0.233043i 0.580919 0.813962i \(-0.302693\pi\)
−0.813962 + 0.580919i \(0.802693\pi\)
\(978\) −114565. −0.119777
\(979\) 269083.i 0.280751i
\(980\) 50736.9 + 50736.9i 0.0528289 + 0.0528289i
\(981\) 47207.6 + 47207.6i 0.0490539 + 0.0490539i
\(982\) −56978.7 + 56978.7i −0.0590867 + 0.0590867i
\(983\) −262323. + 262323.i −0.271475 + 0.271475i −0.829694 0.558219i \(-0.811485\pi\)
0.558219 + 0.829694i \(0.311485\pi\)
\(984\) 423115. 0.436987
\(985\) 430797.i 0.444018i
\(986\) −390980. + 390980.i −0.402162 + 0.402162i
\(987\) 537159.i 0.551402i
\(988\) 0 0
\(989\) −2.05815e6 −2.10419
\(990\) 32251.0 + 32251.0i 0.0329058 + 0.0329058i
\(991\) 1.14616e6 1.16707 0.583536 0.812087i \(-0.301669\pi\)
0.583536 + 0.812087i \(0.301669\pi\)
\(992\) 589866.i 0.599418i
\(993\) 591837. + 591837.i 0.600210 + 0.600210i
\(994\) −57976.0 57976.0i −0.0586780 0.0586780i
\(995\) 51267.4 51267.4i 0.0517839 0.0517839i
\(996\) −305815. + 305815.i −0.308277 + 0.308277i
\(997\) 507329. 0.510387 0.255193 0.966890i \(-0.417861\pi\)
0.255193 + 0.966890i \(0.417861\pi\)
\(998\) 137655.i 0.138208i
\(999\) −1.43217e6 + 1.43217e6i −1.43504 + 1.43504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.5.d.c.99.6 16
13.5 odd 4 inner 169.5.d.c.70.6 16
13.7 odd 12 13.5.f.a.2.3 16
13.8 odd 4 169.5.d.d.70.3 16
13.10 even 6 13.5.f.a.7.3 yes 16
13.12 even 2 169.5.d.d.99.3 16
39.20 even 12 117.5.bd.c.28.2 16
39.23 odd 6 117.5.bd.c.46.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.5.f.a.2.3 16 13.7 odd 12
13.5.f.a.7.3 yes 16 13.10 even 6
117.5.bd.c.28.2 16 39.20 even 12
117.5.bd.c.46.2 16 39.23 odd 6
169.5.d.c.70.6 16 13.5 odd 4 inner
169.5.d.c.99.6 16 1.1 even 1 trivial
169.5.d.d.70.3 16 13.8 odd 4
169.5.d.d.99.3 16 13.12 even 2