Defining parameters
| Level: | \( N \) | \(=\) | \( 16830 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 16830.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 137 \) | ||
| Sturm bound: | \(7776\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(16830))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 3920 | 272 | 3648 |
| Cusp forms | 3857 | 272 | 3585 |
| Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(11\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(107\) | \(5\) | \(102\) | \(106\) | \(5\) | \(101\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(131\) | \(8\) | \(123\) | \(129\) | \(8\) | \(121\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(137\) | \(9\) | \(128\) | \(135\) | \(9\) | \(126\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(115\) | \(6\) | \(109\) | \(113\) | \(6\) | \(107\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(131\) | \(7\) | \(124\) | \(129\) | \(7\) | \(122\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(121\) | \(6\) | \(115\) | \(119\) | \(6\) | \(113\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(115\) | \(7\) | \(108\) | \(113\) | \(7\) | \(106\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(123\) | \(8\) | \(115\) | \(121\) | \(8\) | \(113\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(126\) | \(10\) | \(116\) | \(124\) | \(10\) | \(114\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(123\) | \(10\) | \(113\) | \(121\) | \(10\) | \(111\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(120\) | \(8\) | \(112\) | \(118\) | \(8\) | \(110\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(121\) | \(11\) | \(110\) | \(119\) | \(11\) | \(108\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(119\) | \(11\) | \(108\) | \(117\) | \(11\) | \(106\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(122\) | \(10\) | \(112\) | \(120\) | \(10\) | \(110\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(125\) | \(11\) | \(114\) | \(123\) | \(11\) | \(112\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(124\) | \(9\) | \(115\) | \(122\) | \(9\) | \(113\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(119\) | \(8\) | \(111\) | \(117\) | \(8\) | \(109\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(125\) | \(7\) | \(118\) | \(123\) | \(7\) | \(116\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(125\) | \(6\) | \(119\) | \(123\) | \(6\) | \(117\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(121\) | \(7\) | \(114\) | \(119\) | \(7\) | \(112\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(133\) | \(6\) | \(127\) | \(131\) | \(6\) | \(125\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(113\) | \(9\) | \(104\) | \(111\) | \(9\) | \(102\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(113\) | \(8\) | \(105\) | \(111\) | \(8\) | \(103\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(131\) | \(5\) | \(126\) | \(129\) | \(5\) | \(124\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(124\) | \(10\) | \(114\) | \(122\) | \(10\) | \(112\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(125\) | \(9\) | \(116\) | \(123\) | \(9\) | \(114\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(122\) | \(11\) | \(111\) | \(120\) | \(11\) | \(109\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(119\) | \(9\) | \(110\) | \(117\) | \(9\) | \(108\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(121\) | \(10\) | \(111\) | \(119\) | \(10\) | \(109\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(120\) | \(10\) | \(110\) | \(118\) | \(10\) | \(108\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(123\) | \(9\) | \(114\) | \(121\) | \(9\) | \(112\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(126\) | \(12\) | \(114\) | \(124\) | \(12\) | \(112\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(1944\) | \(124\) | \(1820\) | \(1913\) | \(124\) | \(1789\) | \(31\) | \(0\) | \(31\) | |||||||
| Minus space | \(-\) | \(1976\) | \(148\) | \(1828\) | \(1944\) | \(148\) | \(1796\) | \(32\) | \(0\) | \(32\) | |||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(16830))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 11 | 17 | |||||||
| 16830.2.a.a | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-4\) | $+$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-4q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.b | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-4\) | $+$ | $-$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-4q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.c | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-4\) | $+$ | $-$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-4q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.d | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-4\) | $+$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-4q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.e | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.f | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.g | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.h | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.i | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}-q^{11}+\cdots\) | |
| 16830.2.a.j | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}-q^{11}+\cdots\) | |
| 16830.2.a.k | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}+q^{11}+\cdots\) | |
| 16830.2.a.l | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}+q^{11}+\cdots\) | |
| 16830.2.a.m | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(1\) | $+$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.n | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(1\) | $+$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.o | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(1\) | $+$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.p | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(2\) | $+$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+2q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.q | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(3\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+3q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.r | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(3\) | $+$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+3q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.s | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(4\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}-q^{5}+4q^{7}-q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.t | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-4\) | $+$ | $-$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.u | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-4\) | $+$ | $-$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.v | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-4\) | $+$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.w | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-4\) | $+$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.x | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-4\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.y | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-2\) | $+$ | $-$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-2q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.z | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.ba | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bb | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bc | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bd | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-q^{8}-q^{10}-q^{11}+\cdots\) | |
| 16830.2.a.be | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(4\) | $+$ | $-$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bf | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(4\) | $+$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bg | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(4\) | $+$ | $-$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bh | $1$ | $134.388$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(5\) | $+$ | $-$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}+q^{5}+5q^{7}-q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bi | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-4\) | $-$ | $+$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}-4q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bj | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-4\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}-4q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bk | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-4\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-4q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bl | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-4\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-4q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bm | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-3\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-3q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bn | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}-q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bo | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bp | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{4}-q^{5}-q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bq | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+q^{8}-q^{10}-q^{11}+\cdots\) | |
| 16830.2.a.br | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+q^{8}-q^{10}+q^{11}+\cdots\) | |
| 16830.2.a.bs | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(2\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}+2q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bt | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(2\) | $-$ | $-$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{4}-q^{5}+2q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bu | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(2\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+2q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bv | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(3\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+3q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bw | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(4\) | $-$ | $+$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}+4q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.bx | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(4\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+4q^{7}+q^{8}-q^{10}+\cdots\) | |
| 16830.2.a.by | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-4\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-4q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.bz | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-4\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-4q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.ca | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-4\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-4q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cb | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-3\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-3q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cc | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-3\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-3q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cd | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-2\) | $-$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-2q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.ce | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-2\) | $-$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-2q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cf | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-2\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-2q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cg | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.ch | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-q^{11}+\cdots\) | |
| 16830.2.a.ci | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-q^{11}+\cdots\) | |
| 16830.2.a.cj | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-q^{11}+\cdots\) | |
| 16830.2.a.ck | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+q^{11}+\cdots\) | |
| 16830.2.a.cl | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+q^{11}+\cdots\) | |
| 16830.2.a.cm | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+q^{11}+\cdots\) | |
| 16830.2.a.cn | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+q^{11}+\cdots\) | |
| 16830.2.a.co | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+q^{11}+\cdots\) | |
| 16830.2.a.cp | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+q^{11}+\cdots\) | |
| 16830.2.a.cq | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cr | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cs | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.ct | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cu | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cv | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(2\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cw | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(3\) | $-$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+3q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cx | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(3\) | $-$ | $+$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+3q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cy | $1$ | $134.388$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(4\) | $-$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+4q^{7}+q^{8}+q^{10}+\cdots\) | |
| 16830.2.a.cz | $2$ | $134.388$ | \(\Q(\sqrt{41}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-3\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
| 16830.2.a.da | $2$ | $134.388$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(0\) | \(-2\) | \(0\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
| 16830.2.a.db | $2$ | $134.388$ | \(\Q(\sqrt{33}) \) | None | \(-2\) | \(0\) | \(-2\) | \(1\) | $+$ | $-$ | $+$ | $+$ | $+$ | ||
| 16830.2.a.dc | $2$ | $134.388$ | \(\Q(\sqrt{41}) \) | None | \(-2\) | \(0\) | \(2\) | \(-3\) | $+$ | $+$ | $-$ | $+$ | $-$ | ||
| 16830.2.a.dd | $2$ | $134.388$ | \(\Q(\sqrt{33}) \) | None | \(-2\) | \(0\) | \(2\) | \(-1\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
| 16830.2.a.de | $2$ | $134.388$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
| 16830.2.a.df | $2$ | $134.388$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $-$ | ||
| 16830.2.a.dg | $2$ | $134.388$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
| 16830.2.a.dh | $2$ | $134.388$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(2\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
| 16830.2.a.di | $2$ | $134.388$ | \(\Q(\sqrt{41}) \) | None | \(2\) | \(0\) | \(-2\) | \(-3\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 16830.2.a.dj | $2$ | $134.388$ | \(\Q(\sqrt{33}) \) | None | \(2\) | \(0\) | \(-2\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 16830.2.a.dk | $2$ | $134.388$ | \(\Q(\sqrt{33}) \) | None | \(2\) | \(0\) | \(-2\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
| 16830.2.a.dl | $2$ | $134.388$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(0\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 16830.2.a.dm | $2$ | $134.388$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-2\) | \(2\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 16830.2.a.dn | $2$ | $134.388$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(0\) | \(-2\) | \(2\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 16830.2.a.do | $2$ | $134.388$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(0\) | \(2\) | \(-2\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
| 16830.2.a.dp | $2$ | $134.388$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(0\) | \(2\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
| 16830.2.a.dq | $2$ | $134.388$ | \(\Q(\sqrt{41}) \) | None | \(2\) | \(0\) | \(2\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
| 16830.2.a.dr | $2$ | $134.388$ | \(\Q(\sqrt{33}) \) | None | \(2\) | \(0\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
| 16830.2.a.ds | $2$ | $134.388$ | \(\Q(\sqrt{13}) \) | None | \(2\) | \(0\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
| 16830.2.a.dt | $3$ | $134.388$ | 3.3.148.1 | None | \(-3\) | \(0\) | \(-3\) | \(-6\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
| 16830.2.a.du | $3$ | $134.388$ | 3.3.2089.1 | None | \(-3\) | \(0\) | \(-3\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | $-$ | ||
| 16830.2.a.dv | $3$ | $134.388$ | \(\Q(\zeta_{14})^+\) | None | \(-3\) | \(0\) | \(-3\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
| 16830.2.a.dw | $3$ | $134.388$ | 3.3.1396.1 | None | \(-3\) | \(0\) | \(-3\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $-$ | ||
| 16830.2.a.dx | $3$ | $134.388$ | 3.3.756.1 | None | \(-3\) | \(0\) | \(-3\) | \(6\) | $+$ | $+$ | $+$ | $+$ | $-$ | ||
| 16830.2.a.dy | $3$ | $134.388$ | 3.3.940.1 | None | \(-3\) | \(0\) | \(3\) | \(-2\) | $+$ | $-$ | $-$ | $-$ | $-$ | ||
| 16830.2.a.dz | $3$ | $134.388$ | 3.3.2089.1 | None | \(-3\) | \(0\) | \(3\) | \(1\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
| 16830.2.a.ea | $3$ | $134.388$ | 3.3.148.1 | None | \(-3\) | \(0\) | \(3\) | \(2\) | $+$ | $+$ | $-$ | $+$ | $-$ | ||
| 16830.2.a.eb | $3$ | $134.388$ | 3.3.1101.1 | None | \(-3\) | \(0\) | \(3\) | \(5\) | $+$ | $+$ | $-$ | $+$ | $+$ | ||
| 16830.2.a.ec | $3$ | $134.388$ | 3.3.148.1 | None | \(3\) | \(0\) | \(-3\) | \(-4\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 16830.2.a.ed | $3$ | $134.388$ | 3.3.148.1 | None | \(3\) | \(0\) | \(-3\) | \(-4\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 16830.2.a.ee | $3$ | $134.388$ | 3.3.961.1 | None | \(3\) | \(0\) | \(-3\) | \(1\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 16830.2.a.ef | $3$ | $134.388$ | 3.3.148.1 | None | \(3\) | \(0\) | \(-3\) | \(2\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 16830.2.a.eg | $3$ | $134.388$ | 3.3.2089.1 | None | \(3\) | \(0\) | \(-3\) | \(3\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 16830.2.a.eh | $3$ | $134.388$ | 3.3.1101.1 | None | \(3\) | \(0\) | \(-3\) | \(5\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 16830.2.a.ei | $3$ | $134.388$ | 3.3.756.1 | None | \(3\) | \(0\) | \(-3\) | \(6\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 16830.2.a.ej | $3$ | $134.388$ | 3.3.2089.1 | None | \(3\) | \(0\) | \(3\) | \(-2\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
| 16830.2.a.ek | $3$ | $134.388$ | 3.3.1396.1 | None | \(3\) | \(0\) | \(3\) | \(0\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
| 16830.2.a.el | $3$ | $134.388$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(3\) | \(0\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
| 16830.2.a.em | $3$ | $134.388$ | 3.3.564.1 | None | \(3\) | \(0\) | \(3\) | \(2\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
| 16830.2.a.en | $3$ | $134.388$ | 3.3.756.1 | None | \(3\) | \(0\) | \(3\) | \(6\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
| 16830.2.a.eo | $4$ | $134.388$ | 4.4.25492.1 | None | \(-4\) | \(0\) | \(-4\) | \(0\) | $+$ | $-$ | $+$ | $+$ | $-$ | ||
| 16830.2.a.ep | $4$ | $134.388$ | 4.4.23252.1 | None | \(-4\) | \(0\) | \(4\) | \(-4\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
| 16830.2.a.eq | $4$ | $134.388$ | 4.4.25492.1 | None | \(-4\) | \(0\) | \(4\) | \(1\) | $+$ | $+$ | $-$ | $+$ | $+$ | ||
| 16830.2.a.er | $4$ | $134.388$ | 4.4.65905.1 | None | \(-4\) | \(0\) | \(4\) | \(1\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
| 16830.2.a.es | $4$ | $134.388$ | 4.4.17428.1 | None | \(-4\) | \(0\) | \(4\) | \(2\) | $+$ | $-$ | $-$ | $+$ | $+$ | ||
| 16830.2.a.et | $4$ | $134.388$ | 4.4.145108.1 | None | \(-4\) | \(0\) | \(4\) | \(3\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
| 16830.2.a.eu | $4$ | $134.388$ | 4.4.54764.1 | None | \(-4\) | \(0\) | \(4\) | \(4\) | $+$ | $-$ | $-$ | $+$ | $+$ | ||
| 16830.2.a.ev | $4$ | $134.388$ | 4.4.2777.1 | None | \(4\) | \(0\) | \(-4\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 16830.2.a.ew | $4$ | $134.388$ | 4.4.25492.1 | None | \(4\) | \(0\) | \(-4\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 16830.2.a.ex | $4$ | $134.388$ | 4.4.145108.1 | None | \(4\) | \(0\) | \(-4\) | \(3\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
| 16830.2.a.ey | $4$ | $134.388$ | 4.4.17428.1 | None | \(4\) | \(0\) | \(4\) | \(5\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
| 16830.2.a.ez | $5$ | $134.388$ | 5.5.1284160.1 | None | \(-5\) | \(0\) | \(-5\) | \(1\) | $+$ | $-$ | $+$ | $+$ | $+$ | ||
| 16830.2.a.fa | $5$ | $134.388$ | 5.5.18569692.1 | None | \(-5\) | \(0\) | \(-5\) | \(2\) | $+$ | $-$ | $+$ | $+$ | $-$ | ||
| 16830.2.a.fb | $5$ | $134.388$ | 5.5.19985813.1 | None | \(-5\) | \(0\) | \(-5\) | \(2\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
| 16830.2.a.fc | $5$ | $134.388$ | 5.5.3102944.1 | None | \(5\) | \(0\) | \(5\) | \(-8\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
| 16830.2.a.fd | $6$ | $134.388$ | 6.6.133649728.1 | None | \(-6\) | \(0\) | \(6\) | \(2\) | $+$ | $+$ | $-$ | $-$ | $+$ | ||
| 16830.2.a.fe | $6$ | $134.388$ | 6.6.133649728.1 | None | \(6\) | \(0\) | \(-6\) | \(2\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 16830.2.a.ff | $8$ | $134.388$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(0\) | \(-8\) | \(1\) | $+$ | $+$ | $+$ | $-$ | $+$ | ||
| 16830.2.a.fg | $8$ | $134.388$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(8\) | \(0\) | \(8\) | \(1\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(16830))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(16830)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(187))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(306))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(374))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(495))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(510))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(561))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(765))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(935))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(990))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1122))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1530))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1683))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1870))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2805))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3366))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5610))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8415))\)\(^{\oplus 2}\)