Properties

Label 169.14.a.e.1.9
Level $169$
Weight $14$
Character 169.1
Self dual yes
Analytic conductor $181.220$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,14,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,65] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(181.220269929\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5 x^{13} - 83806 x^{12} + 371578 x^{11} + 2652253571 x^{10} - 14037350343 x^{9} + \cdots - 28\!\cdots\!92 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: multiple of \( 2^{24}\cdot 3^{3}\cdot 5\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-28.9774\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+33.9774 q^{2} -1595.69 q^{3} -7037.54 q^{4} -28205.3 q^{5} -54217.3 q^{6} -354344. q^{7} -517460. q^{8} +951897. q^{9} -958341. q^{10} -4.97041e6 q^{11} +1.12297e7 q^{12} -1.20397e7 q^{14} +4.50068e7 q^{15} +4.00696e7 q^{16} -1.07108e8 q^{17} +3.23430e7 q^{18} -3.23912e8 q^{19} +1.98496e8 q^{20} +5.65422e8 q^{21} -1.68882e8 q^{22} -5.25984e8 q^{23} +8.25705e8 q^{24} -4.25166e8 q^{25} +1.02511e9 q^{27} +2.49371e9 q^{28} -1.20291e9 q^{29} +1.52921e9 q^{30} +3.17736e9 q^{31} +5.60049e9 q^{32} +7.93123e9 q^{33} -3.63924e9 q^{34} +9.99436e9 q^{35} -6.69901e9 q^{36} +1.84885e10 q^{37} -1.10057e10 q^{38} +1.45951e10 q^{40} +2.17511e10 q^{41} +1.92116e10 q^{42} +5.15859e10 q^{43} +3.49795e10 q^{44} -2.68485e10 q^{45} -1.78716e10 q^{46} +1.84645e10 q^{47} -6.39385e10 q^{48} +2.86705e10 q^{49} -1.44461e10 q^{50} +1.70910e11 q^{51} -1.97464e11 q^{53} +3.48306e10 q^{54} +1.40192e11 q^{55} +1.83359e11 q^{56} +5.16862e11 q^{57} -4.08719e10 q^{58} +1.45498e11 q^{59} -3.16737e11 q^{60} +6.36102e11 q^{61} +1.07958e11 q^{62} -3.37299e11 q^{63} -1.37960e11 q^{64} +2.69482e11 q^{66} -6.61973e11 q^{67} +7.53774e11 q^{68} +8.39307e11 q^{69} +3.39582e11 q^{70} -1.75593e12 q^{71} -4.92569e11 q^{72} -1.33173e12 q^{73} +6.28192e11 q^{74} +6.78433e11 q^{75} +2.27954e12 q^{76} +1.76123e12 q^{77} +1.34409e12 q^{79} -1.13017e12 q^{80} -3.15339e12 q^{81} +7.39045e11 q^{82} +2.49195e12 q^{83} -3.97918e12 q^{84} +3.02100e12 q^{85} +1.75276e12 q^{86} +1.91948e12 q^{87} +2.57199e12 q^{88} +6.50805e12 q^{89} -9.12242e11 q^{90} +3.70163e12 q^{92} -5.07007e12 q^{93} +6.27374e11 q^{94} +9.13602e12 q^{95} -8.93664e12 q^{96} +6.79919e11 q^{97} +9.74148e11 q^{98} -4.73132e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 65 q^{2} - 728 q^{3} + 53249 q^{4} + 20930 q^{5} - 143910 q^{6} + 173992 q^{7} + 1308489 q^{8} + 5231838 q^{9} - 2769243 q^{10} - 10986144 q^{11} - 22602732 q^{12} - 11865878 q^{14} + 75354448 q^{15}+ \cdots + 16619904586272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 33.9774 0.375401 0.187700 0.982226i \(-0.439897\pi\)
0.187700 + 0.982226i \(0.439897\pi\)
\(3\) −1595.69 −1.26375 −0.631873 0.775072i \(-0.717714\pi\)
−0.631873 + 0.775072i \(0.717714\pi\)
\(4\) −7037.54 −0.859074
\(5\) −28205.3 −0.807282 −0.403641 0.914918i \(-0.632255\pi\)
−0.403641 + 0.914918i \(0.632255\pi\)
\(6\) −54217.3 −0.474411
\(7\) −354344. −1.13838 −0.569190 0.822206i \(-0.692743\pi\)
−0.569190 + 0.822206i \(0.692743\pi\)
\(8\) −517460. −0.697898
\(9\) 951897. 0.597054
\(10\) −958341. −0.303054
\(11\) −4.97041e6 −0.845941 −0.422970 0.906144i \(-0.639013\pi\)
−0.422970 + 0.906144i \(0.639013\pi\)
\(12\) 1.12297e7 1.08565
\(13\) 0 0
\(14\) −1.20397e7 −0.427349
\(15\) 4.50068e7 1.02020
\(16\) 4.00696e7 0.597083
\(17\) −1.07108e8 −1.07622 −0.538112 0.842874i \(-0.680862\pi\)
−0.538112 + 0.842874i \(0.680862\pi\)
\(18\) 3.23430e7 0.224135
\(19\) −3.23912e8 −1.57953 −0.789766 0.613408i \(-0.789798\pi\)
−0.789766 + 0.613408i \(0.789798\pi\)
\(20\) 1.98496e8 0.693515
\(21\) 5.65422e8 1.43862
\(22\) −1.68882e8 −0.317567
\(23\) −5.25984e8 −0.740870 −0.370435 0.928858i \(-0.620791\pi\)
−0.370435 + 0.928858i \(0.620791\pi\)
\(24\) 8.25705e8 0.881966
\(25\) −4.25166e8 −0.348296
\(26\) 0 0
\(27\) 1.02511e9 0.509221
\(28\) 2.49371e9 0.977953
\(29\) −1.20291e9 −0.375533 −0.187766 0.982214i \(-0.560125\pi\)
−0.187766 + 0.982214i \(0.560125\pi\)
\(30\) 1.52921e9 0.382983
\(31\) 3.17736e9 0.643006 0.321503 0.946909i \(-0.395812\pi\)
0.321503 + 0.946909i \(0.395812\pi\)
\(32\) 5.60049e9 0.922043
\(33\) 7.93123e9 1.06905
\(34\) −3.63924e9 −0.404015
\(35\) 9.99436e9 0.918994
\(36\) −6.69901e9 −0.512914
\(37\) 1.84885e10 1.18465 0.592326 0.805698i \(-0.298210\pi\)
0.592326 + 0.805698i \(0.298210\pi\)
\(38\) −1.10057e10 −0.592958
\(39\) 0 0
\(40\) 1.45951e10 0.563400
\(41\) 2.17511e10 0.715131 0.357566 0.933888i \(-0.383607\pi\)
0.357566 + 0.933888i \(0.383607\pi\)
\(42\) 1.92116e10 0.540061
\(43\) 5.15859e10 1.24448 0.622238 0.782828i \(-0.286224\pi\)
0.622238 + 0.782828i \(0.286224\pi\)
\(44\) 3.49795e10 0.726726
\(45\) −2.68485e10 −0.481991
\(46\) −1.78716e10 −0.278123
\(47\) 1.84645e10 0.249862 0.124931 0.992165i \(-0.460129\pi\)
0.124931 + 0.992165i \(0.460129\pi\)
\(48\) −6.39385e10 −0.754561
\(49\) 2.86705e10 0.295910
\(50\) −1.44461e10 −0.130751
\(51\) 1.70910e11 1.36007
\(52\) 0 0
\(53\) −1.97464e11 −1.22376 −0.611878 0.790952i \(-0.709586\pi\)
−0.611878 + 0.790952i \(0.709586\pi\)
\(54\) 3.48306e10 0.191162
\(55\) 1.40192e11 0.682912
\(56\) 1.83359e11 0.794473
\(57\) 5.16862e11 1.99613
\(58\) −4.08719e10 −0.140975
\(59\) 1.45498e11 0.449076 0.224538 0.974465i \(-0.427913\pi\)
0.224538 + 0.974465i \(0.427913\pi\)
\(60\) −3.16737e11 −0.876427
\(61\) 6.36102e11 1.58082 0.790411 0.612577i \(-0.209867\pi\)
0.790411 + 0.612577i \(0.209867\pi\)
\(62\) 1.07958e11 0.241385
\(63\) −3.37299e11 −0.679675
\(64\) −1.37960e11 −0.250947
\(65\) 0 0
\(66\) 2.69482e11 0.401324
\(67\) −6.61973e11 −0.894034 −0.447017 0.894526i \(-0.647514\pi\)
−0.447017 + 0.894526i \(0.647514\pi\)
\(68\) 7.53774e11 0.924556
\(69\) 8.39307e11 0.936271
\(70\) 3.39582e11 0.344991
\(71\) −1.75593e12 −1.62678 −0.813390 0.581719i \(-0.802380\pi\)
−0.813390 + 0.581719i \(0.802380\pi\)
\(72\) −4.92569e11 −0.416683
\(73\) −1.33173e12 −1.02995 −0.514975 0.857205i \(-0.672199\pi\)
−0.514975 + 0.857205i \(0.672199\pi\)
\(74\) 6.28192e11 0.444719
\(75\) 6.78433e11 0.440158
\(76\) 2.27954e12 1.35694
\(77\) 1.76123e12 0.963002
\(78\) 0 0
\(79\) 1.34409e12 0.622088 0.311044 0.950396i \(-0.399321\pi\)
0.311044 + 0.950396i \(0.399321\pi\)
\(80\) −1.13017e12 −0.482014
\(81\) −3.15339e12 −1.24058
\(82\) 7.39045e11 0.268461
\(83\) 2.49195e12 0.836628 0.418314 0.908302i \(-0.362621\pi\)
0.418314 + 0.908302i \(0.362621\pi\)
\(84\) −3.97918e12 −1.23588
\(85\) 3.02100e12 0.868815
\(86\) 1.75276e12 0.467177
\(87\) 1.91948e12 0.474578
\(88\) 2.57199e12 0.590380
\(89\) 6.50805e12 1.38808 0.694042 0.719934i \(-0.255828\pi\)
0.694042 + 0.719934i \(0.255828\pi\)
\(90\) −9.12242e11 −0.180940
\(91\) 0 0
\(92\) 3.70163e12 0.636462
\(93\) −5.07007e12 −0.812596
\(94\) 6.27374e11 0.0937985
\(95\) 9.13602e12 1.27513
\(96\) −8.93664e12 −1.16523
\(97\) 6.79919e11 0.0828783 0.0414391 0.999141i \(-0.486806\pi\)
0.0414391 + 0.999141i \(0.486806\pi\)
\(98\) 9.74148e11 0.111085
\(99\) −4.73132e12 −0.505072
\(100\) 2.99212e12 0.299212
\(101\) −1.76959e13 −1.65876 −0.829380 0.558685i \(-0.811306\pi\)
−0.829380 + 0.558685i \(0.811306\pi\)
\(102\) 5.80709e12 0.510573
\(103\) 2.04628e13 1.68859 0.844293 0.535882i \(-0.180021\pi\)
0.844293 + 0.535882i \(0.180021\pi\)
\(104\) 0 0
\(105\) −1.59479e13 −1.16137
\(106\) −6.70931e12 −0.459399
\(107\) −7.36001e12 −0.474115 −0.237058 0.971496i \(-0.576183\pi\)
−0.237058 + 0.971496i \(0.576183\pi\)
\(108\) −7.21426e12 −0.437459
\(109\) −3.07635e12 −0.175697 −0.0878483 0.996134i \(-0.527999\pi\)
−0.0878483 + 0.996134i \(0.527999\pi\)
\(110\) 4.76335e12 0.256366
\(111\) −2.95019e13 −1.49710
\(112\) −1.41984e13 −0.679708
\(113\) −3.09845e12 −0.140002 −0.0700010 0.997547i \(-0.522300\pi\)
−0.0700010 + 0.997547i \(0.522300\pi\)
\(114\) 1.75616e13 0.749348
\(115\) 1.48355e13 0.598091
\(116\) 8.46556e12 0.322611
\(117\) 0 0
\(118\) 4.94366e12 0.168584
\(119\) 3.79529e13 1.22515
\(120\) −2.32892e13 −0.711995
\(121\) −9.81772e12 −0.284384
\(122\) 2.16131e13 0.593442
\(123\) −3.47079e13 −0.903744
\(124\) −2.23608e13 −0.552390
\(125\) 4.64222e13 1.08845
\(126\) −1.14605e13 −0.255150
\(127\) −4.52905e13 −0.957818 −0.478909 0.877865i \(-0.658968\pi\)
−0.478909 + 0.877865i \(0.658968\pi\)
\(128\) −5.05667e13 −1.01625
\(129\) −8.23150e13 −1.57270
\(130\) 0 0
\(131\) −9.41327e13 −1.62734 −0.813668 0.581330i \(-0.802532\pi\)
−0.813668 + 0.581330i \(0.802532\pi\)
\(132\) −5.58163e13 −0.918397
\(133\) 1.14776e14 1.79811
\(134\) −2.24921e13 −0.335621
\(135\) −2.89135e13 −0.411085
\(136\) 5.54239e13 0.751094
\(137\) 2.42650e13 0.313542 0.156771 0.987635i \(-0.449892\pi\)
0.156771 + 0.987635i \(0.449892\pi\)
\(138\) 2.85175e13 0.351477
\(139\) 7.46609e12 0.0878005 0.0439002 0.999036i \(-0.486022\pi\)
0.0439002 + 0.999036i \(0.486022\pi\)
\(140\) −7.03356e13 −0.789484
\(141\) −2.94635e13 −0.315762
\(142\) −5.96620e13 −0.610694
\(143\) 0 0
\(144\) 3.81421e13 0.356491
\(145\) 3.39285e13 0.303161
\(146\) −4.52486e13 −0.386644
\(147\) −4.57491e13 −0.373956
\(148\) −1.30114e14 −1.01770
\(149\) 1.12298e14 0.840739 0.420369 0.907353i \(-0.361900\pi\)
0.420369 + 0.907353i \(0.361900\pi\)
\(150\) 2.30514e13 0.165236
\(151\) 3.36374e12 0.0230926 0.0115463 0.999933i \(-0.496325\pi\)
0.0115463 + 0.999933i \(0.496325\pi\)
\(152\) 1.67612e14 1.10235
\(153\) −1.01955e14 −0.642563
\(154\) 5.98422e13 0.361512
\(155\) −8.96181e13 −0.519087
\(156\) 0 0
\(157\) 1.62804e14 0.867597 0.433799 0.901010i \(-0.357173\pi\)
0.433799 + 0.901010i \(0.357173\pi\)
\(158\) 4.56686e13 0.233532
\(159\) 3.15091e14 1.54652
\(160\) −1.57963e14 −0.744349
\(161\) 1.86379e14 0.843392
\(162\) −1.07144e14 −0.465715
\(163\) −1.41843e14 −0.592362 −0.296181 0.955132i \(-0.595713\pi\)
−0.296181 + 0.955132i \(0.595713\pi\)
\(164\) −1.53074e14 −0.614351
\(165\) −2.23702e14 −0.863028
\(166\) 8.46701e13 0.314071
\(167\) −4.39748e14 −1.56873 −0.784363 0.620302i \(-0.787010\pi\)
−0.784363 + 0.620302i \(0.787010\pi\)
\(168\) −2.92583e14 −1.00401
\(169\) 0 0
\(170\) 1.02646e14 0.326154
\(171\) −3.08331e14 −0.943066
\(172\) −3.63038e14 −1.06910
\(173\) −2.09177e14 −0.593219 −0.296609 0.954999i \(-0.595856\pi\)
−0.296609 + 0.954999i \(0.595856\pi\)
\(174\) 6.52188e13 0.178157
\(175\) 1.50655e14 0.396494
\(176\) −1.99162e14 −0.505097
\(177\) −2.32170e14 −0.567519
\(178\) 2.21127e14 0.521088
\(179\) −3.37836e14 −0.767647 −0.383824 0.923406i \(-0.625393\pi\)
−0.383824 + 0.923406i \(0.625393\pi\)
\(180\) 1.88947e14 0.414066
\(181\) 6.90056e13 0.145873 0.0729363 0.997337i \(-0.476763\pi\)
0.0729363 + 0.997337i \(0.476763\pi\)
\(182\) 0 0
\(183\) −1.01502e15 −1.99776
\(184\) 2.72176e14 0.517052
\(185\) −5.21473e14 −0.956348
\(186\) −1.72268e14 −0.305049
\(187\) 5.32369e14 0.910421
\(188\) −1.29944e14 −0.214650
\(189\) −3.63242e14 −0.579688
\(190\) 3.10418e14 0.478684
\(191\) 1.11773e15 1.66579 0.832893 0.553434i \(-0.186683\pi\)
0.832893 + 0.553434i \(0.186683\pi\)
\(192\) 2.20140e14 0.317133
\(193\) 1.28086e15 1.78394 0.891968 0.452099i \(-0.149324\pi\)
0.891968 + 0.452099i \(0.149324\pi\)
\(194\) 2.31019e13 0.0311126
\(195\) 0 0
\(196\) −2.01769e14 −0.254209
\(197\) −1.36897e15 −1.66864 −0.834319 0.551281i \(-0.814139\pi\)
−0.834319 + 0.551281i \(0.814139\pi\)
\(198\) −1.60758e14 −0.189605
\(199\) 8.59136e14 0.980657 0.490328 0.871538i \(-0.336877\pi\)
0.490328 + 0.871538i \(0.336877\pi\)
\(200\) 2.20007e14 0.243075
\(201\) 1.05630e15 1.12983
\(202\) −6.01261e14 −0.622700
\(203\) 4.26245e14 0.427499
\(204\) −1.20279e15 −1.16840
\(205\) −6.13495e14 −0.577312
\(206\) 6.95273e14 0.633896
\(207\) −5.00683e14 −0.442339
\(208\) 0 0
\(209\) 1.60998e15 1.33619
\(210\) −5.41867e14 −0.435981
\(211\) 6.29982e14 0.491465 0.245732 0.969338i \(-0.420972\pi\)
0.245732 + 0.969338i \(0.420972\pi\)
\(212\) 1.38966e15 1.05130
\(213\) 2.80192e15 2.05584
\(214\) −2.50074e14 −0.177983
\(215\) −1.45499e15 −1.00464
\(216\) −5.30454e14 −0.355385
\(217\) −1.12588e15 −0.731985
\(218\) −1.04526e14 −0.0659566
\(219\) 2.12502e15 1.30160
\(220\) −9.86605e14 −0.586672
\(221\) 0 0
\(222\) −1.00240e15 −0.562012
\(223\) 4.18442e14 0.227852 0.113926 0.993489i \(-0.463657\pi\)
0.113926 + 0.993489i \(0.463657\pi\)
\(224\) −1.98450e15 −1.04964
\(225\) −4.04715e14 −0.207952
\(226\) −1.05277e14 −0.0525569
\(227\) 3.83748e14 0.186156 0.0930782 0.995659i \(-0.470329\pi\)
0.0930782 + 0.995659i \(0.470329\pi\)
\(228\) −3.63744e15 −1.71482
\(229\) 9.04228e13 0.0414331 0.0207165 0.999785i \(-0.493405\pi\)
0.0207165 + 0.999785i \(0.493405\pi\)
\(230\) 5.04073e14 0.224524
\(231\) −2.81038e15 −1.21699
\(232\) 6.22460e14 0.262084
\(233\) −3.15966e15 −1.29368 −0.646839 0.762626i \(-0.723910\pi\)
−0.646839 + 0.762626i \(0.723910\pi\)
\(234\) 0 0
\(235\) −5.20795e14 −0.201709
\(236\) −1.02395e15 −0.385790
\(237\) −2.14474e15 −0.786161
\(238\) 1.28954e15 0.459923
\(239\) 1.59971e15 0.555206 0.277603 0.960696i \(-0.410460\pi\)
0.277603 + 0.960696i \(0.410460\pi\)
\(240\) 1.80340e15 0.609143
\(241\) 3.18694e15 1.04776 0.523882 0.851791i \(-0.324483\pi\)
0.523882 + 0.851791i \(0.324483\pi\)
\(242\) −3.33581e14 −0.106758
\(243\) 3.39747e15 1.05856
\(244\) −4.47659e15 −1.35804
\(245\) −8.08658e14 −0.238883
\(246\) −1.17929e15 −0.339266
\(247\) 0 0
\(248\) −1.64415e15 −0.448752
\(249\) −3.97638e15 −1.05729
\(250\) 1.57730e15 0.408607
\(251\) −6.77483e15 −1.71009 −0.855045 0.518553i \(-0.826471\pi\)
−0.855045 + 0.518553i \(0.826471\pi\)
\(252\) 2.37375e15 0.583891
\(253\) 2.61436e15 0.626732
\(254\) −1.53885e15 −0.359565
\(255\) −4.82057e15 −1.09796
\(256\) −5.87961e14 −0.130554
\(257\) 5.50919e15 1.19268 0.596338 0.802734i \(-0.296622\pi\)
0.596338 + 0.802734i \(0.296622\pi\)
\(258\) −2.79685e15 −0.590393
\(259\) −6.55129e15 −1.34859
\(260\) 0 0
\(261\) −1.14505e15 −0.224213
\(262\) −3.19838e15 −0.610903
\(263\) 6.68617e15 1.24585 0.622924 0.782283i \(-0.285945\pi\)
0.622924 + 0.782283i \(0.285945\pi\)
\(264\) −4.10409e15 −0.746091
\(265\) 5.56952e15 0.987915
\(266\) 3.89980e15 0.675012
\(267\) −1.03848e16 −1.75419
\(268\) 4.65866e15 0.768041
\(269\) 9.99864e15 1.60898 0.804491 0.593965i \(-0.202438\pi\)
0.804491 + 0.593965i \(0.202438\pi\)
\(270\) −9.82407e14 −0.154322
\(271\) −8.44069e15 −1.29443 −0.647213 0.762309i \(-0.724066\pi\)
−0.647213 + 0.762309i \(0.724066\pi\)
\(272\) −4.29175e15 −0.642595
\(273\) 0 0
\(274\) 8.24460e14 0.117704
\(275\) 2.11325e15 0.294638
\(276\) −5.90665e15 −0.804327
\(277\) −1.41348e16 −1.88006 −0.940028 0.341098i \(-0.889201\pi\)
−0.940028 + 0.341098i \(0.889201\pi\)
\(278\) 2.53678e14 0.0329604
\(279\) 3.02452e15 0.383909
\(280\) −5.17168e15 −0.641364
\(281\) 6.65234e15 0.806089 0.403045 0.915180i \(-0.367952\pi\)
0.403045 + 0.915180i \(0.367952\pi\)
\(282\) −1.00109e15 −0.118537
\(283\) −1.04456e16 −1.20871 −0.604353 0.796716i \(-0.706568\pi\)
−0.604353 + 0.796716i \(0.706568\pi\)
\(284\) 1.23574e16 1.39752
\(285\) −1.45782e16 −1.61144
\(286\) 0 0
\(287\) −7.70736e15 −0.814092
\(288\) 5.33109e15 0.550510
\(289\) 1.56747e15 0.158257
\(290\) 1.15280e15 0.113807
\(291\) −1.08494e15 −0.104737
\(292\) 9.37207e15 0.884804
\(293\) −6.42375e15 −0.593129 −0.296564 0.955013i \(-0.595841\pi\)
−0.296564 + 0.955013i \(0.595841\pi\)
\(294\) −1.55444e15 −0.140383
\(295\) −4.10382e15 −0.362531
\(296\) −9.56707e15 −0.826766
\(297\) −5.09523e15 −0.430771
\(298\) 3.81559e15 0.315614
\(299\) 0 0
\(300\) −4.77450e15 −0.378129
\(301\) −1.82791e16 −1.41669
\(302\) 1.14291e14 0.00866898
\(303\) 2.82371e16 2.09625
\(304\) −1.29790e16 −0.943112
\(305\) −1.79414e16 −1.27617
\(306\) −3.46418e15 −0.241219
\(307\) −1.06113e16 −0.723384 −0.361692 0.932298i \(-0.617801\pi\)
−0.361692 + 0.932298i \(0.617801\pi\)
\(308\) −1.23947e16 −0.827291
\(309\) −3.26522e16 −2.13394
\(310\) −3.04499e15 −0.194866
\(311\) −2.79778e16 −1.75336 −0.876680 0.481075i \(-0.840247\pi\)
−0.876680 + 0.481075i \(0.840247\pi\)
\(312\) 0 0
\(313\) 8.49575e14 0.0510697 0.0255349 0.999674i \(-0.491871\pi\)
0.0255349 + 0.999674i \(0.491871\pi\)
\(314\) 5.53167e15 0.325697
\(315\) 9.51360e15 0.548689
\(316\) −9.45907e15 −0.534419
\(317\) 2.39229e16 1.32412 0.662062 0.749449i \(-0.269681\pi\)
0.662062 + 0.749449i \(0.269681\pi\)
\(318\) 1.07060e16 0.580563
\(319\) 5.97898e15 0.317679
\(320\) 3.89119e15 0.202585
\(321\) 1.17443e16 0.599161
\(322\) 6.33268e15 0.316610
\(323\) 3.46934e16 1.69993
\(324\) 2.21921e16 1.06575
\(325\) 0 0
\(326\) −4.81944e15 −0.222373
\(327\) 4.90889e15 0.222036
\(328\) −1.12553e16 −0.499089
\(329\) −6.54277e15 −0.284438
\(330\) −7.60082e15 −0.323981
\(331\) 1.97999e16 0.827527 0.413763 0.910385i \(-0.364214\pi\)
0.413763 + 0.910385i \(0.364214\pi\)
\(332\) −1.75372e16 −0.718726
\(333\) 1.75992e16 0.707301
\(334\) −1.49415e16 −0.588901
\(335\) 1.86711e16 0.721737
\(336\) 2.26562e16 0.858978
\(337\) 3.87319e16 1.44037 0.720185 0.693782i \(-0.244057\pi\)
0.720185 + 0.693782i \(0.244057\pi\)
\(338\) 0 0
\(339\) 4.94416e15 0.176927
\(340\) −2.12604e16 −0.746377
\(341\) −1.57928e16 −0.543945
\(342\) −1.04763e16 −0.354028
\(343\) 2.41728e16 0.801522
\(344\) −2.66937e16 −0.868517
\(345\) −2.36729e16 −0.755835
\(346\) −7.10730e15 −0.222695
\(347\) 3.48412e16 1.07140 0.535699 0.844409i \(-0.320048\pi\)
0.535699 + 0.844409i \(0.320048\pi\)
\(348\) −1.35084e16 −0.407698
\(349\) 4.99162e15 0.147869 0.0739343 0.997263i \(-0.476444\pi\)
0.0739343 + 0.997263i \(0.476444\pi\)
\(350\) 5.11887e15 0.148844
\(351\) 0 0
\(352\) −2.78367e16 −0.779994
\(353\) −9.16167e15 −0.252022 −0.126011 0.992029i \(-0.540217\pi\)
−0.126011 + 0.992029i \(0.540217\pi\)
\(354\) −7.88854e15 −0.213047
\(355\) 4.95266e16 1.31327
\(356\) −4.58006e16 −1.19247
\(357\) −6.05610e16 −1.54828
\(358\) −1.14788e16 −0.288175
\(359\) −5.08836e16 −1.25448 −0.627240 0.778826i \(-0.715816\pi\)
−0.627240 + 0.778826i \(0.715816\pi\)
\(360\) 1.38930e16 0.336380
\(361\) 6.28660e16 1.49492
\(362\) 2.34463e15 0.0547607
\(363\) 1.56660e16 0.359390
\(364\) 0 0
\(365\) 3.75617e16 0.831460
\(366\) −3.44878e16 −0.749960
\(367\) −4.51196e15 −0.0963908 −0.0481954 0.998838i \(-0.515347\pi\)
−0.0481954 + 0.998838i \(0.515347\pi\)
\(368\) −2.10760e16 −0.442361
\(369\) 2.07048e16 0.426972
\(370\) −1.77183e16 −0.359014
\(371\) 6.99701e16 1.39310
\(372\) 3.56808e16 0.698080
\(373\) 3.55313e16 0.683130 0.341565 0.939858i \(-0.389043\pi\)
0.341565 + 0.939858i \(0.389043\pi\)
\(374\) 1.80885e16 0.341773
\(375\) −7.40753e16 −1.37553
\(376\) −9.55462e15 −0.174378
\(377\) 0 0
\(378\) −1.23420e16 −0.217615
\(379\) 7.75963e16 1.34489 0.672444 0.740148i \(-0.265245\pi\)
0.672444 + 0.740148i \(0.265245\pi\)
\(380\) −6.42951e16 −1.09543
\(381\) 7.22695e16 1.21044
\(382\) 3.79775e16 0.625337
\(383\) 3.28839e16 0.532343 0.266172 0.963926i \(-0.414241\pi\)
0.266172 + 0.963926i \(0.414241\pi\)
\(384\) 8.06887e16 1.28428
\(385\) −4.96761e16 −0.777414
\(386\) 4.35203e16 0.669691
\(387\) 4.91045e16 0.743019
\(388\) −4.78495e15 −0.0711986
\(389\) 4.57248e16 0.669082 0.334541 0.942381i \(-0.391419\pi\)
0.334541 + 0.942381i \(0.391419\pi\)
\(390\) 0 0
\(391\) 5.63370e16 0.797342
\(392\) −1.48358e16 −0.206515
\(393\) 1.50206e17 2.05654
\(394\) −4.65139e16 −0.626408
\(395\) −3.79103e16 −0.502200
\(396\) 3.32968e16 0.433895
\(397\) 9.69224e16 1.24247 0.621235 0.783624i \(-0.286631\pi\)
0.621235 + 0.783624i \(0.286631\pi\)
\(398\) 2.91912e16 0.368139
\(399\) −1.83147e17 −2.27235
\(400\) −1.70362e16 −0.207962
\(401\) 1.06253e16 0.127615 0.0638076 0.997962i \(-0.479676\pi\)
0.0638076 + 0.997962i \(0.479676\pi\)
\(402\) 3.58904e16 0.424140
\(403\) 0 0
\(404\) 1.24536e17 1.42500
\(405\) 8.89422e16 1.00150
\(406\) 1.44827e16 0.160484
\(407\) −9.18956e16 −1.00215
\(408\) −8.84393e16 −0.949192
\(409\) −2.85315e16 −0.301386 −0.150693 0.988581i \(-0.548151\pi\)
−0.150693 + 0.988581i \(0.548151\pi\)
\(410\) −2.08450e16 −0.216724
\(411\) −3.87193e16 −0.396237
\(412\) −1.44008e17 −1.45062
\(413\) −5.15565e16 −0.511220
\(414\) −1.70119e16 −0.166055
\(415\) −7.02862e16 −0.675395
\(416\) 0 0
\(417\) −1.19135e16 −0.110957
\(418\) 5.47028e16 0.501607
\(419\) 7.81789e16 0.705827 0.352914 0.935656i \(-0.385191\pi\)
0.352914 + 0.935656i \(0.385191\pi\)
\(420\) 1.12234e17 0.997707
\(421\) 6.34549e15 0.0555433 0.0277716 0.999614i \(-0.491159\pi\)
0.0277716 + 0.999614i \(0.491159\pi\)
\(422\) 2.14052e16 0.184496
\(423\) 1.75763e16 0.149181
\(424\) 1.02180e17 0.854057
\(425\) 4.55386e16 0.374845
\(426\) 9.52020e16 0.771763
\(427\) −2.25399e17 −1.79958
\(428\) 5.17963e16 0.407300
\(429\) 0 0
\(430\) −4.94369e16 −0.377143
\(431\) 1.34700e16 0.101220 0.0506100 0.998718i \(-0.483883\pi\)
0.0506100 + 0.998718i \(0.483883\pi\)
\(432\) 4.10758e16 0.304047
\(433\) 9.56660e15 0.0697568 0.0348784 0.999392i \(-0.488896\pi\)
0.0348784 + 0.999392i \(0.488896\pi\)
\(434\) −3.82543e16 −0.274788
\(435\) −5.41393e16 −0.383118
\(436\) 2.16499e16 0.150936
\(437\) 1.70373e17 1.17023
\(438\) 7.22026e16 0.488620
\(439\) 2.06703e17 1.37824 0.689122 0.724645i \(-0.257996\pi\)
0.689122 + 0.724645i \(0.257996\pi\)
\(440\) −7.25436e16 −0.476603
\(441\) 2.72913e16 0.176675
\(442\) 0 0
\(443\) −1.91066e16 −0.120104 −0.0600522 0.998195i \(-0.519127\pi\)
−0.0600522 + 0.998195i \(0.519127\pi\)
\(444\) 2.07621e17 1.28612
\(445\) −1.83561e17 −1.12058
\(446\) 1.42176e16 0.0855359
\(447\) −1.79193e17 −1.06248
\(448\) 4.88851e16 0.285673
\(449\) 2.36332e17 1.36120 0.680600 0.732655i \(-0.261719\pi\)
0.680600 + 0.732655i \(0.261719\pi\)
\(450\) −1.37512e16 −0.0780652
\(451\) −1.08112e17 −0.604959
\(452\) 2.18055e16 0.120272
\(453\) −5.36748e15 −0.0291832
\(454\) 1.30388e16 0.0698832
\(455\) 0 0
\(456\) −2.67456e17 −1.39309
\(457\) 1.64178e17 0.843064 0.421532 0.906814i \(-0.361493\pi\)
0.421532 + 0.906814i \(0.361493\pi\)
\(458\) 3.07233e15 0.0155540
\(459\) −1.09797e17 −0.548036
\(460\) −1.04406e17 −0.513804
\(461\) 2.38359e17 1.15658 0.578291 0.815831i \(-0.303720\pi\)
0.578291 + 0.815831i \(0.303720\pi\)
\(462\) −9.54894e16 −0.456859
\(463\) 4.47197e16 0.210971 0.105485 0.994421i \(-0.466360\pi\)
0.105485 + 0.994421i \(0.466360\pi\)
\(464\) −4.82003e16 −0.224224
\(465\) 1.43003e17 0.655994
\(466\) −1.07357e17 −0.485648
\(467\) 2.83964e17 1.26678 0.633392 0.773831i \(-0.281662\pi\)
0.633392 + 0.773831i \(0.281662\pi\)
\(468\) 0 0
\(469\) 2.34566e17 1.01775
\(470\) −1.76953e16 −0.0757218
\(471\) −2.59785e17 −1.09642
\(472\) −7.52896e16 −0.313409
\(473\) −2.56403e17 −1.05275
\(474\) −7.28728e16 −0.295125
\(475\) 1.37717e17 0.550145
\(476\) −2.67095e17 −1.05250
\(477\) −1.87965e17 −0.730648
\(478\) 5.43539e16 0.208425
\(479\) 4.29868e16 0.162613 0.0813064 0.996689i \(-0.474091\pi\)
0.0813064 + 0.996689i \(0.474091\pi\)
\(480\) 2.52060e17 0.940668
\(481\) 0 0
\(482\) 1.08284e17 0.393331
\(483\) −2.97403e17 −1.06583
\(484\) 6.90926e16 0.244307
\(485\) −1.91773e16 −0.0669061
\(486\) 1.15437e17 0.397383
\(487\) −3.73286e17 −1.26795 −0.633977 0.773352i \(-0.718579\pi\)
−0.633977 + 0.773352i \(0.718579\pi\)
\(488\) −3.29157e17 −1.10325
\(489\) 2.26337e17 0.748595
\(490\) −2.74761e16 −0.0896769
\(491\) −3.06371e17 −0.986776 −0.493388 0.869809i \(-0.664242\pi\)
−0.493388 + 0.869809i \(0.664242\pi\)
\(492\) 2.44258e17 0.776384
\(493\) 1.28841e17 0.404157
\(494\) 0 0
\(495\) 1.33448e17 0.407736
\(496\) 1.27315e17 0.383928
\(497\) 6.22204e17 1.85189
\(498\) −1.35107e17 −0.396906
\(499\) −2.26621e17 −0.657122 −0.328561 0.944483i \(-0.606564\pi\)
−0.328561 + 0.944483i \(0.606564\pi\)
\(500\) −3.26698e17 −0.935064
\(501\) 7.01701e17 1.98247
\(502\) −2.30191e17 −0.641969
\(503\) 2.43483e17 0.670310 0.335155 0.942163i \(-0.391211\pi\)
0.335155 + 0.942163i \(0.391211\pi\)
\(504\) 1.74539e17 0.474344
\(505\) 4.99117e17 1.33909
\(506\) 8.88291e16 0.235276
\(507\) 0 0
\(508\) 3.18733e17 0.822836
\(509\) −2.46104e17 −0.627267 −0.313634 0.949544i \(-0.601546\pi\)
−0.313634 + 0.949544i \(0.601546\pi\)
\(510\) −1.63790e17 −0.412176
\(511\) 4.71889e17 1.17248
\(512\) 3.94265e17 0.967239
\(513\) −3.32046e17 −0.804332
\(514\) 1.87188e17 0.447731
\(515\) −5.77159e17 −1.36316
\(516\) 5.79295e17 1.35107
\(517\) −9.17760e16 −0.211369
\(518\) −2.22596e17 −0.506260
\(519\) 3.33782e17 0.749678
\(520\) 0 0
\(521\) −6.84199e16 −0.149878 −0.0749389 0.997188i \(-0.523876\pi\)
−0.0749389 + 0.997188i \(0.523876\pi\)
\(522\) −3.89059e16 −0.0841699
\(523\) −7.79936e17 −1.66647 −0.833236 0.552917i \(-0.813515\pi\)
−0.833236 + 0.552917i \(0.813515\pi\)
\(524\) 6.62462e17 1.39800
\(525\) −2.40398e17 −0.501068
\(526\) 2.27179e17 0.467692
\(527\) −3.40319e17 −0.692018
\(528\) 3.17801e17 0.638314
\(529\) −2.27377e17 −0.451112
\(530\) 1.89238e17 0.370864
\(531\) 1.38500e17 0.268123
\(532\) −8.07742e17 −1.54471
\(533\) 0 0
\(534\) −3.52849e17 −0.658523
\(535\) 2.07591e17 0.382744
\(536\) 3.42544e17 0.623944
\(537\) 5.39081e17 0.970111
\(538\) 3.39728e17 0.604013
\(539\) −1.42504e17 −0.250323
\(540\) 2.03480e17 0.353153
\(541\) 2.29126e17 0.392910 0.196455 0.980513i \(-0.437057\pi\)
0.196455 + 0.980513i \(0.437057\pi\)
\(542\) −2.86793e17 −0.485929
\(543\) −1.10111e17 −0.184346
\(544\) −5.99855e17 −0.992325
\(545\) 8.67692e16 0.141837
\(546\) 0 0
\(547\) 2.50993e16 0.0400631 0.0200316 0.999799i \(-0.493623\pi\)
0.0200316 + 0.999799i \(0.493623\pi\)
\(548\) −1.70765e17 −0.269356
\(549\) 6.05504e17 0.943836
\(550\) 7.18028e16 0.110607
\(551\) 3.89639e17 0.593166
\(552\) −4.34308e17 −0.653422
\(553\) −4.76269e17 −0.708172
\(554\) −4.80263e17 −0.705774
\(555\) 8.32109e17 1.20858
\(556\) −5.25428e16 −0.0754271
\(557\) 9.34157e17 1.32544 0.662721 0.748866i \(-0.269401\pi\)
0.662721 + 0.748866i \(0.269401\pi\)
\(558\) 1.02765e17 0.144120
\(559\) 0 0
\(560\) 4.00469e17 0.548715
\(561\) −8.49495e17 −1.15054
\(562\) 2.26029e17 0.302607
\(563\) −1.27798e18 −1.69130 −0.845650 0.533737i \(-0.820787\pi\)
−0.845650 + 0.533737i \(0.820787\pi\)
\(564\) 2.07351e17 0.271263
\(565\) 8.73926e16 0.113021
\(566\) −3.54914e17 −0.453749
\(567\) 1.11738e18 1.41225
\(568\) 9.08625e17 1.13533
\(569\) −2.67064e17 −0.329903 −0.164951 0.986302i \(-0.552747\pi\)
−0.164951 + 0.986302i \(0.552747\pi\)
\(570\) −4.95331e17 −0.604935
\(571\) −6.71054e17 −0.810257 −0.405129 0.914260i \(-0.632773\pi\)
−0.405129 + 0.914260i \(0.632773\pi\)
\(572\) 0 0
\(573\) −1.78355e18 −2.10513
\(574\) −2.61876e17 −0.305611
\(575\) 2.23631e17 0.258042
\(576\) −1.31323e17 −0.149829
\(577\) 1.55405e18 1.75316 0.876579 0.481258i \(-0.159820\pi\)
0.876579 + 0.481258i \(0.159820\pi\)
\(578\) 5.32585e16 0.0594098
\(579\) −2.04385e18 −2.25444
\(580\) −2.38773e17 −0.260438
\(581\) −8.83009e17 −0.952401
\(582\) −3.68634e16 −0.0393184
\(583\) 9.81477e17 1.03522
\(584\) 6.89115e17 0.718800
\(585\) 0 0
\(586\) −2.18262e17 −0.222661
\(587\) 1.40353e18 1.41603 0.708016 0.706197i \(-0.249591\pi\)
0.708016 + 0.706197i \(0.249591\pi\)
\(588\) 3.21961e17 0.321256
\(589\) −1.02918e18 −1.01565
\(590\) −1.39437e17 −0.136094
\(591\) 2.18444e18 2.10874
\(592\) 7.40827e17 0.707336
\(593\) −1.73606e18 −1.63949 −0.819744 0.572731i \(-0.805884\pi\)
−0.819744 + 0.572731i \(0.805884\pi\)
\(594\) −1.73123e17 −0.161712
\(595\) −1.07047e18 −0.989043
\(596\) −7.90301e17 −0.722257
\(597\) −1.37091e18 −1.23930
\(598\) 0 0
\(599\) 8.77681e16 0.0776358 0.0388179 0.999246i \(-0.487641\pi\)
0.0388179 + 0.999246i \(0.487641\pi\)
\(600\) −3.51062e17 −0.307185
\(601\) −1.45598e18 −1.26029 −0.630145 0.776477i \(-0.717005\pi\)
−0.630145 + 0.776477i \(0.717005\pi\)
\(602\) −6.21078e17 −0.531825
\(603\) −6.30130e17 −0.533786
\(604\) −2.36725e16 −0.0198383
\(605\) 2.76911e17 0.229578
\(606\) 9.59424e17 0.786935
\(607\) −1.40576e18 −1.14073 −0.570367 0.821390i \(-0.693199\pi\)
−0.570367 + 0.821390i \(0.693199\pi\)
\(608\) −1.81407e18 −1.45640
\(609\) −6.80155e17 −0.540251
\(610\) −6.09603e17 −0.479075
\(611\) 0 0
\(612\) 7.17515e17 0.552010
\(613\) −2.71406e17 −0.206598 −0.103299 0.994650i \(-0.532940\pi\)
−0.103299 + 0.994650i \(0.532940\pi\)
\(614\) −3.60544e17 −0.271559
\(615\) 9.78946e17 0.729576
\(616\) −9.11368e17 −0.672077
\(617\) 2.34922e18 1.71424 0.857118 0.515121i \(-0.172253\pi\)
0.857118 + 0.515121i \(0.172253\pi\)
\(618\) −1.10944e18 −0.801084
\(619\) 1.31985e18 0.943054 0.471527 0.881852i \(-0.343703\pi\)
0.471527 + 0.881852i \(0.343703\pi\)
\(620\) 6.30691e17 0.445934
\(621\) −5.39193e17 −0.377267
\(622\) −9.50613e17 −0.658212
\(623\) −2.30609e18 −1.58017
\(624\) 0 0
\(625\) −7.90348e17 −0.530393
\(626\) 2.88664e16 0.0191716
\(627\) −2.56902e18 −1.68861
\(628\) −1.14574e18 −0.745330
\(629\) −1.98026e18 −1.27495
\(630\) 3.23247e17 0.205978
\(631\) −4.99011e17 −0.314716 −0.157358 0.987542i \(-0.550298\pi\)
−0.157358 + 0.987542i \(0.550298\pi\)
\(632\) −6.95512e17 −0.434154
\(633\) −1.00526e18 −0.621087
\(634\) 8.12838e17 0.497077
\(635\) 1.27743e18 0.773229
\(636\) −2.21746e18 −1.32857
\(637\) 0 0
\(638\) 2.03150e17 0.119257
\(639\) −1.67147e18 −0.971275
\(640\) 1.42625e18 0.820399
\(641\) −1.66121e18 −0.945905 −0.472953 0.881088i \(-0.656812\pi\)
−0.472953 + 0.881088i \(0.656812\pi\)
\(642\) 3.99040e17 0.224926
\(643\) −2.39626e17 −0.133710 −0.0668548 0.997763i \(-0.521296\pi\)
−0.0668548 + 0.997763i \(0.521296\pi\)
\(644\) −1.31165e18 −0.724536
\(645\) 2.32172e18 1.26961
\(646\) 1.17879e18 0.638155
\(647\) −6.81737e17 −0.365375 −0.182688 0.983171i \(-0.558480\pi\)
−0.182688 + 0.983171i \(0.558480\pi\)
\(648\) 1.63175e18 0.865799
\(649\) −7.23187e17 −0.379892
\(650\) 0 0
\(651\) 1.79655e18 0.925044
\(652\) 9.98223e17 0.508883
\(653\) 3.90793e17 0.197247 0.0986235 0.995125i \(-0.468556\pi\)
0.0986235 + 0.995125i \(0.468556\pi\)
\(654\) 1.66791e17 0.0833524
\(655\) 2.65504e18 1.31372
\(656\) 8.71556e17 0.426993
\(657\) −1.26767e18 −0.614936
\(658\) −2.22306e17 −0.106778
\(659\) −8.58969e17 −0.408528 −0.204264 0.978916i \(-0.565480\pi\)
−0.204264 + 0.978916i \(0.565480\pi\)
\(660\) 1.57431e18 0.741405
\(661\) −2.46793e17 −0.115086 −0.0575431 0.998343i \(-0.518327\pi\)
−0.0575431 + 0.998343i \(0.518327\pi\)
\(662\) 6.72750e17 0.310654
\(663\) 0 0
\(664\) −1.28949e18 −0.583881
\(665\) −3.23729e18 −1.45158
\(666\) 5.97974e17 0.265522
\(667\) 6.32715e17 0.278221
\(668\) 3.09475e18 1.34765
\(669\) −6.67702e17 −0.287947
\(670\) 6.34396e17 0.270941
\(671\) −3.16169e18 −1.33728
\(672\) 3.16664e18 1.32647
\(673\) −3.06116e18 −1.26995 −0.634976 0.772532i \(-0.718990\pi\)
−0.634976 + 0.772532i \(0.718990\pi\)
\(674\) 1.31601e18 0.540716
\(675\) −4.35843e17 −0.177360
\(676\) 0 0
\(677\) 1.84266e18 0.735561 0.367780 0.929913i \(-0.380118\pi\)
0.367780 + 0.929913i \(0.380118\pi\)
\(678\) 1.67990e17 0.0664186
\(679\) −2.40925e17 −0.0943470
\(680\) −1.56325e18 −0.606344
\(681\) −6.12342e17 −0.235254
\(682\) −5.36597e17 −0.204197
\(683\) −2.50777e17 −0.0945265 −0.0472633 0.998882i \(-0.515050\pi\)
−0.0472633 + 0.998882i \(0.515050\pi\)
\(684\) 2.16989e18 0.810164
\(685\) −6.84399e17 −0.253117
\(686\) 8.21329e17 0.300892
\(687\) −1.44287e17 −0.0523609
\(688\) 2.06702e18 0.743055
\(689\) 0 0
\(690\) −8.04343e17 −0.283741
\(691\) −1.91505e15 −0.000669227 0 −0.000334614 1.00000i \(-0.500107\pi\)
−0.000334614 1.00000i \(0.500107\pi\)
\(692\) 1.47209e18 0.509619
\(693\) 1.67651e18 0.574964
\(694\) 1.18381e18 0.402204
\(695\) −2.10583e17 −0.0708797
\(696\) −9.93253e17 −0.331207
\(697\) −2.32971e18 −0.769641
\(698\) 1.69602e17 0.0555100
\(699\) 5.04183e18 1.63488
\(700\) −1.06024e18 −0.340618
\(701\) −4.81575e17 −0.153284 −0.0766421 0.997059i \(-0.524420\pi\)
−0.0766421 + 0.997059i \(0.524420\pi\)
\(702\) 0 0
\(703\) −5.98865e18 −1.87120
\(704\) 6.85716e17 0.212286
\(705\) 8.31026e17 0.254909
\(706\) −3.11290e17 −0.0946093
\(707\) 6.27043e18 1.88830
\(708\) 1.63391e18 0.487541
\(709\) 8.72197e17 0.257878 0.128939 0.991653i \(-0.458843\pi\)
0.128939 + 0.991653i \(0.458843\pi\)
\(710\) 1.68278e18 0.493002
\(711\) 1.27943e18 0.371420
\(712\) −3.36766e18 −0.968741
\(713\) −1.67124e18 −0.476384
\(714\) −2.05771e18 −0.581226
\(715\) 0 0
\(716\) 2.37754e18 0.659466
\(717\) −2.55263e18 −0.701639
\(718\) −1.72889e18 −0.470933
\(719\) 6.02638e18 1.62674 0.813371 0.581745i \(-0.197630\pi\)
0.813371 + 0.581745i \(0.197630\pi\)
\(720\) −1.07581e18 −0.287788
\(721\) −7.25087e18 −1.92225
\(722\) 2.13602e18 0.561195
\(723\) −5.08536e18 −1.32411
\(724\) −4.85630e17 −0.125315
\(725\) 5.11439e17 0.130797
\(726\) 5.32291e17 0.134915
\(727\) 1.62464e18 0.408116 0.204058 0.978959i \(-0.434587\pi\)
0.204058 + 0.978959i \(0.434587\pi\)
\(728\) 0 0
\(729\) −3.93775e17 −0.0971670
\(730\) 1.27625e18 0.312131
\(731\) −5.52525e18 −1.33933
\(732\) 7.14324e18 1.71622
\(733\) −7.33094e16 −0.0174576 −0.00872878 0.999962i \(-0.502778\pi\)
−0.00872878 + 0.999962i \(0.502778\pi\)
\(734\) −1.53305e17 −0.0361852
\(735\) 1.29037e18 0.301888
\(736\) −2.94577e18 −0.683114
\(737\) 3.29028e18 0.756299
\(738\) 7.03495e17 0.160286
\(739\) 3.97098e18 0.896828 0.448414 0.893826i \(-0.351989\pi\)
0.448414 + 0.893826i \(0.351989\pi\)
\(740\) 3.66989e18 0.821574
\(741\) 0 0
\(742\) 2.37740e18 0.522971
\(743\) 5.29093e18 1.15373 0.576866 0.816839i \(-0.304275\pi\)
0.576866 + 0.816839i \(0.304275\pi\)
\(744\) 2.62356e18 0.567109
\(745\) −3.16739e18 −0.678713
\(746\) 1.20726e18 0.256448
\(747\) 2.37208e18 0.499512
\(748\) −3.74657e18 −0.782119
\(749\) 2.60797e18 0.539724
\(750\) −2.51689e18 −0.516375
\(751\) −1.90639e17 −0.0387750 −0.0193875 0.999812i \(-0.506172\pi\)
−0.0193875 + 0.999812i \(0.506172\pi\)
\(752\) 7.39863e17 0.149188
\(753\) 1.08105e19 2.16112
\(754\) 0 0
\(755\) −9.48753e16 −0.0186422
\(756\) 2.55633e18 0.497995
\(757\) 9.42837e18 1.82101 0.910507 0.413493i \(-0.135692\pi\)
0.910507 + 0.413493i \(0.135692\pi\)
\(758\) 2.63652e18 0.504872
\(759\) −4.17170e18 −0.792030
\(760\) −4.72753e18 −0.889909
\(761\) 2.31758e18 0.432548 0.216274 0.976333i \(-0.430610\pi\)
0.216274 + 0.976333i \(0.430610\pi\)
\(762\) 2.45553e18 0.454399
\(763\) 1.09008e18 0.200010
\(764\) −7.86605e18 −1.43103
\(765\) 2.87568e18 0.518730
\(766\) 1.11731e18 0.199842
\(767\) 0 0
\(768\) 9.38203e17 0.164987
\(769\) −4.69894e18 −0.819368 −0.409684 0.912228i \(-0.634361\pi\)
−0.409684 + 0.912228i \(0.634361\pi\)
\(770\) −1.68786e18 −0.291842
\(771\) −8.79094e18 −1.50724
\(772\) −9.01410e18 −1.53253
\(773\) 2.06429e16 0.00348020 0.00174010 0.999998i \(-0.499446\pi\)
0.00174010 + 0.999998i \(0.499446\pi\)
\(774\) 1.66844e18 0.278930
\(775\) −1.35091e18 −0.223957
\(776\) −3.51831e17 −0.0578406
\(777\) 1.04538e19 1.70427
\(778\) 1.55361e18 0.251174
\(779\) −7.04544e18 −1.12957
\(780\) 0 0
\(781\) 8.72771e18 1.37616
\(782\) 1.91418e18 0.299323
\(783\) −1.23312e18 −0.191229
\(784\) 1.14881e18 0.176683
\(785\) −4.59194e18 −0.700395
\(786\) 5.10362e18 0.772026
\(787\) 7.25388e18 1.08827 0.544133 0.838999i \(-0.316859\pi\)
0.544133 + 0.838999i \(0.316859\pi\)
\(788\) 9.63415e18 1.43348
\(789\) −1.06690e19 −1.57443
\(790\) −1.28809e18 −0.188526
\(791\) 1.09792e18 0.159376
\(792\) 2.44827e18 0.352489
\(793\) 0 0
\(794\) 3.29317e18 0.466424
\(795\) −8.88722e18 −1.24847
\(796\) −6.04620e18 −0.842457
\(797\) −7.12000e18 −0.984014 −0.492007 0.870591i \(-0.663737\pi\)
−0.492007 + 0.870591i \(0.663737\pi\)
\(798\) −6.22286e18 −0.853043
\(799\) −1.97768e18 −0.268908
\(800\) −2.38114e18 −0.321144
\(801\) 6.19499e18 0.828761
\(802\) 3.61020e17 0.0479069
\(803\) 6.61923e18 0.871277
\(804\) −7.43376e18 −0.970609
\(805\) −5.25688e18 −0.680855
\(806\) 0 0
\(807\) −1.59547e19 −2.03334
\(808\) 9.15692e18 1.15765
\(809\) −2.66124e18 −0.333748 −0.166874 0.985978i \(-0.553367\pi\)
−0.166874 + 0.985978i \(0.553367\pi\)
\(810\) 3.02202e18 0.375963
\(811\) −1.00968e19 −1.24609 −0.623044 0.782187i \(-0.714104\pi\)
−0.623044 + 0.782187i \(0.714104\pi\)
\(812\) −2.99972e18 −0.367254
\(813\) 1.34687e19 1.63583
\(814\) −3.12237e18 −0.376206
\(815\) 4.00071e18 0.478203
\(816\) 6.84830e18 0.812076
\(817\) −1.67093e19 −1.96569
\(818\) −9.69426e17 −0.113141
\(819\) 0 0
\(820\) 4.31749e18 0.495954
\(821\) 9.92737e18 1.13137 0.565684 0.824622i \(-0.308612\pi\)
0.565684 + 0.824622i \(0.308612\pi\)
\(822\) −1.31558e18 −0.148748
\(823\) −4.52749e18 −0.507877 −0.253938 0.967220i \(-0.581726\pi\)
−0.253938 + 0.967220i \(0.581726\pi\)
\(824\) −1.05887e19 −1.17846
\(825\) −3.37209e18 −0.372348
\(826\) −1.75175e18 −0.191912
\(827\) −1.50983e19 −1.64113 −0.820564 0.571555i \(-0.806340\pi\)
−0.820564 + 0.571555i \(0.806340\pi\)
\(828\) 3.52357e18 0.380002
\(829\) −1.32631e19 −1.41919 −0.709597 0.704608i \(-0.751123\pi\)
−0.709597 + 0.704608i \(0.751123\pi\)
\(830\) −2.38814e18 −0.253544
\(831\) 2.25547e19 2.37591
\(832\) 0 0
\(833\) −3.07083e18 −0.318466
\(834\) −4.04791e17 −0.0416535
\(835\) 1.24032e19 1.26640
\(836\) −1.13303e19 −1.14789
\(837\) 3.25714e18 0.327432
\(838\) 2.65632e18 0.264968
\(839\) 7.44149e18 0.736558 0.368279 0.929715i \(-0.379947\pi\)
0.368279 + 0.929715i \(0.379947\pi\)
\(840\) 8.25239e18 0.810521
\(841\) −8.81362e18 −0.858975
\(842\) 2.15603e17 0.0208510
\(843\) −1.06151e19 −1.01869
\(844\) −4.43352e18 −0.422205
\(845\) 0 0
\(846\) 5.97196e17 0.0560027
\(847\) 3.47885e18 0.323738
\(848\) −7.91229e18 −0.730684
\(849\) 1.66679e19 1.52750
\(850\) 1.54728e18 0.140717
\(851\) −9.72467e18 −0.877673
\(852\) −1.97186e19 −1.76612
\(853\) −2.21083e18 −0.196511 −0.0982554 0.995161i \(-0.531326\pi\)
−0.0982554 + 0.995161i \(0.531326\pi\)
\(854\) −7.65847e18 −0.675563
\(855\) 8.69655e18 0.761320
\(856\) 3.80851e18 0.330884
\(857\) −4.25774e18 −0.367117 −0.183558 0.983009i \(-0.558762\pi\)
−0.183558 + 0.983009i \(0.558762\pi\)
\(858\) 0 0
\(859\) 5.49014e18 0.466260 0.233130 0.972446i \(-0.425103\pi\)
0.233130 + 0.972446i \(0.425103\pi\)
\(860\) 1.02396e19 0.863062
\(861\) 1.22985e19 1.02881
\(862\) 4.57676e17 0.0379980
\(863\) 1.00892e19 0.831352 0.415676 0.909513i \(-0.363545\pi\)
0.415676 + 0.909513i \(0.363545\pi\)
\(864\) 5.74113e18 0.469524
\(865\) 5.89990e18 0.478895
\(866\) 3.25048e17 0.0261868
\(867\) −2.50119e18 −0.199997
\(868\) 7.92339e18 0.628830
\(869\) −6.68067e18 −0.526249
\(870\) −1.83951e18 −0.143823
\(871\) 0 0
\(872\) 1.59189e18 0.122618
\(873\) 6.47212e17 0.0494828
\(874\) 5.78882e18 0.439305
\(875\) −1.64494e19 −1.23908
\(876\) −1.49549e19 −1.11817
\(877\) 1.32246e18 0.0981489 0.0490745 0.998795i \(-0.484373\pi\)
0.0490745 + 0.998795i \(0.484373\pi\)
\(878\) 7.02321e18 0.517394
\(879\) 1.02503e19 0.749564
\(880\) 5.61742e18 0.407755
\(881\) 2.18433e19 1.57389 0.786947 0.617021i \(-0.211661\pi\)
0.786947 + 0.617021i \(0.211661\pi\)
\(882\) 9.27289e17 0.0663238
\(883\) 1.53200e19 1.08772 0.543858 0.839177i \(-0.316963\pi\)
0.543858 + 0.839177i \(0.316963\pi\)
\(884\) 0 0
\(885\) 6.54842e18 0.458147
\(886\) −6.49193e17 −0.0450873
\(887\) 6.60099e18 0.455098 0.227549 0.973767i \(-0.426929\pi\)
0.227549 + 0.973767i \(0.426929\pi\)
\(888\) 1.52661e19 1.04482
\(889\) 1.60484e19 1.09036
\(890\) −6.23693e18 −0.420665
\(891\) 1.56736e19 1.04946
\(892\) −2.94480e18 −0.195742
\(893\) −5.98086e18 −0.394665
\(894\) −6.08850e18 −0.398856
\(895\) 9.52876e18 0.619707
\(896\) 1.79180e19 1.15688
\(897\) 0 0
\(898\) 8.02996e18 0.510996
\(899\) −3.82209e18 −0.241470
\(900\) 2.84819e18 0.178646
\(901\) 2.11499e19 1.31703
\(902\) −3.67336e18 −0.227102
\(903\) 2.91678e19 1.79033
\(904\) 1.60332e18 0.0977072
\(905\) −1.94632e18 −0.117760
\(906\) −1.82373e17 −0.0109554
\(907\) −1.69955e19 −1.01365 −0.506824 0.862050i \(-0.669181\pi\)
−0.506824 + 0.862050i \(0.669181\pi\)
\(908\) −2.70064e18 −0.159922
\(909\) −1.68447e19 −0.990370
\(910\) 0 0
\(911\) −1.07698e19 −0.624223 −0.312112 0.950045i \(-0.601036\pi\)
−0.312112 + 0.950045i \(0.601036\pi\)
\(912\) 2.07104e19 1.19185
\(913\) −1.23860e19 −0.707738
\(914\) 5.57835e18 0.316487
\(915\) 2.86289e19 1.61275
\(916\) −6.36354e17 −0.0355941
\(917\) 3.33553e19 1.85253
\(918\) −3.73063e18 −0.205733
\(919\) 2.38881e18 0.130807 0.0654035 0.997859i \(-0.479167\pi\)
0.0654035 + 0.997859i \(0.479167\pi\)
\(920\) −7.67679e18 −0.417406
\(921\) 1.69323e19 0.914174
\(922\) 8.09883e18 0.434181
\(923\) 0 0
\(924\) 1.97782e19 1.04549
\(925\) −7.86070e18 −0.412610
\(926\) 1.51946e18 0.0791985
\(927\) 1.94785e19 1.00818
\(928\) −6.73692e18 −0.346258
\(929\) −2.62065e19 −1.33754 −0.668771 0.743468i \(-0.733180\pi\)
−0.668771 + 0.743468i \(0.733180\pi\)
\(930\) 4.85886e18 0.246261
\(931\) −9.28671e18 −0.467400
\(932\) 2.22362e19 1.11137
\(933\) 4.46438e19 2.21580
\(934\) 9.64834e18 0.475552
\(935\) −1.50156e19 −0.734966
\(936\) 0 0
\(937\) −1.48285e19 −0.715799 −0.357899 0.933760i \(-0.616507\pi\)
−0.357899 + 0.933760i \(0.616507\pi\)
\(938\) 7.96994e18 0.382064
\(939\) −1.35566e18 −0.0645392
\(940\) 3.66511e18 0.173283
\(941\) 1.63127e19 0.765938 0.382969 0.923761i \(-0.374902\pi\)
0.382969 + 0.923761i \(0.374902\pi\)
\(942\) −8.82681e18 −0.411598
\(943\) −1.14407e19 −0.529819
\(944\) 5.83006e18 0.268136
\(945\) 1.02453e19 0.467971
\(946\) −8.71192e18 −0.395204
\(947\) 1.32279e19 0.595958 0.297979 0.954572i \(-0.403687\pi\)
0.297979 + 0.954572i \(0.403687\pi\)
\(948\) 1.50937e19 0.675370
\(949\) 0 0
\(950\) 4.67925e18 0.206525
\(951\) −3.81735e19 −1.67336
\(952\) −1.96391e19 −0.855031
\(953\) −1.23625e19 −0.534566 −0.267283 0.963618i \(-0.586126\pi\)
−0.267283 + 0.963618i \(0.586126\pi\)
\(954\) −6.38657e18 −0.274286
\(955\) −3.15258e19 −1.34476
\(956\) −1.12580e19 −0.476963
\(957\) −9.54059e18 −0.401465
\(958\) 1.46058e18 0.0610449
\(959\) −8.59813e18 −0.356930
\(960\) −6.20912e18 −0.256016
\(961\) −1.43220e19 −0.586544
\(962\) 0 0
\(963\) −7.00597e18 −0.283072
\(964\) −2.24282e19 −0.900107
\(965\) −3.61270e19 −1.44014
\(966\) −1.01050e19 −0.400115
\(967\) 2.63801e18 0.103754 0.0518770 0.998653i \(-0.483480\pi\)
0.0518770 + 0.998653i \(0.483480\pi\)
\(968\) 5.08028e18 0.198471
\(969\) −5.53599e19 −2.14828
\(970\) −6.51594e17 −0.0251166
\(971\) −3.26457e19 −1.24997 −0.624986 0.780636i \(-0.714895\pi\)
−0.624986 + 0.780636i \(0.714895\pi\)
\(972\) −2.39098e19 −0.909379
\(973\) −2.64556e18 −0.0999503
\(974\) −1.26833e19 −0.475991
\(975\) 0 0
\(976\) 2.54883e19 0.943882
\(977\) −7.67549e18 −0.282352 −0.141176 0.989984i \(-0.545088\pi\)
−0.141176 + 0.989984i \(0.545088\pi\)
\(978\) 7.69033e18 0.281023
\(979\) −3.23477e19 −1.17424
\(980\) 5.69096e18 0.205218
\(981\) −2.92837e18 −0.104900
\(982\) −1.04097e19 −0.370436
\(983\) −5.57748e18 −0.197170 −0.0985848 0.995129i \(-0.531432\pi\)
−0.0985848 + 0.995129i \(0.531432\pi\)
\(984\) 1.79600e19 0.630721
\(985\) 3.86121e19 1.34706
\(986\) 4.37770e18 0.151721
\(987\) 1.04402e19 0.359458
\(988\) 0 0
\(989\) −2.71334e19 −0.921994
\(990\) 4.53422e18 0.153064
\(991\) −1.13219e19 −0.379701 −0.189850 0.981813i \(-0.560800\pi\)
−0.189850 + 0.981813i \(0.560800\pi\)
\(992\) 1.77948e19 0.592879
\(993\) −3.15945e19 −1.04578
\(994\) 2.11409e19 0.695203
\(995\) −2.42322e19 −0.791666
\(996\) 2.79839e19 0.908287
\(997\) −4.27955e19 −1.38000 −0.690001 0.723809i \(-0.742390\pi\)
−0.690001 + 0.723809i \(0.742390\pi\)
\(998\) −7.69998e18 −0.246684
\(999\) 1.89528e19 0.603250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.14.a.e.1.9 14
13.3 even 3 13.14.c.a.9.6 yes 28
13.9 even 3 13.14.c.a.3.6 28
13.12 even 2 169.14.a.c.1.6 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.14.c.a.3.6 28 13.9 even 3
13.14.c.a.9.6 yes 28 13.3 even 3
169.14.a.c.1.6 14 13.12 even 2
169.14.a.e.1.9 14 1.1 even 1 trivial