Properties

Label 16830.2.a.bs
Level $16830$
Weight $2$
Character orbit 16830.a
Self dual yes
Analytic conductor $134.388$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [16830,2,Mod(1,16830)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("16830.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(16830, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 16830 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 16830.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,0,1,-1,0,2,1,0,-1,-1,0,-4,2,0,1,-1,0,-8,-1,0,-1,8,0,1,-4, 0,2,2,0,0,1,0,-1,-2,0,2,-8,0,-1,-8,0,6,-1,0,8,8,0,-3,1,0,-4,-2,0,1,2,0, 2,14,0,-14,0,0,1,4,0,-14,-1,0,-2,14,0,0,2,0,-8,-2,0,16,-1,0,-8,0,0,1,6, 0,-1,10,0,-8,8,0,8,8,0,-8,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(134.388226602\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{4} - q^{5} + 2 q^{7} + q^{8} - q^{10} - q^{11} - 4 q^{13} + 2 q^{14} + q^{16} - q^{17} - 8 q^{19} - q^{20} - q^{22} + 8 q^{23} + q^{25} - 4 q^{26} + 2 q^{28} + 2 q^{29} + q^{32}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)
\(17\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.