Properties

Label 169.5.d.c.70.7
Level $169$
Weight $5$
Character 169.70
Analytic conductor $17.470$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,5,Mod(70,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.70"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 169.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.4695237612\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 152 x^{14} + 9190 x^{12} + 285720 x^{10} + 4862025 x^{8} + 43573680 x^{6} + 169417008 x^{4} + \cdots + 3779136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2}\cdot 13^{2} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 70.7
Root \(-3.98977i\) of defining polynomial
Character \(\chi\) \(=\) 169.70
Dual form 169.5.d.c.99.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.03282 - 4.03282i) q^{2} +8.56159 q^{3} -16.5272i q^{4} +(29.3294 - 29.3294i) q^{5} +(34.5273 - 34.5273i) q^{6} +(33.5543 + 33.5543i) q^{7} +(-2.12627 - 2.12627i) q^{8} -7.69920 q^{9} -236.560i q^{10} +(-31.3041 - 31.3041i) q^{11} -141.499i q^{12} +270.637 q^{14} +(251.106 - 251.106i) q^{15} +247.286 q^{16} +237.462i q^{17} +(-31.0495 + 31.0495i) q^{18} +(-348.888 + 348.888i) q^{19} +(-484.734 - 484.734i) q^{20} +(287.279 + 287.279i) q^{21} -252.488 q^{22} -298.164i q^{23} +(-18.2042 - 18.2042i) q^{24} -1095.43i q^{25} -759.406 q^{27} +(554.561 - 554.561i) q^{28} -371.384 q^{29} -2025.33i q^{30} +(-625.946 + 625.946i) q^{31} +(1031.28 - 1031.28i) q^{32} +(-268.013 - 268.013i) q^{33} +(957.641 + 957.641i) q^{34} +1968.26 q^{35} +127.247i q^{36} +(-540.096 - 540.096i) q^{37} +2814.01i q^{38} -124.724 q^{40} +(-491.434 + 491.434i) q^{41} +2317.08 q^{42} -1126.26i q^{43} +(-517.371 + 517.371i) q^{44} +(-225.813 + 225.813i) q^{45} +(-1202.44 - 1202.44i) q^{46} +(-609.937 - 609.937i) q^{47} +2117.16 q^{48} -149.212i q^{49} +(-4417.66 - 4417.66i) q^{50} +2033.05i q^{51} +897.855 q^{53} +(-3062.55 + 3062.55i) q^{54} -1836.26 q^{55} -142.691i q^{56} +(-2987.04 + 2987.04i) q^{57} +(-1497.72 + 1497.72i) q^{58} +(351.769 + 351.769i) q^{59} +(-4150.10 - 4150.10i) q^{60} +248.429 q^{61} +5048.65i q^{62} +(-258.342 - 258.342i) q^{63} -4361.35i q^{64} -2161.69 q^{66} +(1319.92 - 1319.92i) q^{67} +3924.59 q^{68} -2552.76i q^{69} +(7937.63 - 7937.63i) q^{70} +(-2121.75 + 2121.75i) q^{71} +(16.3705 + 16.3705i) q^{72} +(6818.40 + 6818.40i) q^{73} -4356.22 q^{74} -9378.61i q^{75} +(5766.16 + 5766.16i) q^{76} -2100.78i q^{77} +2503.91 q^{79} +(7252.76 - 7252.76i) q^{80} -5878.09 q^{81} +3963.73i q^{82} +(-7971.73 + 7971.73i) q^{83} +(4747.92 - 4747.92i) q^{84} +(6964.62 + 6964.62i) q^{85} +(-4541.98 - 4541.98i) q^{86} -3179.64 q^{87} +133.122i q^{88} +(10252.7 + 10252.7i) q^{89} +1821.33i q^{90} -4927.83 q^{92} +(-5359.09 + 5359.09i) q^{93} -4919.53 q^{94} +20465.4i q^{95} +(8829.40 - 8829.40i) q^{96} +(5238.81 - 5238.81i) q^{97} +(-601.744 - 601.744i) q^{98} +(241.017 + 241.017i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{3} - 8 q^{5} + 128 q^{6} - 56 q^{7} - 90 q^{8} + 328 q^{9} - 500 q^{11} + 808 q^{14} - 844 q^{15} - 460 q^{16} - 2434 q^{18} - 1712 q^{19} - 838 q^{20} + 1076 q^{21} + 3048 q^{22}+ \cdots + 21632 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.03282 4.03282i 1.00820 1.00820i 0.00823842 0.999966i \(-0.497378\pi\)
0.999966 0.00823842i \(-0.00262240\pi\)
\(3\) 8.56159 0.951288 0.475644 0.879638i \(-0.342215\pi\)
0.475644 + 0.879638i \(0.342215\pi\)
\(4\) 16.5272i 1.03295i
\(5\) 29.3294 29.3294i 1.17318 1.17318i 0.191728 0.981448i \(-0.438591\pi\)
0.981448 0.191728i \(-0.0614093\pi\)
\(6\) 34.5273 34.5273i 0.959092 0.959092i
\(7\) 33.5543 + 33.5543i 0.684783 + 0.684783i 0.961074 0.276291i \(-0.0891055\pi\)
−0.276291 + 0.961074i \(0.589105\pi\)
\(8\) −2.12627 2.12627i −0.0332229 0.0332229i
\(9\) −7.69920 −0.0950518
\(10\) 236.560i 2.36560i
\(11\) −31.3041 31.3041i −0.258712 0.258712i 0.565818 0.824530i \(-0.308560\pi\)
−0.824530 + 0.565818i \(0.808560\pi\)
\(12\) 141.499i 0.982635i
\(13\) 0 0
\(14\) 270.637 1.38080
\(15\) 251.106 251.106i 1.11603 1.11603i
\(16\) 247.286 0.965962
\(17\) 237.462i 0.821668i 0.911710 + 0.410834i \(0.134762\pi\)
−0.911710 + 0.410834i \(0.865238\pi\)
\(18\) −31.0495 + 31.0495i −0.0958317 + 0.0958317i
\(19\) −348.888 + 348.888i −0.966449 + 0.966449i −0.999455 0.0330058i \(-0.989492\pi\)
0.0330058 + 0.999455i \(0.489492\pi\)
\(20\) −484.734 484.734i −1.21184 1.21184i
\(21\) 287.279 + 287.279i 0.651425 + 0.651425i
\(22\) −252.488 −0.521669
\(23\) 298.164i 0.563638i −0.959468 0.281819i \(-0.909062\pi\)
0.959468 0.281819i \(-0.0909377\pi\)
\(24\) −18.2042 18.2042i −0.0316045 0.0316045i
\(25\) 1095.43i 1.75269i
\(26\) 0 0
\(27\) −759.406 −1.04171
\(28\) 554.561 554.561i 0.707348 0.707348i
\(29\) −371.384 −0.441598 −0.220799 0.975319i \(-0.570866\pi\)
−0.220799 + 0.975319i \(0.570866\pi\)
\(30\) 2025.33i 2.25037i
\(31\) −625.946 + 625.946i −0.651348 + 0.651348i −0.953318 0.301969i \(-0.902356\pi\)
0.301969 + 0.953318i \(0.402356\pi\)
\(32\) 1031.28 1031.28i 1.00711 1.00711i
\(33\) −268.013 268.013i −0.246109 0.246109i
\(34\) 957.641 + 957.641i 0.828409 + 0.828409i
\(35\) 1968.26 1.60674
\(36\) 127.247i 0.0981840i
\(37\) −540.096 540.096i −0.394518 0.394518i 0.481776 0.876294i \(-0.339992\pi\)
−0.876294 + 0.481776i \(0.839992\pi\)
\(38\) 2814.01i 1.94876i
\(39\) 0 0
\(40\) −124.724 −0.0779527
\(41\) −491.434 + 491.434i −0.292346 + 0.292346i −0.838006 0.545660i \(-0.816279\pi\)
0.545660 + 0.838006i \(0.316279\pi\)
\(42\) 2317.08 1.31354
\(43\) 1126.26i 0.609116i −0.952494 0.304558i \(-0.901491\pi\)
0.952494 0.304558i \(-0.0985087\pi\)
\(44\) −517.371 + 517.371i −0.267237 + 0.267237i
\(45\) −225.813 + 225.813i −0.111513 + 0.111513i
\(46\) −1202.44 1202.44i −0.568262 0.568262i
\(47\) −609.937 609.937i −0.276114 0.276114i 0.555441 0.831556i \(-0.312549\pi\)
−0.831556 + 0.555441i \(0.812549\pi\)
\(48\) 2117.16 0.918907
\(49\) 149.212i 0.0621457i
\(50\) −4417.66 4417.66i −1.76707 1.76707i
\(51\) 2033.05i 0.781642i
\(52\) 0 0
\(53\) 897.855 0.319635 0.159818 0.987147i \(-0.448909\pi\)
0.159818 + 0.987147i \(0.448909\pi\)
\(54\) −3062.55 + 3062.55i −1.05026 + 1.05026i
\(55\) −1836.26 −0.607029
\(56\) 142.691i 0.0455009i
\(57\) −2987.04 + 2987.04i −0.919371 + 0.919371i
\(58\) −1497.72 + 1497.72i −0.445221 + 0.445221i
\(59\) 351.769 + 351.769i 0.101054 + 0.101054i 0.755826 0.654772i \(-0.227235\pi\)
−0.654772 + 0.755826i \(0.727235\pi\)
\(60\) −4150.10 4150.10i −1.15280 1.15280i
\(61\) 248.429 0.0667640 0.0333820 0.999443i \(-0.489372\pi\)
0.0333820 + 0.999443i \(0.489372\pi\)
\(62\) 5048.65i 1.31338i
\(63\) −258.342 258.342i −0.0650898 0.0650898i
\(64\) 4361.35i 1.06478i
\(65\) 0 0
\(66\) −2161.69 −0.496257
\(67\) 1319.92 1319.92i 0.294034 0.294034i −0.544638 0.838672i \(-0.683333\pi\)
0.838672 + 0.544638i \(0.183333\pi\)
\(68\) 3924.59 0.848744
\(69\) 2552.76i 0.536182i
\(70\) 7937.63 7937.63i 1.61992 1.61992i
\(71\) −2121.75 + 2121.75i −0.420898 + 0.420898i −0.885513 0.464615i \(-0.846193\pi\)
0.464615 + 0.885513i \(0.346193\pi\)
\(72\) 16.3705 + 16.3705i 0.00315790 + 0.00315790i
\(73\) 6818.40 + 6818.40i 1.27949 + 1.27949i 0.940953 + 0.338536i \(0.109932\pi\)
0.338536 + 0.940953i \(0.390068\pi\)
\(74\) −4356.22 −0.795510
\(75\) 9378.61i 1.66731i
\(76\) 5766.16 + 5766.16i 0.998296 + 0.998296i
\(77\) 2100.78i 0.354323i
\(78\) 0 0
\(79\) 2503.91 0.401204 0.200602 0.979673i \(-0.435710\pi\)
0.200602 + 0.979673i \(0.435710\pi\)
\(80\) 7252.76 7252.76i 1.13324 1.13324i
\(81\) −5878.09 −0.895913
\(82\) 3963.73i 0.589489i
\(83\) −7971.73 + 7971.73i −1.15717 + 1.15717i −0.172086 + 0.985082i \(0.555051\pi\)
−0.985082 + 0.172086i \(0.944949\pi\)
\(84\) 4747.92 4747.92i 0.672891 0.672891i
\(85\) 6964.62 + 6964.62i 0.963961 + 0.963961i
\(86\) −4541.98 4541.98i −0.614113 0.614113i
\(87\) −3179.64 −0.420087
\(88\) 133.122i 0.0171903i
\(89\) 10252.7 + 10252.7i 1.29437 + 1.29437i 0.932056 + 0.362314i \(0.118013\pi\)
0.362314 + 0.932056i \(0.381987\pi\)
\(90\) 1821.33i 0.224855i
\(91\) 0 0
\(92\) −4927.83 −0.582211
\(93\) −5359.09 + 5359.09i −0.619619 + 0.619619i
\(94\) −4919.53 −0.556760
\(95\) 20465.4i 2.26763i
\(96\) 8829.40 8829.40i 0.958051 0.958051i
\(97\) 5238.81 5238.81i 0.556787 0.556787i −0.371605 0.928391i \(-0.621192\pi\)
0.928391 + 0.371605i \(0.121192\pi\)
\(98\) −601.744 601.744i −0.0626555 0.0626555i
\(99\) 241.017 + 241.017i 0.0245910 + 0.0245910i
\(100\) −18104.4 −1.81044
\(101\) 246.646i 0.0241786i 0.999927 + 0.0120893i \(0.00384824\pi\)
−0.999927 + 0.0120893i \(0.996152\pi\)
\(102\) 8198.93 + 8198.93i 0.788055 + 0.788055i
\(103\) 6944.63i 0.654598i −0.944921 0.327299i \(-0.893862\pi\)
0.944921 0.327299i \(-0.106138\pi\)
\(104\) 0 0
\(105\) 16851.4 1.52847
\(106\) 3620.89 3620.89i 0.322258 0.322258i
\(107\) −1489.08 −0.130062 −0.0650311 0.997883i \(-0.520715\pi\)
−0.0650311 + 0.997883i \(0.520715\pi\)
\(108\) 12550.9i 1.07604i
\(109\) 12063.2 12063.2i 1.01534 1.01534i 0.0154553 0.999881i \(-0.495080\pi\)
0.999881 0.0154553i \(-0.00491977\pi\)
\(110\) −7405.31 + 7405.31i −0.612009 + 0.612009i
\(111\) −4624.08 4624.08i −0.375300 0.375300i
\(112\) 8297.53 + 8297.53i 0.661474 + 0.661474i
\(113\) 9077.08 0.710869 0.355434 0.934701i \(-0.384333\pi\)
0.355434 + 0.934701i \(0.384333\pi\)
\(114\) 24092.4i 1.85383i
\(115\) −8744.99 8744.99i −0.661247 0.661247i
\(116\) 6137.95i 0.456150i
\(117\) 0 0
\(118\) 2837.24 0.203766
\(119\) −7967.88 + 7967.88i −0.562664 + 0.562664i
\(120\) −1067.84 −0.0741554
\(121\) 12681.1i 0.866137i
\(122\) 1001.87 1001.87i 0.0673118 0.0673118i
\(123\) −4207.45 + 4207.45i −0.278105 + 0.278105i
\(124\) 10345.2 + 10345.2i 0.672812 + 0.672812i
\(125\) −13797.4 13797.4i −0.883033 0.883033i
\(126\) −2083.69 −0.131248
\(127\) 258.250i 0.0160115i −0.999968 0.00800577i \(-0.997452\pi\)
0.999968 0.00800577i \(-0.00254834\pi\)
\(128\) −1088.06 1088.06i −0.0664097 0.0664097i
\(129\) 9642.53i 0.579444i
\(130\) 0 0
\(131\) −19031.9 −1.10902 −0.554511 0.832177i \(-0.687095\pi\)
−0.554511 + 0.832177i \(0.687095\pi\)
\(132\) −4429.51 + 4429.51i −0.254219 + 0.254219i
\(133\) −23413.4 −1.32362
\(134\) 10646.0i 0.592893i
\(135\) −22272.9 + 22272.9i −1.22211 + 1.22211i
\(136\) 504.907 504.907i 0.0272982 0.0272982i
\(137\) 23164.2 + 23164.2i 1.23418 + 1.23418i 0.962345 + 0.271830i \(0.0876288\pi\)
0.271830 + 0.962345i \(0.412371\pi\)
\(138\) −10294.8 10294.8i −0.540581 0.540581i
\(139\) 18205.8 0.942283 0.471141 0.882058i \(-0.343842\pi\)
0.471141 + 0.882058i \(0.343842\pi\)
\(140\) 32529.9i 1.65969i
\(141\) −5222.03 5222.03i −0.262664 0.262664i
\(142\) 17113.2i 0.848702i
\(143\) 0 0
\(144\) −1903.91 −0.0918164
\(145\) −10892.5 + 10892.5i −0.518072 + 0.518072i
\(146\) 54994.7 2.57997
\(147\) 1277.49i 0.0591184i
\(148\) −8926.29 + 8926.29i −0.407519 + 0.407519i
\(149\) 7548.87 7548.87i 0.340024 0.340024i −0.516352 0.856376i \(-0.672711\pi\)
0.856376 + 0.516352i \(0.172711\pi\)
\(150\) −37822.2 37822.2i −1.68099 1.68099i
\(151\) −6497.73 6497.73i −0.284976 0.284976i 0.550114 0.835090i \(-0.314584\pi\)
−0.835090 + 0.550114i \(0.814584\pi\)
\(152\) 1483.66 0.0642165
\(153\) 1828.27i 0.0781010i
\(154\) −8472.06 8472.06i −0.357230 0.357230i
\(155\) 36717.2i 1.52829i
\(156\) 0 0
\(157\) −41173.9 −1.67041 −0.835203 0.549941i \(-0.814650\pi\)
−0.835203 + 0.549941i \(0.814650\pi\)
\(158\) 10097.8 10097.8i 0.404496 0.404496i
\(159\) 7687.06 0.304065
\(160\) 60493.7i 2.36303i
\(161\) 10004.7 10004.7i 0.385969 0.385969i
\(162\) −23705.3 + 23705.3i −0.903264 + 0.903264i
\(163\) 184.071 + 184.071i 0.00692805 + 0.00692805i 0.710562 0.703634i \(-0.248441\pi\)
−0.703634 + 0.710562i \(0.748441\pi\)
\(164\) 8122.04 + 8122.04i 0.301980 + 0.301980i
\(165\) −15721.3 −0.577459
\(166\) 64297.1i 2.33332i
\(167\) −30782.0 30782.0i −1.10373 1.10373i −0.993956 0.109777i \(-0.964986\pi\)
−0.109777 0.993956i \(-0.535014\pi\)
\(168\) 1221.66i 0.0432845i
\(169\) 0 0
\(170\) 56174.1 1.94374
\(171\) 2686.16 2686.16i 0.0918628 0.0918628i
\(172\) −18613.9 −0.629188
\(173\) 26014.5i 0.869206i 0.900622 + 0.434603i \(0.143111\pi\)
−0.900622 + 0.434603i \(0.856889\pi\)
\(174\) −12822.9 + 12822.9i −0.423533 + 0.423533i
\(175\) 36756.4 36756.4i 1.20021 1.20021i
\(176\) −7741.07 7741.07i −0.249906 0.249906i
\(177\) 3011.70 + 3011.70i 0.0961315 + 0.0961315i
\(178\) 82694.6 2.60998
\(179\) 34894.6i 1.08906i −0.838742 0.544530i \(-0.816708\pi\)
0.838742 0.544530i \(-0.183292\pi\)
\(180\) 3732.07 + 3732.07i 0.115187 + 0.115187i
\(181\) 38784.9i 1.18387i −0.805984 0.591937i \(-0.798363\pi\)
0.805984 0.591937i \(-0.201637\pi\)
\(182\) 0 0
\(183\) 2126.95 0.0635118
\(184\) −633.977 + 633.977i −0.0187257 + 0.0187257i
\(185\) −31681.4 −0.925679
\(186\) 43224.5i 1.24941i
\(187\) 7433.54 7433.54i 0.212575 0.212575i
\(188\) −10080.6 + 10080.6i −0.285213 + 0.285213i
\(189\) −25481.4 25481.4i −0.713344 0.713344i
\(190\) 82533.1 + 82533.1i 2.28624 + 2.28624i
\(191\) −47264.1 −1.29558 −0.647791 0.761818i \(-0.724307\pi\)
−0.647791 + 0.761818i \(0.724307\pi\)
\(192\) 37340.1i 1.01292i
\(193\) 15720.9 + 15720.9i 0.422049 + 0.422049i 0.885909 0.463859i \(-0.153536\pi\)
−0.463859 + 0.885909i \(0.653536\pi\)
\(194\) 42254.3i 1.12271i
\(195\) 0 0
\(196\) −2466.06 −0.0641935
\(197\) 3331.72 3331.72i 0.0858492 0.0858492i −0.662878 0.748727i \(-0.730665\pi\)
0.748727 + 0.662878i \(0.230665\pi\)
\(198\) 1943.95 0.0495856
\(199\) 67470.8i 1.70377i −0.523732 0.851883i \(-0.675461\pi\)
0.523732 0.851883i \(-0.324539\pi\)
\(200\) −2329.17 + 2329.17i −0.0582293 + 0.0582293i
\(201\) 11300.6 11300.6i 0.279711 0.279711i
\(202\) 994.679 + 994.679i 0.0243770 + 0.0243770i
\(203\) −12461.5 12461.5i −0.302399 0.302399i
\(204\) 33600.7 0.807399
\(205\) 28826.9i 0.685947i
\(206\) −28006.4 28006.4i −0.659969 0.659969i
\(207\) 2295.63i 0.0535748i
\(208\) 0 0
\(209\) 21843.3 0.500063
\(210\) 67958.7 67958.7i 1.54101 1.54101i
\(211\) 34787.0 0.781363 0.390681 0.920526i \(-0.372239\pi\)
0.390681 + 0.920526i \(0.372239\pi\)
\(212\) 14839.1i 0.330168i
\(213\) −18165.5 + 18165.5i −0.400395 + 0.400395i
\(214\) −6005.20 + 6005.20i −0.131129 + 0.131129i
\(215\) −33032.4 33032.4i −0.714600 0.714600i
\(216\) 1614.70 + 1614.70i 0.0346086 + 0.0346086i
\(217\) −42006.4 −0.892064
\(218\) 97297.4i 2.04733i
\(219\) 58376.3 + 58376.3i 1.21716 + 1.21716i
\(220\) 30348.4i 0.627032i
\(221\) 0 0
\(222\) −37296.1 −0.756759
\(223\) 22684.9 22684.9i 0.456171 0.456171i −0.441225 0.897396i \(-0.645456\pi\)
0.897396 + 0.441225i \(0.145456\pi\)
\(224\) 69207.9 1.37930
\(225\) 8433.92i 0.166596i
\(226\) 36606.2 36606.2i 0.716701 0.716701i
\(227\) −45810.4 + 45810.4i −0.889021 + 0.889021i −0.994429 0.105408i \(-0.966385\pi\)
0.105408 + 0.994429i \(0.466385\pi\)
\(228\) 49367.5 + 49367.5i 0.949667 + 0.949667i
\(229\) −54161.9 54161.9i −1.03282 1.03282i −0.999443 0.0333737i \(-0.989375\pi\)
−0.0333737 0.999443i \(-0.510625\pi\)
\(230\) −70533.9 −1.33334
\(231\) 17986.0i 0.337063i
\(232\) 789.661 + 789.661i 0.0146712 + 0.0146712i
\(233\) 61901.5i 1.14022i −0.821568 0.570111i \(-0.806900\pi\)
0.821568 0.570111i \(-0.193100\pi\)
\(234\) 0 0
\(235\) −35778.2 −0.647862
\(236\) 5813.77 5813.77i 0.104384 0.104384i
\(237\) 21437.5 0.381660
\(238\) 64266.0i 1.13456i
\(239\) −34967.7 + 34967.7i −0.612169 + 0.612169i −0.943511 0.331342i \(-0.892499\pi\)
0.331342 + 0.943511i \(0.392499\pi\)
\(240\) 62095.1 62095.1i 1.07804 1.07804i
\(241\) −1194.63 1194.63i −0.0205684 0.0205684i 0.696748 0.717316i \(-0.254630\pi\)
−0.717316 + 0.696748i \(0.754630\pi\)
\(242\) −51140.6 51140.6i −0.873243 0.873243i
\(243\) 11186.1 0.189438
\(244\) 4105.84i 0.0689640i
\(245\) −4376.29 4376.29i −0.0729078 0.0729078i
\(246\) 33935.8i 0.560774i
\(247\) 0 0
\(248\) 2661.85 0.0432794
\(249\) −68250.7 + 68250.7i −1.10080 + 1.10080i
\(250\) −111285. −1.78056
\(251\) 45604.5i 0.723870i −0.932203 0.361935i \(-0.882116\pi\)
0.932203 0.361935i \(-0.117884\pi\)
\(252\) −4269.67 + 4269.67i −0.0672347 + 0.0672347i
\(253\) −9333.77 + 9333.77i −0.145820 + 0.145820i
\(254\) −1041.48 1041.48i −0.0161429 0.0161429i
\(255\) 59628.2 + 59628.2i 0.917004 + 0.917004i
\(256\) 61005.8 0.930874
\(257\) 13013.4i 0.197027i 0.995136 + 0.0985134i \(0.0314087\pi\)
−0.995136 + 0.0985134i \(0.968591\pi\)
\(258\) −38886.6 38886.6i −0.584198 0.584198i
\(259\) 36245.1i 0.540319i
\(260\) 0 0
\(261\) 2859.36 0.0419747
\(262\) −76752.2 + 76752.2i −1.11812 + 1.11812i
\(263\) −19388.3 −0.280304 −0.140152 0.990130i \(-0.544759\pi\)
−0.140152 + 0.990130i \(0.544759\pi\)
\(264\) 1139.73i 0.0163529i
\(265\) 26333.6 26333.6i 0.374988 0.374988i
\(266\) −94422.1 + 94422.1i −1.33447 + 1.33447i
\(267\) 87779.4 + 87779.4i 1.23132 + 1.23132i
\(268\) −21814.6 21814.6i −0.303723 0.303723i
\(269\) 21911.2 0.302804 0.151402 0.988472i \(-0.451621\pi\)
0.151402 + 0.988472i \(0.451621\pi\)
\(270\) 179645.i 2.46427i
\(271\) −30254.4 30254.4i −0.411956 0.411956i 0.470464 0.882419i \(-0.344087\pi\)
−0.882419 + 0.470464i \(0.844087\pi\)
\(272\) 58721.0i 0.793699i
\(273\) 0 0
\(274\) 186834. 2.48860
\(275\) −34291.4 + 34291.4i −0.453440 + 0.453440i
\(276\) −42190.1 −0.553850
\(277\) 96564.2i 1.25851i 0.777199 + 0.629255i \(0.216640\pi\)
−0.777199 + 0.629255i \(0.783360\pi\)
\(278\) 73420.8 73420.8i 0.950013 0.950013i
\(279\) 4819.28 4819.28i 0.0619118 0.0619118i
\(280\) −4185.04 4185.04i −0.0533806 0.0533806i
\(281\) −50030.4 50030.4i −0.633609 0.633609i 0.315362 0.948971i \(-0.397874\pi\)
−0.948971 + 0.315362i \(0.897874\pi\)
\(282\) −42119.0 −0.529639
\(283\) 147680.i 1.84394i 0.387256 + 0.921972i \(0.373423\pi\)
−0.387256 + 0.921972i \(0.626577\pi\)
\(284\) 35066.6 + 35066.6i 0.434768 + 0.434768i
\(285\) 175216.i 2.15717i
\(286\) 0 0
\(287\) −32979.5 −0.400387
\(288\) −7940.03 + 7940.03i −0.0957276 + 0.0957276i
\(289\) 27132.8 0.324862
\(290\) 87854.7i 1.04465i
\(291\) 44852.5 44852.5i 0.529664 0.529664i
\(292\) 112689. 112689.i 1.32165 1.32165i
\(293\) −7052.35 7052.35i −0.0821483 0.0821483i 0.664839 0.746987i \(-0.268500\pi\)
−0.746987 + 0.664839i \(0.768500\pi\)
\(294\) −5151.88 5151.88i −0.0596034 0.0596034i
\(295\) 20634.4 0.237108
\(296\) 2296.77i 0.0262141i
\(297\) 23772.5 + 23772.5i 0.269502 + 0.269502i
\(298\) 60886.4i 0.685627i
\(299\) 0 0
\(300\) −155003. −1.72225
\(301\) 37790.8 37790.8i 0.417112 0.417112i
\(302\) −52408.3 −0.574628
\(303\) 2111.68i 0.0230008i
\(304\) −86275.2 + 86275.2i −0.933553 + 0.933553i
\(305\) 7286.27 7286.27i 0.0783259 0.0783259i
\(306\) −7373.07 7373.07i −0.0787418 0.0787418i
\(307\) 58686.7 + 58686.7i 0.622677 + 0.622677i 0.946215 0.323538i \(-0.104872\pi\)
−0.323538 + 0.946215i \(0.604872\pi\)
\(308\) −34720.1 −0.365998
\(309\) 59457.1i 0.622711i
\(310\) 148074. + 148074.i 1.54083 + 1.54083i
\(311\) 38813.8i 0.401296i 0.979663 + 0.200648i \(0.0643048\pi\)
−0.979663 + 0.200648i \(0.935695\pi\)
\(312\) 0 0
\(313\) −98727.3 −1.00774 −0.503870 0.863779i \(-0.668091\pi\)
−0.503870 + 0.863779i \(0.668091\pi\)
\(314\) −166047. + 166047.i −1.68411 + 1.68411i
\(315\) −15154.0 −0.152724
\(316\) 41382.8i 0.414425i
\(317\) −49531.4 + 49531.4i −0.492904 + 0.492904i −0.909220 0.416316i \(-0.863321\pi\)
0.416316 + 0.909220i \(0.363321\pi\)
\(318\) 31000.5 31000.5i 0.306560 0.306560i
\(319\) 11625.8 + 11625.8i 0.114247 + 0.114247i
\(320\) −127916. 127916.i −1.24918 1.24918i
\(321\) −12748.9 −0.123727
\(322\) 80694.4i 0.778272i
\(323\) −82847.7 82847.7i −0.794100 0.794100i
\(324\) 97148.6i 0.925436i
\(325\) 0 0
\(326\) 1484.65 0.0139698
\(327\) 103280. 103280.i 0.965876 0.965876i
\(328\) 2089.84 0.0194252
\(329\) 40932.1i 0.378157i
\(330\) −63401.2 + 63401.2i −0.582197 + 0.582197i
\(331\) −47550.4 + 47550.4i −0.434009 + 0.434009i −0.889990 0.455981i \(-0.849289\pi\)
0.455981 + 0.889990i \(0.349289\pi\)
\(332\) 131751. + 131751.i 1.19530 + 1.19530i
\(333\) 4158.30 + 4158.30i 0.0374997 + 0.0374997i
\(334\) −248277. −2.22558
\(335\) 77424.9i 0.689907i
\(336\) 71040.0 + 71040.0i 0.629252 + 0.629252i
\(337\) 104833.i 0.923075i −0.887121 0.461538i \(-0.847298\pi\)
0.887121 0.461538i \(-0.152702\pi\)
\(338\) 0 0
\(339\) 77714.3 0.676241
\(340\) 115106. 115106.i 0.995726 0.995726i
\(341\) 39189.3 0.337023
\(342\) 21665.6i 0.185233i
\(343\) 85570.7 85570.7i 0.727339 0.727339i
\(344\) −2394.72 + 2394.72i −0.0202366 + 0.0202366i
\(345\) −74871.0 74871.0i −0.629036 0.629036i
\(346\) 104912. + 104912.i 0.876338 + 0.876338i
\(347\) 152401. 1.26569 0.632846 0.774277i \(-0.281887\pi\)
0.632846 + 0.774277i \(0.281887\pi\)
\(348\) 52550.6i 0.433930i
\(349\) 150748. + 150748.i 1.23766 + 1.23766i 0.960956 + 0.276699i \(0.0892407\pi\)
0.276699 + 0.960956i \(0.410759\pi\)
\(350\) 296464.i 2.42011i
\(351\) 0 0
\(352\) −64566.6 −0.521102
\(353\) 146322. 146322.i 1.17425 1.17425i 0.193066 0.981186i \(-0.438157\pi\)
0.981186 0.193066i \(-0.0618431\pi\)
\(354\) 24291.3 0.193840
\(355\) 124459.i 0.987575i
\(356\) 169449. 169449.i 1.33702 1.33702i
\(357\) −68217.7 + 68217.7i −0.535255 + 0.535255i
\(358\) −140723. 140723.i −1.09799 1.09799i
\(359\) 100758. + 100758.i 0.781795 + 0.781795i 0.980134 0.198339i \(-0.0635546\pi\)
−0.198339 + 0.980134i \(0.563555\pi\)
\(360\) 960.277 0.00740954
\(361\) 113125.i 0.868049i
\(362\) −156412. 156412.i −1.19359 1.19359i
\(363\) 108570.i 0.823945i
\(364\) 0 0
\(365\) 399959. 3.00213
\(366\) 8577.58 8577.58i 0.0640328 0.0640328i
\(367\) −100859. −0.748832 −0.374416 0.927261i \(-0.622157\pi\)
−0.374416 + 0.927261i \(0.622157\pi\)
\(368\) 73731.9i 0.544452i
\(369\) 3783.65 3783.65i 0.0277880 0.0277880i
\(370\) −127765. + 127765.i −0.933274 + 0.933274i
\(371\) 30126.9 + 30126.9i 0.218881 + 0.218881i
\(372\) 88571.0 + 88571.0i 0.640038 + 0.640038i
\(373\) 82341.2 0.591834 0.295917 0.955214i \(-0.404375\pi\)
0.295917 + 0.955214i \(0.404375\pi\)
\(374\) 59956.2i 0.428638i
\(375\) −118128. 118128.i −0.840018 0.840018i
\(376\) 2593.78i 0.0183467i
\(377\) 0 0
\(378\) −205523. −1.43839
\(379\) −25664.7 + 25664.7i −0.178673 + 0.178673i −0.790777 0.612104i \(-0.790323\pi\)
0.612104 + 0.790777i \(0.290323\pi\)
\(380\) 338236. 2.34236
\(381\) 2211.03i 0.0152316i
\(382\) −190608. + 190608.i −1.30621 + 1.30621i
\(383\) 108692. 108692.i 0.740972 0.740972i −0.231793 0.972765i \(-0.574459\pi\)
0.972765 + 0.231793i \(0.0744592\pi\)
\(384\) −9315.50 9315.50i −0.0631748 0.0631748i
\(385\) −61614.6 61614.6i −0.415683 0.415683i
\(386\) 126799. 0.851024
\(387\) 8671.26i 0.0578976i
\(388\) −86583.0 86583.0i −0.575134 0.575134i
\(389\) 15749.1i 0.104077i −0.998645 0.0520387i \(-0.983428\pi\)
0.998645 0.0520387i \(-0.0165719\pi\)
\(390\) 0 0
\(391\) 70802.7 0.463123
\(392\) −317.264 + 317.264i −0.00206466 + 0.00206466i
\(393\) −162943. −1.05500
\(394\) 26872.4i 0.173107i
\(395\) 73438.3 73438.3i 0.470683 0.470683i
\(396\) 3983.34 3983.34i 0.0254014 0.0254014i
\(397\) −144465. 144465.i −0.916605 0.916605i 0.0801760 0.996781i \(-0.474452\pi\)
−0.996781 + 0.0801760i \(0.974452\pi\)
\(398\) −272098. 272098.i −1.71774 1.71774i
\(399\) −200456. −1.25914
\(400\) 270884.i 1.69303i
\(401\) −83242.2 83242.2i −0.517672 0.517672i 0.399194 0.916866i \(-0.369290\pi\)
−0.916866 + 0.399194i \(0.869290\pi\)
\(402\) 91146.5i 0.564011i
\(403\) 0 0
\(404\) 4076.38 0.0249754
\(405\) −172401. + 172401.i −1.05106 + 1.05106i
\(406\) −100510. −0.609759
\(407\) 33814.4i 0.204133i
\(408\) 4322.81 4322.81i 0.0259684 0.0259684i
\(409\) 42949.5 42949.5i 0.256751 0.256751i −0.566980 0.823731i \(-0.691888\pi\)
0.823731 + 0.566980i \(0.191888\pi\)
\(410\) 116254. + 116254.i 0.691575 + 0.691575i
\(411\) 198323. + 198323.i 1.17406 + 1.17406i
\(412\) −114776. −0.676169
\(413\) 23606.8i 0.138400i
\(414\) 9257.85 + 9257.85i 0.0540144 + 0.0540144i
\(415\) 467612.i 2.71512i
\(416\) 0 0
\(417\) 155871. 0.896382
\(418\) 88089.9 88089.9i 0.504166 0.504166i
\(419\) 325761. 1.85554 0.927770 0.373152i \(-0.121723\pi\)
0.927770 + 0.373152i \(0.121723\pi\)
\(420\) 278507.i 1.57884i
\(421\) −84760.5 + 84760.5i −0.478222 + 0.478222i −0.904563 0.426341i \(-0.859802\pi\)
0.426341 + 0.904563i \(0.359802\pi\)
\(422\) 140290. 140290.i 0.787773 0.787773i
\(423\) 4696.03 + 4696.03i 0.0262452 + 0.0262452i
\(424\) −1909.08 1909.08i −0.0106192 0.0106192i
\(425\) 260123. 1.44013
\(426\) 146516.i 0.807360i
\(427\) 8335.87 + 8335.87i 0.0457188 + 0.0457188i
\(428\) 24610.4i 0.134348i
\(429\) 0 0
\(430\) −266427. −1.44093
\(431\) 220269. 220269.i 1.18576 1.18576i 0.207537 0.978227i \(-0.433455\pi\)
0.978227 0.207537i \(-0.0665447\pi\)
\(432\) −187791. −1.00625
\(433\) 65965.0i 0.351834i −0.984405 0.175917i \(-0.943711\pi\)
0.984405 0.175917i \(-0.0562890\pi\)
\(434\) −169404. + 169404.i −0.899383 + 0.899383i
\(435\) −93256.9 + 93256.9i −0.492836 + 0.492836i
\(436\) −199371. 199371.i −1.04879 1.04879i
\(437\) 104026. + 104026.i 0.544727 + 0.544727i
\(438\) 470842. 2.45430
\(439\) 159531.i 0.827784i 0.910326 + 0.413892i \(0.135831\pi\)
−0.910326 + 0.413892i \(0.864169\pi\)
\(440\) 3904.38 + 3904.38i 0.0201673 + 0.0201673i
\(441\) 1148.81i 0.00590706i
\(442\) 0 0
\(443\) −372577. −1.89849 −0.949246 0.314535i \(-0.898151\pi\)
−0.949246 + 0.314535i \(0.898151\pi\)
\(444\) −76423.2 + 76423.2i −0.387668 + 0.387668i
\(445\) 601411. 3.03705
\(446\) 182968.i 0.919828i
\(447\) 64630.3 64630.3i 0.323460 0.323460i
\(448\) 146342. 146342.i 0.729145 0.729145i
\(449\) −51939.7 51939.7i −0.257636 0.257636i 0.566456 0.824092i \(-0.308314\pi\)
−0.824092 + 0.566456i \(0.808314\pi\)
\(450\) 34012.5 + 34012.5i 0.167963 + 0.167963i
\(451\) 30767.8 0.151267
\(452\) 150019.i 0.734294i
\(453\) −55630.9 55630.9i −0.271094 0.271094i
\(454\) 369490.i 1.79263i
\(455\) 0 0
\(456\) 12702.5 0.0610884
\(457\) −227956. + 227956.i −1.09149 + 1.09149i −0.0961183 + 0.995370i \(0.530643\pi\)
−0.995370 + 0.0961183i \(0.969357\pi\)
\(458\) −436850. −2.08258
\(459\) 180330.i 0.855939i
\(460\) −144530. + 144530.i −0.683036 + 0.683036i
\(461\) −122668. + 122668.i −0.577202 + 0.577202i −0.934131 0.356929i \(-0.883824\pi\)
0.356929 + 0.934131i \(0.383824\pi\)
\(462\) −72534.3 72534.3i −0.339828 0.339828i
\(463\) −88275.9 88275.9i −0.411794 0.411794i 0.470569 0.882363i \(-0.344049\pi\)
−0.882363 + 0.470569i \(0.844049\pi\)
\(464\) −91838.1 −0.426567
\(465\) 314358.i 1.45385i
\(466\) −249637. 249637.i −1.14958 1.14958i
\(467\) 2610.83i 0.0119714i −0.999982 0.00598570i \(-0.998095\pi\)
0.999982 0.00598570i \(-0.00190532\pi\)
\(468\) 0 0
\(469\) 88578.0 0.402699
\(470\) −144287. + 144287.i −0.653177 + 0.653177i
\(471\) −352514. −1.58904
\(472\) 1495.91i 0.00671462i
\(473\) −35256.4 + 35256.4i −0.157585 + 0.157585i
\(474\) 86453.5 86453.5i 0.384792 0.384792i
\(475\) 382182. + 382182.i 1.69388 + 1.69388i
\(476\) 131687. + 131687.i 0.581205 + 0.581205i
\(477\) −6912.76 −0.0303819
\(478\) 282037.i 1.23438i
\(479\) 244175. + 244175.i 1.06422 + 1.06422i 0.997791 + 0.0664278i \(0.0211602\pi\)
0.0664278 + 0.997791i \(0.478840\pi\)
\(480\) 517922.i 2.24793i
\(481\) 0 0
\(482\) −9635.48 −0.0414743
\(483\) 85656.2 85656.2i 0.367168 0.367168i
\(484\) −209584. −0.894678
\(485\) 307302.i 1.30642i
\(486\) 45111.6 45111.6i 0.190992 0.190992i
\(487\) −219809. + 219809.i −0.926805 + 0.926805i −0.997498 0.0706935i \(-0.977479\pi\)
0.0706935 + 0.997498i \(0.477479\pi\)
\(488\) −528.226 528.226i −0.00221809 0.00221809i
\(489\) 1575.94 + 1575.94i 0.00659057 + 0.00659057i
\(490\) −35297.6 −0.147012
\(491\) 16431.7i 0.0681583i −0.999419 0.0340791i \(-0.989150\pi\)
0.999419 0.0340791i \(-0.0108498\pi\)
\(492\) 69537.6 + 69537.6i 0.287269 + 0.287269i
\(493\) 88189.5i 0.362847i
\(494\) 0 0
\(495\) 14137.7 0.0576992
\(496\) −154788. + 154788.i −0.629177 + 0.629177i
\(497\) −142388. −0.576447
\(498\) 550485.i 2.21966i
\(499\) −165805. + 165805.i −0.665883 + 0.665883i −0.956760 0.290877i \(-0.906053\pi\)
0.290877 + 0.956760i \(0.406053\pi\)
\(500\) −228033. + 228033.i −0.912131 + 0.912131i
\(501\) −263543. 263543.i −1.04997 1.04997i
\(502\) −183915. 183915.i −0.729809 0.729809i
\(503\) −305660. −1.20810 −0.604050 0.796946i \(-0.706447\pi\)
−0.604050 + 0.796946i \(0.706447\pi\)
\(504\) 1098.61i 0.00432495i
\(505\) 7233.99 + 7233.99i 0.0283658 + 0.0283658i
\(506\) 75282.8i 0.294032i
\(507\) 0 0
\(508\) −4268.16 −0.0165392
\(509\) 98134.2 98134.2i 0.378778 0.378778i −0.491883 0.870661i \(-0.663691\pi\)
0.870661 + 0.491883i \(0.163691\pi\)
\(510\) 480939. 1.84906
\(511\) 457574.i 1.75234i
\(512\) 263434. 263434.i 1.00492 1.00492i
\(513\) 264948. 264948.i 1.00676 1.00676i
\(514\) 52480.8 + 52480.8i 0.198643 + 0.198643i
\(515\) −203682. 203682.i −0.767959 0.767959i
\(516\) −159364. −0.598538
\(517\) 38187.1i 0.142868i
\(518\) −146170. 146170.i −0.544752 0.544752i
\(519\) 222725.i 0.826865i
\(520\) 0 0
\(521\) −82330.3 −0.303308 −0.151654 0.988434i \(-0.548460\pi\)
−0.151654 + 0.988434i \(0.548460\pi\)
\(522\) 11531.3 11531.3i 0.0423191 0.0423191i
\(523\) 352506. 1.28873 0.644367 0.764717i \(-0.277121\pi\)
0.644367 + 0.764717i \(0.277121\pi\)
\(524\) 314545.i 1.14557i
\(525\) 314693. 314693.i 1.14174 1.14174i
\(526\) −78189.6 + 78189.6i −0.282603 + 0.282603i
\(527\) −148638. 148638.i −0.535192 0.535192i
\(528\) −66275.9 66275.9i −0.237732 0.237732i
\(529\) 190939. 0.682312
\(530\) 212397.i 0.756130i
\(531\) −2708.34 2708.34i −0.00960537 0.00960537i
\(532\) 386959.i 1.36723i
\(533\) 0 0
\(534\) 707997. 2.48284
\(535\) −43673.9 + 43673.9i −0.152586 + 0.152586i
\(536\) −5613.00 −0.0195373
\(537\) 298753.i 1.03601i
\(538\) 88363.7 88363.7i 0.305288 0.305288i
\(539\) −4670.94 + 4670.94i −0.0160778 + 0.0160778i
\(540\) 368110. + 368110.i 1.26238 + 1.26238i
\(541\) −148284. 148284.i −0.506642 0.506642i 0.406852 0.913494i \(-0.366626\pi\)
−0.913494 + 0.406852i \(0.866626\pi\)
\(542\) −244021. −0.830671
\(543\) 332060.i 1.12620i
\(544\) 244890. + 244890.i 0.827509 + 0.827509i
\(545\) 707613.i 2.38234i
\(546\) 0 0
\(547\) −103249. −0.345075 −0.172537 0.985003i \(-0.555197\pi\)
−0.172537 + 0.985003i \(0.555197\pi\)
\(548\) 382841. 382841.i 1.27484 1.27484i
\(549\) −1912.70 −0.00634604
\(550\) 276582.i 0.914321i
\(551\) 129571. 129571.i 0.426782 0.426782i
\(552\) −5427.85 + 5427.85i −0.0178135 + 0.0178135i
\(553\) 84017.2 + 84017.2i 0.274737 + 0.274737i
\(554\) 389426. + 389426.i 1.26883 + 1.26883i
\(555\) −271243. −0.880587
\(556\) 300892.i 0.973333i
\(557\) 107744. + 107744.i 0.347281 + 0.347281i 0.859096 0.511815i \(-0.171027\pi\)
−0.511815 + 0.859096i \(0.671027\pi\)
\(558\) 38870.6i 0.124840i
\(559\) 0 0
\(560\) 486723. 1.55205
\(561\) 63642.9 63642.9i 0.202220 0.202220i
\(562\) −403527. −1.27762
\(563\) 522914.i 1.64973i 0.565328 + 0.824866i \(0.308750\pi\)
−0.565328 + 0.824866i \(0.691250\pi\)
\(564\) −86305.7 + 86305.7i −0.271320 + 0.271320i
\(565\) 266226. 266226.i 0.833974 0.833974i
\(566\) 595565. + 595565.i 1.85907 + 1.85907i
\(567\) −197235. 197235.i −0.613506 0.613506i
\(568\) 9022.80 0.0279669
\(569\) 315341.i 0.973994i −0.873404 0.486997i \(-0.838092\pi\)
0.873404 0.486997i \(-0.161908\pi\)
\(570\) 706615. + 706615.i 2.17487 + 2.17487i
\(571\) 6380.52i 0.0195697i −0.999952 0.00978484i \(-0.996885\pi\)
0.999952 0.00978484i \(-0.00311466\pi\)
\(572\) 0 0
\(573\) −404656. −1.23247
\(574\) −133000. + 133000.i −0.403672 + 0.403672i
\(575\) −326618. −0.987880
\(576\) 33578.9i 0.101210i
\(577\) 78575.8 78575.8i 0.236014 0.236014i −0.579184 0.815197i \(-0.696629\pi\)
0.815197 + 0.579184i \(0.196629\pi\)
\(578\) 109422. 109422.i 0.327528 0.327528i
\(579\) 134596. + 134596.i 0.401490 + 0.401490i
\(580\) 180022. + 180022.i 0.535144 + 0.535144i
\(581\) −534972. −1.58482
\(582\) 361764.i 1.06802i
\(583\) −28106.6 28106.6i −0.0826933 0.0826933i
\(584\) 28995.5i 0.0850167i
\(585\) 0 0
\(586\) −56881.7 −0.165645
\(587\) −84677.0 + 84677.0i −0.245748 + 0.245748i −0.819223 0.573475i \(-0.805595\pi\)
0.573475 + 0.819223i \(0.305595\pi\)
\(588\) −21113.4 −0.0610665
\(589\) 436770.i 1.25899i
\(590\) 83214.6 83214.6i 0.239054 0.239054i
\(591\) 28524.8 28524.8i 0.0816672 0.0816672i
\(592\) −133558. 133558.i −0.381090 0.381090i
\(593\) −86441.2 86441.2i −0.245817 0.245817i 0.573435 0.819251i \(-0.305611\pi\)
−0.819251 + 0.573435i \(0.805611\pi\)
\(594\) 191741. 0.543427
\(595\) 467386.i 1.32021i
\(596\) −124762. 124762.i −0.351228 0.351228i
\(597\) 577657.i 1.62077i
\(598\) 0 0
\(599\) −256983. −0.716228 −0.358114 0.933678i \(-0.616580\pi\)
−0.358114 + 0.933678i \(0.616580\pi\)
\(600\) −19941.4 + 19941.4i −0.0553928 + 0.0553928i
\(601\) −344146. −0.952781 −0.476391 0.879234i \(-0.658055\pi\)
−0.476391 + 0.879234i \(0.658055\pi\)
\(602\) 304806.i 0.841068i
\(603\) −10162.3 + 10162.3i −0.0279485 + 0.0279485i
\(604\) −107390. + 107390.i −0.294366 + 0.294366i
\(605\) −371929. 371929.i −1.01613 1.01613i
\(606\) 8516.03 + 8516.03i 0.0231895 + 0.0231895i
\(607\) −158686. −0.430688 −0.215344 0.976538i \(-0.569087\pi\)
−0.215344 + 0.976538i \(0.569087\pi\)
\(608\) 719603.i 1.94664i
\(609\) −106691. 106691.i −0.287668 0.287668i
\(610\) 58768.4i 0.157937i
\(611\) 0 0
\(612\) −30216.2 −0.0806746
\(613\) 464914. 464914.i 1.23723 1.23723i 0.276105 0.961127i \(-0.410956\pi\)
0.961127 0.276105i \(-0.0890438\pi\)
\(614\) 473345. 1.25557
\(615\) 246804.i 0.652533i
\(616\) −4466.81 + 4466.81i −0.0117716 + 0.0117716i
\(617\) −82086.7 + 82086.7i −0.215627 + 0.215627i −0.806653 0.591026i \(-0.798723\pi\)
0.591026 + 0.806653i \(0.298723\pi\)
\(618\) −239779. 239779.i −0.627820 0.627820i
\(619\) 349306. + 349306.i 0.911644 + 0.911644i 0.996402 0.0847577i \(-0.0270116\pi\)
−0.0847577 + 0.996402i \(0.527012\pi\)
\(620\) 606834. 1.57865
\(621\) 226428.i 0.587147i
\(622\) 156529. + 156529.i 0.404589 + 0.404589i
\(623\) 688046.i 1.77272i
\(624\) 0 0
\(625\) −124696. −0.319221
\(626\) −398149. + 398149.i −1.01601 + 1.01601i
\(627\) 187013. 0.475704
\(628\) 680490.i 1.72545i
\(629\) 128252. 128252.i 0.324163 0.324163i
\(630\) −61113.4 + 61113.4i −0.153977 + 0.153977i
\(631\) −29344.9 29344.9i −0.0737011 0.0737011i 0.669295 0.742996i \(-0.266596\pi\)
−0.742996 + 0.669295i \(0.766596\pi\)
\(632\) −5323.99 5323.99i −0.0133292 0.0133292i
\(633\) 297832. 0.743301
\(634\) 399502.i 0.993896i
\(635\) −7574.33 7574.33i −0.0187844 0.0187844i
\(636\) 127046.i 0.314085i
\(637\) 0 0
\(638\) 93769.8 0.230368
\(639\) 16335.7 16335.7i 0.0400071 0.0400071i
\(640\) −63824.2 −0.155821
\(641\) 74714.1i 0.181839i −0.995858 0.0909194i \(-0.971019\pi\)
0.995858 0.0909194i \(-0.0289806\pi\)
\(642\) −51414.1 + 51414.1i −0.124742 + 0.124742i
\(643\) −464484. + 464484.i −1.12344 + 1.12344i −0.132216 + 0.991221i \(0.542209\pi\)
−0.991221 + 0.132216i \(0.957791\pi\)
\(644\) −165350. 165350.i −0.398688 0.398688i
\(645\) −282810. 282810.i −0.679790 0.679790i
\(646\) −668219. −1.60123
\(647\) 431810.i 1.03153i 0.856729 + 0.515767i \(0.172493\pi\)
−0.856729 + 0.515767i \(0.827507\pi\)
\(648\) 12498.4 + 12498.4i 0.0297648 + 0.0297648i
\(649\) 22023.6i 0.0522877i
\(650\) 0 0
\(651\) −359641. −0.848609
\(652\) 3042.19 3042.19i 0.00715635 0.00715635i
\(653\) −562003. −1.31799 −0.658995 0.752147i \(-0.729018\pi\)
−0.658995 + 0.752147i \(0.729018\pi\)
\(654\) 833020.i 1.94760i
\(655\) −558195. + 558195.i −1.30108 + 1.30108i
\(656\) −121525. + 121525.i −0.282395 + 0.282395i
\(657\) −52496.2 52496.2i −0.121618 0.121618i
\(658\) −165072. 165072.i −0.381259 0.381259i
\(659\) −765929. −1.76367 −0.881835 0.471557i \(-0.843692\pi\)
−0.881835 + 0.471557i \(0.843692\pi\)
\(660\) 259830.i 0.596488i
\(661\) −158559. 158559.i −0.362900 0.362900i 0.501979 0.864880i \(-0.332605\pi\)
−0.864880 + 0.501979i \(0.832605\pi\)
\(662\) 383524.i 0.875139i
\(663\) 0 0
\(664\) 33900.0 0.0768889
\(665\) −686702. + 686702.i −1.55283 + 1.55283i
\(666\) 33539.4 0.0756147
\(667\) 110733.i 0.248901i
\(668\) −508742. + 508742.i −1.14010 + 1.14010i
\(669\) 194219. 194219.i 0.433950 0.433950i
\(670\) −312240. 312240.i −0.695568 0.695568i
\(671\) −7776.84 7776.84i −0.0172726 0.0172726i
\(672\) 592529. 1.31211
\(673\) 532008.i 1.17459i −0.809372 0.587297i \(-0.800192\pi\)
0.809372 0.587297i \(-0.199808\pi\)
\(674\) −422771. 422771.i −0.930649 0.930649i
\(675\) 831875.i 1.82579i
\(676\) 0 0
\(677\) 538896. 1.17578 0.587892 0.808940i \(-0.299958\pi\)
0.587892 + 0.808940i \(0.299958\pi\)
\(678\) 313407. 313407.i 0.681789 0.681789i
\(679\) 351569. 0.762556
\(680\) 29617.3i 0.0640512i
\(681\) −392209. + 392209.i −0.845715 + 0.845715i
\(682\) 158043. 158043.i 0.339788 0.339788i
\(683\) 548460. + 548460.i 1.17572 + 1.17572i 0.980824 + 0.194895i \(0.0624365\pi\)
0.194895 + 0.980824i \(0.437564\pi\)
\(684\) −44394.8 44394.8i −0.0948899 0.0948899i
\(685\) 1.35879e6 2.89581
\(686\) 690182.i 1.46661i
\(687\) −463712. 463712.i −0.982506 0.982506i
\(688\) 278507.i 0.588382i
\(689\) 0 0
\(690\) −603882. −1.26839
\(691\) −468251. + 468251.i −0.980670 + 0.980670i −0.999817 0.0191471i \(-0.993905\pi\)
0.0191471 + 0.999817i \(0.493905\pi\)
\(692\) 429947. 0.897849
\(693\) 16174.3i 0.0336790i
\(694\) 614605. 614605.i 1.27608 1.27608i
\(695\) 533967. 533967.i 1.10546 1.10546i
\(696\) 6760.75 + 6760.75i 0.0139565 + 0.0139565i
\(697\) −116697. 116697.i −0.240211 0.240211i
\(698\) 1.21588e6 2.49562
\(699\) 529975.i 1.08468i
\(700\) −607482. 607482.i −1.23976 1.23976i
\(701\) 263737.i 0.536705i 0.963321 + 0.268352i \(0.0864791\pi\)
−0.963321 + 0.268352i \(0.913521\pi\)
\(702\) 0 0
\(703\) 376866. 0.762564
\(704\) −136528. + 136528.i −0.275472 + 0.275472i
\(705\) −306318. −0.616303
\(706\) 1.18018e6i 2.36777i
\(707\) −8276.05 + 8276.05i −0.0165571 + 0.0165571i
\(708\) 49775.1 49775.1i 0.0992992 0.0992992i
\(709\) 342335. + 342335.i 0.681018 + 0.681018i 0.960230 0.279212i \(-0.0900732\pi\)
−0.279212 + 0.960230i \(0.590073\pi\)
\(710\) 501921. + 501921.i 0.995678 + 0.995678i
\(711\) −19278.1 −0.0381352
\(712\) 43600.0i 0.0860055i
\(713\) 186635. + 186635.i 0.367124 + 0.367124i
\(714\) 550219.i 1.07929i
\(715\) 0 0
\(716\) −576711. −1.12495
\(717\) −299379. + 299379.i −0.582348 + 0.582348i
\(718\) 812681. 1.57642
\(719\) 477053.i 0.922802i −0.887192 0.461401i \(-0.847347\pi\)
0.887192 0.461401i \(-0.152653\pi\)
\(720\) −55840.4 + 55840.4i −0.107717 + 0.107717i
\(721\) 233022. 233022.i 0.448257 0.448257i
\(722\) −456212. 456212.i −0.875171 0.875171i
\(723\) −10228.0 10228.0i −0.0195665 0.0195665i
\(724\) −641007. −1.22289
\(725\) 406825.i 0.773982i
\(726\) −437845. 437845.i −0.830705 0.830705i
\(727\) 1.00958e6i 1.91017i −0.296330 0.955086i \(-0.595763\pi\)
0.296330 0.955086i \(-0.404237\pi\)
\(728\) 0 0
\(729\) 571896. 1.07612
\(730\) 1.61296e6 1.61296e6i 3.02676 3.02676i
\(731\) 267443. 0.500491
\(732\) 35152.5i 0.0656046i
\(733\) 438348. 438348.i 0.815851 0.815851i −0.169653 0.985504i \(-0.554265\pi\)
0.985504 + 0.169653i \(0.0542647\pi\)
\(734\) −406748. + 406748.i −0.754975 + 0.754975i
\(735\) −37468.0 37468.0i −0.0693563 0.0693563i
\(736\) −307491. 307491.i −0.567645 0.567645i
\(737\) −82637.8 −0.152140
\(738\) 30517.5i 0.0560320i
\(739\) 396206. + 396206.i 0.725491 + 0.725491i 0.969718 0.244227i \(-0.0785342\pi\)
−0.244227 + 0.969718i \(0.578534\pi\)
\(740\) 523606.i 0.956183i
\(741\) 0 0
\(742\) 242993. 0.441353
\(743\) 323825. 323825.i 0.586587 0.586587i −0.350118 0.936706i \(-0.613859\pi\)
0.936706 + 0.350118i \(0.113859\pi\)
\(744\) 22789.7 0.0411711
\(745\) 442808.i 0.797816i
\(746\) 332067. 332067.i 0.596689 0.596689i
\(747\) 61375.9 61375.9i 0.109991 0.109991i
\(748\) −122856. 122856.i −0.219580 0.219580i
\(749\) −49965.2 49965.2i −0.0890644 0.0890644i
\(750\) −952774. −1.69382
\(751\) 833642.i 1.47809i −0.673658 0.739043i \(-0.735278\pi\)
0.673658 0.739043i \(-0.264722\pi\)
\(752\) −150829. 150829.i −0.266716 0.266716i
\(753\) 390447.i 0.688608i
\(754\) 0 0
\(755\) −381149. −0.668653
\(756\) −421137. + 421137.i −0.736851 + 0.736851i
\(757\) 299160. 0.522050 0.261025 0.965332i \(-0.415940\pi\)
0.261025 + 0.965332i \(0.415940\pi\)
\(758\) 207002.i 0.360277i
\(759\) −79911.9 + 79911.9i −0.138716 + 0.138716i
\(760\) 43514.8 43514.8i 0.0753373 0.0753373i
\(761\) −332199. 332199.i −0.573627 0.573627i 0.359513 0.933140i \(-0.382943\pi\)
−0.933140 + 0.359513i \(0.882943\pi\)
\(762\) −8916.69 8916.69i −0.0153566 0.0153566i
\(763\) 809546. 1.39057
\(764\) 781146.i 1.33827i
\(765\) −53622.0 53622.0i −0.0916263 0.0916263i
\(766\) 876674.i 1.49410i
\(767\) 0 0
\(768\) 522306. 0.885529
\(769\) −501329. + 501329.i −0.847754 + 0.847754i −0.989853 0.142098i \(-0.954615\pi\)
0.142098 + 0.989853i \(0.454615\pi\)
\(770\) −496961. −0.838187
\(771\) 111416.i 0.187429i
\(772\) 259823. 259823.i 0.435957 0.435957i
\(773\) −266737. + 266737.i −0.446400 + 0.446400i −0.894156 0.447756i \(-0.852223\pi\)
0.447756 + 0.894156i \(0.352223\pi\)
\(774\) 34969.6 + 34969.6i 0.0583726 + 0.0583726i
\(775\) 685679. + 685679.i 1.14161 + 1.14161i
\(776\) −22278.2 −0.0369961
\(777\) 310316.i 0.513998i
\(778\) −63513.2 63513.2i −0.104931 0.104931i
\(779\) 342911.i 0.565075i
\(780\) 0 0
\(781\) 132839. 0.217782
\(782\) 285534. 285534.i 0.466923 0.466923i
\(783\) 282031. 0.460017
\(784\) 36898.0i 0.0600303i
\(785\) −1.20761e6 + 1.20761e6i −1.95968 + 1.95968i
\(786\) −657121. + 657121.i −1.06365 + 1.06365i
\(787\) 282531. + 282531.i 0.456159 + 0.456159i 0.897392 0.441234i \(-0.145459\pi\)
−0.441234 + 0.897392i \(0.645459\pi\)
\(788\) −55064.1 55064.1i −0.0886781 0.0886781i
\(789\) −165995. −0.266649
\(790\) 592327.i 0.949090i
\(791\) 304576. + 304576.i 0.486791 + 0.486791i
\(792\) 1024.93i 0.00163397i
\(793\) 0 0
\(794\) −1.16520e6 −1.84825
\(795\) 225457. 225457.i 0.356722 0.356722i
\(796\) −1.11511e6 −1.75991
\(797\) 577074.i 0.908479i 0.890880 + 0.454240i \(0.150089\pi\)
−0.890880 + 0.454240i \(0.849911\pi\)
\(798\) −808403. + 808403.i −1.26947 + 1.26947i
\(799\) 144837. 144837.i 0.226874 0.226874i
\(800\) −1.12969e6 1.12969e6i −1.76515 1.76515i
\(801\) −78937.6 78937.6i −0.123032 0.123032i
\(802\) −671401. −1.04384
\(803\) 426888.i 0.662038i
\(804\) −186768. 186768.i −0.288928 0.288928i
\(805\) 586865.i 0.905620i
\(806\) 0 0
\(807\) 187594. 0.288053
\(808\) 524.435 524.435i 0.000803284 0.000803284i
\(809\) −88438.0 −0.135127 −0.0675635 0.997715i \(-0.521523\pi\)
−0.0675635 + 0.997715i \(0.521523\pi\)
\(810\) 1.39052e6i 2.11938i
\(811\) 342385. 342385.i 0.520562 0.520562i −0.397179 0.917741i \(-0.630011\pi\)
0.917741 + 0.397179i \(0.130011\pi\)
\(812\) −205955. + 205955.i −0.312363 + 0.312363i
\(813\) −259026. 259026.i −0.391889 0.391889i
\(814\) 136367. + 136367.i 0.205808 + 0.205808i
\(815\) 10797.4 0.0162556
\(816\) 502745.i 0.755036i
\(817\) 392937. + 392937.i 0.588680 + 0.588680i
\(818\) 346415.i 0.517715i
\(819\) 0 0
\(820\) 476430. 0.708551
\(821\) 391227. 391227.i 0.580421 0.580421i −0.354598 0.935019i \(-0.615382\pi\)
0.935019 + 0.354598i \(0.115382\pi\)
\(822\) 1.59960e6 2.36738
\(823\) 328220.i 0.484579i 0.970204 + 0.242290i \(0.0778984\pi\)
−0.970204 + 0.242290i \(0.922102\pi\)
\(824\) −14766.1 + 14766.1i −0.0217476 + 0.0217476i
\(825\) −293589. + 293589.i −0.431352 + 0.431352i
\(826\) 95201.8 + 95201.8i 0.139536 + 0.139536i
\(827\) 440313. + 440313.i 0.643800 + 0.643800i 0.951487 0.307688i \(-0.0995552\pi\)
−0.307688 + 0.951487i \(0.599555\pi\)
\(828\) 37940.4 0.0553402
\(829\) 44855.4i 0.0652687i −0.999467 0.0326344i \(-0.989610\pi\)
0.999467 0.0326344i \(-0.0103897\pi\)
\(830\) 1.88579e6 + 1.88579e6i 2.73740 + 2.73740i
\(831\) 826743.i 1.19720i
\(832\) 0 0
\(833\) 35432.1 0.0510631
\(834\) 628599. 628599.i 0.903736 0.903736i
\(835\) −1.80564e6 −2.58975
\(836\) 361009.i 0.516542i
\(837\) 475347. 475347.i 0.678515 0.678515i
\(838\) 1.31373e6 1.31373e6i 1.87076 1.87076i
\(839\) 449717. + 449717.i 0.638874 + 0.638874i 0.950278 0.311404i \(-0.100799\pi\)
−0.311404 + 0.950278i \(0.600799\pi\)
\(840\) −35830.6 35830.6i −0.0507803 0.0507803i
\(841\) −569355. −0.804991
\(842\) 683647.i 0.964291i
\(843\) −428340. 428340.i −0.602745 0.602745i
\(844\) 574934.i 0.807110i
\(845\) 0 0
\(846\) 37876.4 0.0529210
\(847\) 425506. 425506.i 0.593115 0.593115i
\(848\) 222027. 0.308755
\(849\) 1.26437e6i 1.75412i
\(850\) 1.04903e6 1.04903e6i 1.45194 1.45194i
\(851\) −161037. + 161037.i −0.222365 + 0.222365i
\(852\) 300226. + 300226.i 0.413589 + 0.413589i
\(853\) 467145. + 467145.i 0.642027 + 0.642027i 0.951053 0.309026i \(-0.100003\pi\)
−0.309026 + 0.951053i \(0.600003\pi\)
\(854\) 67234.1 0.0921878
\(855\) 157567.i 0.215543i
\(856\) 3166.19 + 3166.19i 0.00432105 + 0.00432105i
\(857\) 481160.i 0.655131i 0.944829 + 0.327565i \(0.106228\pi\)
−0.944829 + 0.327565i \(0.893772\pi\)
\(858\) 0 0
\(859\) 480348. 0.650983 0.325491 0.945545i \(-0.394470\pi\)
0.325491 + 0.945545i \(0.394470\pi\)
\(860\) −545934. + 545934.i −0.738148 + 0.738148i
\(861\) −282357. −0.380883
\(862\) 1.77661e6i 2.39099i
\(863\) −415207. + 415207.i −0.557497 + 0.557497i −0.928594 0.371097i \(-0.878982\pi\)
0.371097 + 0.928594i \(0.378982\pi\)
\(864\) −783161. + 783161.i −1.04912 + 1.04912i
\(865\) 762989. + 762989.i 1.01973 + 1.01973i
\(866\) −266025. 266025.i −0.354721 0.354721i
\(867\) 232300. 0.309038
\(868\) 694250.i 0.921460i
\(869\) −78382.8 78382.8i −0.103796 0.103796i
\(870\) 752176.i 0.993759i
\(871\) 0 0
\(872\) −51299.2 −0.0674648
\(873\) −40334.6 + 40334.6i −0.0529236 + 0.0529236i
\(874\) 839036. 1.09839
\(875\) 925925.i 1.20937i
\(876\) 964800. 964800.i 1.25727 1.25727i
\(877\) −39229.5 + 39229.5i −0.0510051 + 0.0510051i −0.732149 0.681144i \(-0.761483\pi\)
0.681144 + 0.732149i \(0.261483\pi\)
\(878\) 643361. + 643361.i 0.834576 + 0.834576i
\(879\) −60379.3 60379.3i −0.0781467 0.0781467i
\(880\) −454082. −0.586367
\(881\) 466304.i 0.600783i −0.953816 0.300391i \(-0.902883\pi\)
0.953816 0.300391i \(-0.0971173\pi\)
\(882\) 4632.95 + 4632.95i 0.00595552 + 0.00595552i
\(883\) 280955.i 0.360343i 0.983635 + 0.180171i \(0.0576652\pi\)
−0.983635 + 0.180171i \(0.942335\pi\)
\(884\) 0 0
\(885\) 176663. 0.225558
\(886\) −1.50254e6 + 1.50254e6i −1.91407 + 1.91407i
\(887\) −881569. −1.12049 −0.560246 0.828326i \(-0.689293\pi\)
−0.560246 + 0.828326i \(0.689293\pi\)
\(888\) 19664.0i 0.0249371i
\(889\) 8665.42 8665.42i 0.0109644 0.0109644i
\(890\) 2.42538e6 2.42538e6i 3.06197 3.06197i
\(891\) 184008. + 184008.i 0.231783 + 0.231783i
\(892\) −374919. 374919.i −0.471203 0.471203i
\(893\) 425600. 0.533701
\(894\) 521284.i 0.652228i
\(895\) −1.02344e6 1.02344e6i −1.27766 1.27766i
\(896\) 73018.1i 0.0909525i
\(897\) 0 0
\(898\) −418927. −0.519500
\(899\) 232466. 232466.i 0.287634 0.287634i
\(900\) 139389. 0.172086
\(901\) 213206.i 0.262634i
\(902\) 124081. 124081.i 0.152508 0.152508i
\(903\) 323549. 323549.i 0.396793 0.396793i
\(904\) −19300.3 19300.3i −0.0236171 0.0236171i
\(905\) −1.13754e6 1.13754e6i −1.38889 1.38889i
\(906\) −448699. −0.546636
\(907\) 692963.i 0.842356i 0.906978 + 0.421178i \(0.138383\pi\)
−0.906978 + 0.421178i \(0.861617\pi\)
\(908\) 757119. + 757119.i 0.918316 + 0.918316i
\(909\) 1898.98i 0.00229822i
\(910\) 0 0
\(911\) −1.13827e6 −1.37154 −0.685769 0.727819i \(-0.740534\pi\)
−0.685769 + 0.727819i \(0.740534\pi\)
\(912\) −738653. + 738653.i −0.888077 + 0.888077i
\(913\) 499096. 0.598746
\(914\) 1.83861e6i 2.20089i
\(915\) 62382.1 62382.1i 0.0745105 0.0745105i
\(916\) −895147. + 895147.i −1.06685 + 1.06685i
\(917\) −638603. 638603.i −0.759438 0.759438i
\(918\) −727238. 727238.i −0.862961 0.862961i
\(919\) 1.25828e6 1.48986 0.744930 0.667143i \(-0.232483\pi\)
0.744930 + 0.667143i \(0.232483\pi\)
\(920\) 37188.3i 0.0439371i
\(921\) 502451. + 502451.i 0.592345 + 0.592345i
\(922\) 989392.i 1.16388i
\(923\) 0 0
\(924\) −297259. −0.348170
\(925\) −591636. + 591636.i −0.691467 + 0.691467i
\(926\) −712002. −0.830346
\(927\) 53468.1i 0.0622207i
\(928\) −383001. + 383001.i −0.444738 + 0.444738i
\(929\) 271956. 271956.i 0.315114 0.315114i −0.531773 0.846887i \(-0.678474\pi\)
0.846887 + 0.531773i \(0.178474\pi\)
\(930\) 1.26775e6 + 1.26775e6i 1.46577 + 1.46577i
\(931\) 52058.2 + 52058.2i 0.0600606 + 0.0600606i
\(932\) −1.02306e6 −1.17779
\(933\) 332308.i 0.381748i
\(934\) −10529.0 10529.0i −0.0120696 0.0120696i
\(935\) 436042.i 0.498776i
\(936\) 0 0
\(937\) −310991. −0.354216 −0.177108 0.984191i \(-0.556674\pi\)
−0.177108 + 0.984191i \(0.556674\pi\)
\(938\) 357219. 357219.i 0.406003 0.406003i
\(939\) −845263. −0.958651
\(940\) 591315.i 0.669211i
\(941\) −685037. + 685037.i −0.773633 + 0.773633i −0.978740 0.205107i \(-0.934246\pi\)
0.205107 + 0.978740i \(0.434246\pi\)
\(942\) −1.42162e6 + 1.42162e6i −1.60207 + 1.60207i
\(943\) 146528. + 146528.i 0.164777 + 0.164777i
\(944\) 86987.6 + 86987.6i 0.0976143 + 0.0976143i
\(945\) −1.49471e6 −1.67376
\(946\) 284365.i 0.317757i
\(947\) −700532. 700532.i −0.781139 0.781139i 0.198884 0.980023i \(-0.436268\pi\)
−0.980023 + 0.198884i \(0.936268\pi\)
\(948\) 354302.i 0.394237i
\(949\) 0 0
\(950\) 3.08254e6 3.41556
\(951\) −424068. + 424068.i −0.468893 + 0.468893i
\(952\) 33883.7 0.0373866
\(953\) 981938.i 1.08118i 0.841286 + 0.540590i \(0.181799\pi\)
−0.841286 + 0.540590i \(0.818201\pi\)
\(954\) −27877.9 + 27877.9i −0.0306312 + 0.0306312i
\(955\) −1.38623e6 + 1.38623e6i −1.51995 + 1.51995i
\(956\) 577919. + 577919.i 0.632341 + 0.632341i
\(957\) 99535.7 + 99535.7i 0.108681 + 0.108681i
\(958\) 1.96943e6 2.14590
\(959\) 1.55452e6i 1.69028i
\(960\) −1.09516e6 1.09516e6i −1.18833 1.18833i
\(961\) 139905.i 0.151491i
\(962\) 0 0
\(963\) 11464.7 0.0123627
\(964\) −19744.0 + 19744.0i −0.0212462 + 0.0212462i
\(965\) 922171. 0.990277
\(966\) 690872.i 0.740361i
\(967\) 751098. 751098.i 0.803237 0.803237i −0.180363 0.983600i \(-0.557727\pi\)
0.983600 + 0.180363i \(0.0577273\pi\)
\(968\) −26963.4 + 26963.4i −0.0287756 + 0.0287756i
\(969\) −709308. 709308.i −0.755418 0.755418i
\(970\) −1.23929e6 1.23929e6i −1.31714 1.31714i
\(971\) −373637. −0.396288 −0.198144 0.980173i \(-0.563491\pi\)
−0.198144 + 0.980173i \(0.563491\pi\)
\(972\) 184876.i 0.195680i
\(973\) 610885. + 610885.i 0.645259 + 0.645259i
\(974\) 1.77290e6i 1.86882i
\(975\) 0 0
\(976\) 61433.0 0.0644915
\(977\) −22942.7 + 22942.7i −0.0240356 + 0.0240356i −0.719022 0.694987i \(-0.755410\pi\)
0.694987 + 0.719022i \(0.255410\pi\)
\(978\) 12711.0 0.0132893
\(979\) 641904.i 0.669737i
\(980\) −72328.0 + 72328.0i −0.0753103 + 0.0753103i
\(981\) −92877.0 + 92877.0i −0.0965095 + 0.0965095i
\(982\) −66265.9 66265.9i −0.0687175 0.0687175i
\(983\) −7991.46 7991.46i −0.00827026 0.00827026i 0.702960 0.711230i \(-0.251861\pi\)
−0.711230 + 0.702960i \(0.751861\pi\)
\(984\) 17892.3 0.0184789
\(985\) 195435.i 0.201432i
\(986\) −355652. 355652.i −0.365824 0.365824i
\(987\) 350444.i 0.359736i
\(988\) 0 0
\(989\) −335809. −0.343321
\(990\) 57015.0 57015.0i 0.0581726 0.0581726i
\(991\) 1.30914e6 1.33303 0.666515 0.745491i \(-0.267785\pi\)
0.666515 + 0.745491i \(0.267785\pi\)
\(992\) 1.29105e6i 1.31196i
\(993\) −407107. + 407107.i −0.412867 + 0.412867i
\(994\) −574223. + 574223.i −0.581177 + 0.581177i
\(995\) −1.97888e6 1.97888e6i −1.99882 1.99882i
\(996\) 1.12799e6 + 1.12799e6i 1.13707 + 1.13707i
\(997\) −624154. −0.627916 −0.313958 0.949437i \(-0.601655\pi\)
−0.313958 + 0.949437i \(0.601655\pi\)
\(998\) 1.33733e6i 1.34269i
\(999\) 410152. + 410152.i 0.410973 + 0.410973i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.5.d.c.70.7 16
13.2 odd 12 13.5.f.a.7.4 yes 16
13.4 even 6 13.5.f.a.2.4 16
13.5 odd 4 169.5.d.d.99.2 16
13.8 odd 4 inner 169.5.d.c.99.7 16
13.12 even 2 169.5.d.d.70.2 16
39.2 even 12 117.5.bd.c.46.1 16
39.17 odd 6 117.5.bd.c.28.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.5.f.a.2.4 16 13.4 even 6
13.5.f.a.7.4 yes 16 13.2 odd 12
117.5.bd.c.28.1 16 39.17 odd 6
117.5.bd.c.46.1 16 39.2 even 12
169.5.d.c.70.7 16 1.1 even 1 trivial
169.5.d.c.99.7 16 13.8 odd 4 inner
169.5.d.d.70.2 16 13.12 even 2
169.5.d.d.99.2 16 13.5 odd 4