Properties

Label 1680.3.l.b.1121.11
Level $1680$
Weight $3$
Character 1680.1121
Analytic conductor $45.777$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(1121,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.1121"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,8,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 37 x^{14} - 116 x^{13} + 298 x^{12} - 548 x^{11} + 267 x^{10} + 3264 x^{9} + \cdots + 43046721 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.11
Root \(1.83120 - 2.37628i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1121
Dual form 1680.3.l.b.1121.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.83120 - 2.37628i) q^{3} +2.23607i q^{5} +2.64575 q^{7} +(-2.29343 - 8.70288i) q^{9} +19.2815i q^{11} -5.14247 q^{13} +(5.31353 + 4.09468i) q^{15} +2.27339i q^{17} -19.4150 q^{19} +(4.84489 - 6.28705i) q^{21} +4.35527i q^{23} -5.00000 q^{25} +(-24.8802 - 10.4869i) q^{27} -0.296771i q^{29} -49.1895 q^{31} +(45.8183 + 35.3083i) q^{33} +5.91608i q^{35} -36.4996 q^{37} +(-9.41688 + 12.2200i) q^{39} -66.2231i q^{41} -41.1470 q^{43} +(19.4602 - 5.12826i) q^{45} +39.7444i q^{47} +7.00000 q^{49} +(5.40223 + 4.16304i) q^{51} -47.0397i q^{53} -43.1148 q^{55} +(-35.5526 + 46.1354i) q^{57} -35.5445i q^{59} -64.1701 q^{61} +(-6.06784 - 23.0257i) q^{63} -11.4989i q^{65} -116.159 q^{67} +(10.3493 + 7.97536i) q^{69} +102.295i q^{71} +82.3841 q^{73} +(-9.15599 + 11.8814i) q^{75} +51.0141i q^{77} +76.4237 q^{79} +(-70.4804 + 39.9189i) q^{81} +7.12740i q^{83} -5.08346 q^{85} +(-0.705211 - 0.543446i) q^{87} -12.7853i q^{89} -13.6057 q^{91} +(-90.0757 + 116.888i) q^{93} -43.4132i q^{95} -164.329 q^{97} +(167.805 - 44.2208i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{3} - 10 q^{9} - 10 q^{15} - 48 q^{19} - 14 q^{21} - 80 q^{25} - 28 q^{27} - 24 q^{31} + 92 q^{33} - 40 q^{37} + 54 q^{39} + 168 q^{43} + 40 q^{45} + 112 q^{49} + 186 q^{51} + 80 q^{55} + 252 q^{57}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.83120 2.37628i 0.610399 0.792094i
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) 0 0
\(9\) −2.29343 8.70288i −0.254825 0.966987i
\(10\) 0 0
\(11\) 19.2815i 1.75287i 0.481524 + 0.876433i \(0.340083\pi\)
−0.481524 + 0.876433i \(0.659917\pi\)
\(12\) 0 0
\(13\) −5.14247 −0.395574 −0.197787 0.980245i \(-0.563376\pi\)
−0.197787 + 0.980245i \(0.563376\pi\)
\(14\) 0 0
\(15\) 5.31353 + 4.09468i 0.354235 + 0.272979i
\(16\) 0 0
\(17\) 2.27339i 0.133729i 0.997762 + 0.0668645i \(0.0212995\pi\)
−0.997762 + 0.0668645i \(0.978700\pi\)
\(18\) 0 0
\(19\) −19.4150 −1.02184 −0.510920 0.859628i \(-0.670695\pi\)
−0.510920 + 0.859628i \(0.670695\pi\)
\(20\) 0 0
\(21\) 4.84489 6.28705i 0.230709 0.299383i
\(22\) 0 0
\(23\) 4.35527i 0.189359i 0.995508 + 0.0946797i \(0.0301827\pi\)
−0.995508 + 0.0946797i \(0.969817\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) −24.8802 10.4869i −0.921490 0.388403i
\(28\) 0 0
\(29\) 0.296771i 0.0102335i −0.999987 0.00511674i \(-0.998371\pi\)
0.999987 0.00511674i \(-0.00162871\pi\)
\(30\) 0 0
\(31\) −49.1895 −1.58676 −0.793379 0.608728i \(-0.791680\pi\)
−0.793379 + 0.608728i \(0.791680\pi\)
\(32\) 0 0
\(33\) 45.8183 + 35.3083i 1.38843 + 1.06995i
\(34\) 0 0
\(35\) 5.91608i 0.169031i
\(36\) 0 0
\(37\) −36.4996 −0.986476 −0.493238 0.869894i \(-0.664187\pi\)
−0.493238 + 0.869894i \(0.664187\pi\)
\(38\) 0 0
\(39\) −9.41688 + 12.2200i −0.241458 + 0.313332i
\(40\) 0 0
\(41\) 66.2231i 1.61520i −0.589733 0.807598i \(-0.700767\pi\)
0.589733 0.807598i \(-0.299233\pi\)
\(42\) 0 0
\(43\) −41.1470 −0.956906 −0.478453 0.878113i \(-0.658802\pi\)
−0.478453 + 0.878113i \(0.658802\pi\)
\(44\) 0 0
\(45\) 19.4602 5.12826i 0.432450 0.113961i
\(46\) 0 0
\(47\) 39.7444i 0.845626i 0.906217 + 0.422813i \(0.138957\pi\)
−0.906217 + 0.422813i \(0.861043\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 5.40223 + 4.16304i 0.105926 + 0.0816282i
\(52\) 0 0
\(53\) 47.0397i 0.887541i −0.896140 0.443771i \(-0.853641\pi\)
0.896140 0.443771i \(-0.146359\pi\)
\(54\) 0 0
\(55\) −43.1148 −0.783905
\(56\) 0 0
\(57\) −35.5526 + 46.1354i −0.623730 + 0.809393i
\(58\) 0 0
\(59\) 35.5445i 0.602449i −0.953553 0.301224i \(-0.902605\pi\)
0.953553 0.301224i \(-0.0973953\pi\)
\(60\) 0 0
\(61\) −64.1701 −1.05197 −0.525985 0.850494i \(-0.676303\pi\)
−0.525985 + 0.850494i \(0.676303\pi\)
\(62\) 0 0
\(63\) −6.06784 23.0257i −0.0963149 0.365487i
\(64\) 0 0
\(65\) 11.4989i 0.176906i
\(66\) 0 0
\(67\) −116.159 −1.73372 −0.866861 0.498549i \(-0.833866\pi\)
−0.866861 + 0.498549i \(0.833866\pi\)
\(68\) 0 0
\(69\) 10.3493 + 7.97536i 0.149990 + 0.115585i
\(70\) 0 0
\(71\) 102.295i 1.44077i 0.693574 + 0.720385i \(0.256035\pi\)
−0.693574 + 0.720385i \(0.743965\pi\)
\(72\) 0 0
\(73\) 82.3841 1.12855 0.564275 0.825587i \(-0.309156\pi\)
0.564275 + 0.825587i \(0.309156\pi\)
\(74\) 0 0
\(75\) −9.15599 + 11.8814i −0.122080 + 0.158419i
\(76\) 0 0
\(77\) 51.0141i 0.662521i
\(78\) 0 0
\(79\) 76.4237 0.967389 0.483694 0.875237i \(-0.339295\pi\)
0.483694 + 0.875237i \(0.339295\pi\)
\(80\) 0 0
\(81\) −70.4804 + 39.9189i −0.870128 + 0.492826i
\(82\) 0 0
\(83\) 7.12740i 0.0858723i 0.999078 + 0.0429361i \(0.0136712\pi\)
−0.999078 + 0.0429361i \(0.986329\pi\)
\(84\) 0 0
\(85\) −5.08346 −0.0598055
\(86\) 0 0
\(87\) −0.705211 0.543446i −0.00810587 0.00624650i
\(88\) 0 0
\(89\) 12.7853i 0.143655i −0.997417 0.0718274i \(-0.977117\pi\)
0.997417 0.0718274i \(-0.0228831\pi\)
\(90\) 0 0
\(91\) −13.6057 −0.149513
\(92\) 0 0
\(93\) −90.0757 + 116.888i −0.968556 + 1.25686i
\(94\) 0 0
\(95\) 43.4132i 0.456981i
\(96\) 0 0
\(97\) −164.329 −1.69412 −0.847059 0.531499i \(-0.821629\pi\)
−0.847059 + 0.531499i \(0.821629\pi\)
\(98\) 0 0
\(99\) 167.805 44.2208i 1.69500 0.446675i
\(100\) 0 0
\(101\) 128.611i 1.27337i −0.771123 0.636686i \(-0.780305\pi\)
0.771123 0.636686i \(-0.219695\pi\)
\(102\) 0 0
\(103\) 85.6904 0.831946 0.415973 0.909377i \(-0.363441\pi\)
0.415973 + 0.909377i \(0.363441\pi\)
\(104\) 0 0
\(105\) 14.0583 + 10.8335i 0.133888 + 0.103176i
\(106\) 0 0
\(107\) 56.4021i 0.527123i 0.964643 + 0.263561i \(0.0848971\pi\)
−0.964643 + 0.263561i \(0.915103\pi\)
\(108\) 0 0
\(109\) 95.6789 0.877788 0.438894 0.898539i \(-0.355370\pi\)
0.438894 + 0.898539i \(0.355370\pi\)
\(110\) 0 0
\(111\) −66.8380 + 86.7334i −0.602145 + 0.781382i
\(112\) 0 0
\(113\) 145.741i 1.28975i 0.764289 + 0.644874i \(0.223090\pi\)
−0.764289 + 0.644874i \(0.776910\pi\)
\(114\) 0 0
\(115\) −9.73868 −0.0846841
\(116\) 0 0
\(117\) 11.7939 + 44.7543i 0.100802 + 0.382515i
\(118\) 0 0
\(119\) 6.01484i 0.0505448i
\(120\) 0 0
\(121\) −250.777 −2.07254
\(122\) 0 0
\(123\) −157.365 121.268i −1.27939 0.985915i
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 147.325 1.16004 0.580021 0.814601i \(-0.303044\pi\)
0.580021 + 0.814601i \(0.303044\pi\)
\(128\) 0 0
\(129\) −75.3482 + 97.7768i −0.584095 + 0.757960i
\(130\) 0 0
\(131\) 64.8142i 0.494765i 0.968918 + 0.247383i \(0.0795704\pi\)
−0.968918 + 0.247383i \(0.920430\pi\)
\(132\) 0 0
\(133\) −51.3671 −0.386219
\(134\) 0 0
\(135\) 23.4494 55.6339i 0.173699 0.412103i
\(136\) 0 0
\(137\) 112.339i 0.819995i −0.912087 0.409997i \(-0.865530\pi\)
0.912087 0.409997i \(-0.134470\pi\)
\(138\) 0 0
\(139\) −191.737 −1.37940 −0.689700 0.724095i \(-0.742258\pi\)
−0.689700 + 0.724095i \(0.742258\pi\)
\(140\) 0 0
\(141\) 94.4440 + 72.7799i 0.669815 + 0.516170i
\(142\) 0 0
\(143\) 99.1546i 0.693389i
\(144\) 0 0
\(145\) 0.663599 0.00457655
\(146\) 0 0
\(147\) 12.8184 16.6340i 0.0871999 0.113156i
\(148\) 0 0
\(149\) 36.0538i 0.241972i −0.992654 0.120986i \(-0.961394\pi\)
0.992654 0.120986i \(-0.0386056\pi\)
\(150\) 0 0
\(151\) 142.221 0.941862 0.470931 0.882170i \(-0.343918\pi\)
0.470931 + 0.882170i \(0.343918\pi\)
\(152\) 0 0
\(153\) 19.7851 5.21387i 0.129314 0.0340776i
\(154\) 0 0
\(155\) 109.991i 0.709620i
\(156\) 0 0
\(157\) 31.7422 0.202180 0.101090 0.994877i \(-0.467767\pi\)
0.101090 + 0.994877i \(0.467767\pi\)
\(158\) 0 0
\(159\) −111.780 86.1390i −0.703016 0.541754i
\(160\) 0 0
\(161\) 11.5230i 0.0715712i
\(162\) 0 0
\(163\) 6.49009 0.0398165 0.0199083 0.999802i \(-0.493663\pi\)
0.0199083 + 0.999802i \(0.493663\pi\)
\(164\) 0 0
\(165\) −78.9517 + 102.453i −0.478495 + 0.620927i
\(166\) 0 0
\(167\) 60.8968i 0.364652i 0.983238 + 0.182326i \(0.0583626\pi\)
−0.983238 + 0.182326i \(0.941637\pi\)
\(168\) 0 0
\(169\) −142.555 −0.843521
\(170\) 0 0
\(171\) 44.5268 + 168.966i 0.260391 + 0.988106i
\(172\) 0 0
\(173\) 330.679i 1.91144i 0.294275 + 0.955721i \(0.404922\pi\)
−0.294275 + 0.955721i \(0.595078\pi\)
\(174\) 0 0
\(175\) −13.2288 −0.0755929
\(176\) 0 0
\(177\) −84.4637 65.0890i −0.477196 0.367734i
\(178\) 0 0
\(179\) 281.089i 1.57033i 0.619288 + 0.785164i \(0.287421\pi\)
−0.619288 + 0.785164i \(0.712579\pi\)
\(180\) 0 0
\(181\) 157.168 0.868332 0.434166 0.900833i \(-0.357043\pi\)
0.434166 + 0.900833i \(0.357043\pi\)
\(182\) 0 0
\(183\) −117.508 + 152.486i −0.642121 + 0.833258i
\(184\) 0 0
\(185\) 81.6156i 0.441166i
\(186\) 0 0
\(187\) −43.8345 −0.234409
\(188\) 0 0
\(189\) −65.8269 27.7457i −0.348290 0.146802i
\(190\) 0 0
\(191\) 197.219i 1.03256i −0.856420 0.516280i \(-0.827317\pi\)
0.856420 0.516280i \(-0.172683\pi\)
\(192\) 0 0
\(193\) 165.188 0.855894 0.427947 0.903804i \(-0.359237\pi\)
0.427947 + 0.903804i \(0.359237\pi\)
\(194\) 0 0
\(195\) −27.3246 21.0568i −0.140126 0.107983i
\(196\) 0 0
\(197\) 90.3439i 0.458598i 0.973356 + 0.229299i \(0.0736434\pi\)
−0.973356 + 0.229299i \(0.926357\pi\)
\(198\) 0 0
\(199\) 9.39271 0.0471996 0.0235998 0.999721i \(-0.492487\pi\)
0.0235998 + 0.999721i \(0.492487\pi\)
\(200\) 0 0
\(201\) −212.711 + 276.028i −1.05826 + 1.37327i
\(202\) 0 0
\(203\) 0.785181i 0.00386789i
\(204\) 0 0
\(205\) 148.079 0.722338
\(206\) 0 0
\(207\) 37.9034 9.98849i 0.183108 0.0482536i
\(208\) 0 0
\(209\) 374.350i 1.79115i
\(210\) 0 0
\(211\) 220.196 1.04358 0.521792 0.853073i \(-0.325264\pi\)
0.521792 + 0.853073i \(0.325264\pi\)
\(212\) 0 0
\(213\) 243.081 + 187.322i 1.14123 + 0.879445i
\(214\) 0 0
\(215\) 92.0074i 0.427941i
\(216\) 0 0
\(217\) −130.143 −0.599738
\(218\) 0 0
\(219\) 150.862 195.768i 0.688866 0.893917i
\(220\) 0 0
\(221\) 11.6909i 0.0528998i
\(222\) 0 0
\(223\) −349.896 −1.56904 −0.784519 0.620104i \(-0.787090\pi\)
−0.784519 + 0.620104i \(0.787090\pi\)
\(224\) 0 0
\(225\) 11.4671 + 43.5144i 0.0509651 + 0.193397i
\(226\) 0 0
\(227\) 337.232i 1.48560i 0.669512 + 0.742801i \(0.266503\pi\)
−0.669512 + 0.742801i \(0.733497\pi\)
\(228\) 0 0
\(229\) −3.13719 −0.0136995 −0.00684977 0.999977i \(-0.502180\pi\)
−0.00684977 + 0.999977i \(0.502180\pi\)
\(230\) 0 0
\(231\) 121.224 + 93.4170i 0.524779 + 0.404402i
\(232\) 0 0
\(233\) 165.629i 0.710854i 0.934704 + 0.355427i \(0.115665\pi\)
−0.934704 + 0.355427i \(0.884335\pi\)
\(234\) 0 0
\(235\) −88.8713 −0.378176
\(236\) 0 0
\(237\) 139.947 181.604i 0.590493 0.766263i
\(238\) 0 0
\(239\) 20.4912i 0.0857372i 0.999081 + 0.0428686i \(0.0136497\pi\)
−0.999081 + 0.0428686i \(0.986350\pi\)
\(240\) 0 0
\(241\) −88.8198 −0.368547 −0.184273 0.982875i \(-0.558993\pi\)
−0.184273 + 0.982875i \(0.558993\pi\)
\(242\) 0 0
\(243\) −34.2051 + 240.581i −0.140762 + 0.990044i
\(244\) 0 0
\(245\) 15.6525i 0.0638877i
\(246\) 0 0
\(247\) 99.8408 0.404214
\(248\) 0 0
\(249\) 16.9367 + 13.0517i 0.0680189 + 0.0524164i
\(250\) 0 0
\(251\) 163.714i 0.652247i 0.945327 + 0.326123i \(0.105742\pi\)
−0.945327 + 0.326123i \(0.894258\pi\)
\(252\) 0 0
\(253\) −83.9762 −0.331922
\(254\) 0 0
\(255\) −9.30883 + 12.0797i −0.0365052 + 0.0473715i
\(256\) 0 0
\(257\) 308.577i 1.20069i −0.799741 0.600345i \(-0.795030\pi\)
0.799741 0.600345i \(-0.204970\pi\)
\(258\) 0 0
\(259\) −96.5689 −0.372853
\(260\) 0 0
\(261\) −2.58276 + 0.680622i −0.00989564 + 0.00260775i
\(262\) 0 0
\(263\) 305.110i 1.16012i 0.814575 + 0.580058i \(0.196970\pi\)
−0.814575 + 0.580058i \(0.803030\pi\)
\(264\) 0 0
\(265\) 105.184 0.396920
\(266\) 0 0
\(267\) −30.3814 23.4124i −0.113788 0.0876868i
\(268\) 0 0
\(269\) 371.149i 1.37974i 0.723935 + 0.689868i \(0.242331\pi\)
−0.723935 + 0.689868i \(0.757669\pi\)
\(270\) 0 0
\(271\) 282.816 1.04360 0.521801 0.853067i \(-0.325260\pi\)
0.521801 + 0.853067i \(0.325260\pi\)
\(272\) 0 0
\(273\) −24.9147 + 32.3309i −0.0912627 + 0.118428i
\(274\) 0 0
\(275\) 96.4076i 0.350573i
\(276\) 0 0
\(277\) 177.234 0.639833 0.319916 0.947446i \(-0.396345\pi\)
0.319916 + 0.947446i \(0.396345\pi\)
\(278\) 0 0
\(279\) 112.813 + 428.090i 0.404346 + 1.53437i
\(280\) 0 0
\(281\) 54.9268i 0.195469i 0.995213 + 0.0977346i \(0.0311596\pi\)
−0.995213 + 0.0977346i \(0.968840\pi\)
\(282\) 0 0
\(283\) 173.185 0.611962 0.305981 0.952038i \(-0.401016\pi\)
0.305981 + 0.952038i \(0.401016\pi\)
\(284\) 0 0
\(285\) −103.162 79.4981i −0.361971 0.278941i
\(286\) 0 0
\(287\) 175.210i 0.610487i
\(288\) 0 0
\(289\) 283.832 0.982117
\(290\) 0 0
\(291\) −300.920 + 390.493i −1.03409 + 1.34190i
\(292\) 0 0
\(293\) 212.515i 0.725306i 0.931924 + 0.362653i \(0.118129\pi\)
−0.931924 + 0.362653i \(0.881871\pi\)
\(294\) 0 0
\(295\) 79.4799 0.269423
\(296\) 0 0
\(297\) 202.203 479.729i 0.680818 1.61525i
\(298\) 0 0
\(299\) 22.3968i 0.0749058i
\(300\) 0 0
\(301\) −108.865 −0.361677
\(302\) 0 0
\(303\) −305.615 235.512i −1.00863 0.777266i
\(304\) 0 0
\(305\) 143.489i 0.470455i
\(306\) 0 0
\(307\) −545.093 −1.77555 −0.887774 0.460279i \(-0.847749\pi\)
−0.887774 + 0.460279i \(0.847749\pi\)
\(308\) 0 0
\(309\) 156.916 203.625i 0.507819 0.658979i
\(310\) 0 0
\(311\) 362.627i 1.16600i −0.812471 0.583001i \(-0.801878\pi\)
0.812471 0.583001i \(-0.198122\pi\)
\(312\) 0 0
\(313\) −164.567 −0.525774 −0.262887 0.964827i \(-0.584675\pi\)
−0.262887 + 0.964827i \(0.584675\pi\)
\(314\) 0 0
\(315\) 51.4870 13.5681i 0.163451 0.0430733i
\(316\) 0 0
\(317\) 394.214i 1.24358i −0.783185 0.621789i \(-0.786406\pi\)
0.783185 0.621789i \(-0.213594\pi\)
\(318\) 0 0
\(319\) 5.72219 0.0179379
\(320\) 0 0
\(321\) 134.027 + 103.283i 0.417531 + 0.321755i
\(322\) 0 0
\(323\) 44.1378i 0.136650i
\(324\) 0 0
\(325\) 25.7123 0.0791149
\(326\) 0 0
\(327\) 175.207 227.360i 0.535801 0.695291i
\(328\) 0 0
\(329\) 105.154i 0.319617i
\(330\) 0 0
\(331\) −628.823 −1.89977 −0.949884 0.312604i \(-0.898799\pi\)
−0.949884 + 0.312604i \(0.898799\pi\)
\(332\) 0 0
\(333\) 83.7093 + 317.652i 0.251379 + 0.953910i
\(334\) 0 0
\(335\) 259.740i 0.775344i
\(336\) 0 0
\(337\) −179.118 −0.531506 −0.265753 0.964041i \(-0.585621\pi\)
−0.265753 + 0.964041i \(0.585621\pi\)
\(338\) 0 0
\(339\) 346.323 + 266.882i 1.02160 + 0.787261i
\(340\) 0 0
\(341\) 948.448i 2.78137i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 0 0
\(345\) −17.8334 + 23.1418i −0.0516911 + 0.0670778i
\(346\) 0 0
\(347\) 478.907i 1.38013i −0.723745 0.690067i \(-0.757581\pi\)
0.723745 0.690067i \(-0.242419\pi\)
\(348\) 0 0
\(349\) 468.111 1.34129 0.670646 0.741777i \(-0.266017\pi\)
0.670646 + 0.741777i \(0.266017\pi\)
\(350\) 0 0
\(351\) 127.946 + 53.9284i 0.364518 + 0.153642i
\(352\) 0 0
\(353\) 69.9260i 0.198091i −0.995083 0.0990453i \(-0.968421\pi\)
0.995083 0.0990453i \(-0.0315789\pi\)
\(354\) 0 0
\(355\) −228.738 −0.644332
\(356\) 0 0
\(357\) 14.2929 + 11.0144i 0.0400363 + 0.0308525i
\(358\) 0 0
\(359\) 454.508i 1.26604i −0.774136 0.633020i \(-0.781815\pi\)
0.774136 0.633020i \(-0.218185\pi\)
\(360\) 0 0
\(361\) 15.9403 0.0441560
\(362\) 0 0
\(363\) −459.223 + 595.917i −1.26508 + 1.64165i
\(364\) 0 0
\(365\) 184.216i 0.504703i
\(366\) 0 0
\(367\) −190.322 −0.518587 −0.259294 0.965799i \(-0.583490\pi\)
−0.259294 + 0.965799i \(0.583490\pi\)
\(368\) 0 0
\(369\) −576.332 + 151.878i −1.56187 + 0.411593i
\(370\) 0 0
\(371\) 124.455i 0.335459i
\(372\) 0 0
\(373\) −492.934 −1.32154 −0.660770 0.750589i \(-0.729770\pi\)
−0.660770 + 0.750589i \(0.729770\pi\)
\(374\) 0 0
\(375\) −26.5676 20.4734i −0.0708470 0.0545958i
\(376\) 0 0
\(377\) 1.52613i 0.00404810i
\(378\) 0 0
\(379\) −411.232 −1.08504 −0.542522 0.840041i \(-0.682531\pi\)
−0.542522 + 0.840041i \(0.682531\pi\)
\(380\) 0 0
\(381\) 269.782 350.087i 0.708089 0.918862i
\(382\) 0 0
\(383\) 506.545i 1.32257i −0.750133 0.661286i \(-0.770011\pi\)
0.750133 0.661286i \(-0.229989\pi\)
\(384\) 0 0
\(385\) −114.071 −0.296288
\(386\) 0 0
\(387\) 94.3676 + 358.097i 0.243844 + 0.925316i
\(388\) 0 0
\(389\) 168.573i 0.433349i −0.976244 0.216675i \(-0.930479\pi\)
0.976244 0.216675i \(-0.0695211\pi\)
\(390\) 0 0
\(391\) −9.90124 −0.0253229
\(392\) 0 0
\(393\) 154.017 + 118.688i 0.391900 + 0.302004i
\(394\) 0 0
\(395\) 170.889i 0.432629i
\(396\) 0 0
\(397\) −309.834 −0.780439 −0.390220 0.920722i \(-0.627601\pi\)
−0.390220 + 0.920722i \(0.627601\pi\)
\(398\) 0 0
\(399\) −94.0634 + 122.063i −0.235748 + 0.305922i
\(400\) 0 0
\(401\) 699.211i 1.74367i 0.489802 + 0.871834i \(0.337069\pi\)
−0.489802 + 0.871834i \(0.662931\pi\)
\(402\) 0 0
\(403\) 252.955 0.627681
\(404\) 0 0
\(405\) −89.2613 157.599i −0.220398 0.389133i
\(406\) 0 0
\(407\) 703.768i 1.72916i
\(408\) 0 0
\(409\) 589.473 1.44125 0.720627 0.693323i \(-0.243854\pi\)
0.720627 + 0.693323i \(0.243854\pi\)
\(410\) 0 0
\(411\) −266.950 205.715i −0.649513 0.500524i
\(412\) 0 0
\(413\) 94.0419i 0.227704i
\(414\) 0 0
\(415\) −15.9373 −0.0384032
\(416\) 0 0
\(417\) −351.108 + 455.620i −0.841985 + 1.09261i
\(418\) 0 0
\(419\) 305.382i 0.728835i −0.931236 0.364418i \(-0.881268\pi\)
0.931236 0.364418i \(-0.118732\pi\)
\(420\) 0 0
\(421\) −83.6282 −0.198642 −0.0993209 0.995055i \(-0.531667\pi\)
−0.0993209 + 0.995055i \(0.531667\pi\)
\(422\) 0 0
\(423\) 345.891 91.1510i 0.817710 0.215487i
\(424\) 0 0
\(425\) 11.3670i 0.0267458i
\(426\) 0 0
\(427\) −169.778 −0.397607
\(428\) 0 0
\(429\) −235.619 181.572i −0.549229 0.423244i
\(430\) 0 0
\(431\) 802.649i 1.86229i 0.364643 + 0.931147i \(0.381191\pi\)
−0.364643 + 0.931147i \(0.618809\pi\)
\(432\) 0 0
\(433\) −37.4318 −0.0864476 −0.0432238 0.999065i \(-0.513763\pi\)
−0.0432238 + 0.999065i \(0.513763\pi\)
\(434\) 0 0
\(435\) 1.21518 1.57690i 0.00279352 0.00362506i
\(436\) 0 0
\(437\) 84.5573i 0.193495i
\(438\) 0 0
\(439\) 119.327 0.271815 0.135907 0.990722i \(-0.456605\pi\)
0.135907 + 0.990722i \(0.456605\pi\)
\(440\) 0 0
\(441\) −16.0540 60.9202i −0.0364036 0.138141i
\(442\) 0 0
\(443\) 326.408i 0.736813i 0.929665 + 0.368407i \(0.120097\pi\)
−0.929665 + 0.368407i \(0.879903\pi\)
\(444\) 0 0
\(445\) 28.5888 0.0642444
\(446\) 0 0
\(447\) −85.6739 66.0216i −0.191664 0.147699i
\(448\) 0 0
\(449\) 94.0364i 0.209435i −0.994502 0.104718i \(-0.966606\pi\)
0.994502 0.104718i \(-0.0333939\pi\)
\(450\) 0 0
\(451\) 1276.88 2.83122
\(452\) 0 0
\(453\) 260.435 337.958i 0.574912 0.746043i
\(454\) 0 0
\(455\) 30.4232i 0.0668643i
\(456\) 0 0
\(457\) −445.185 −0.974146 −0.487073 0.873361i \(-0.661935\pi\)
−0.487073 + 0.873361i \(0.661935\pi\)
\(458\) 0 0
\(459\) 23.8408 56.5626i 0.0519407 0.123230i
\(460\) 0 0
\(461\) 437.152i 0.948269i 0.880452 + 0.474135i \(0.157239\pi\)
−0.880452 + 0.474135i \(0.842761\pi\)
\(462\) 0 0
\(463\) 518.312 1.11946 0.559732 0.828674i \(-0.310904\pi\)
0.559732 + 0.828674i \(0.310904\pi\)
\(464\) 0 0
\(465\) −261.370 201.415i −0.562085 0.433151i
\(466\) 0 0
\(467\) 697.335i 1.49322i −0.665260 0.746612i \(-0.731679\pi\)
0.665260 0.746612i \(-0.268321\pi\)
\(468\) 0 0
\(469\) −307.329 −0.655286
\(470\) 0 0
\(471\) 58.1262 75.4284i 0.123410 0.160145i
\(472\) 0 0
\(473\) 793.376i 1.67733i
\(474\) 0 0
\(475\) 97.0748 0.204368
\(476\) 0 0
\(477\) −409.381 + 107.882i −0.858241 + 0.226168i
\(478\) 0 0
\(479\) 921.591i 1.92399i −0.273067 0.961995i \(-0.588038\pi\)
0.273067 0.961995i \(-0.411962\pi\)
\(480\) 0 0
\(481\) 187.698 0.390225
\(482\) 0 0
\(483\) 27.3818 + 21.1008i 0.0566911 + 0.0436870i
\(484\) 0 0
\(485\) 367.452i 0.757632i
\(486\) 0 0
\(487\) 839.254 1.72331 0.861657 0.507490i \(-0.169427\pi\)
0.861657 + 0.507490i \(0.169427\pi\)
\(488\) 0 0
\(489\) 11.8846 15.4223i 0.0243040 0.0315384i
\(490\) 0 0
\(491\) 610.574i 1.24353i −0.783204 0.621765i \(-0.786416\pi\)
0.783204 0.621765i \(-0.213584\pi\)
\(492\) 0 0
\(493\) 0.674677 0.00136851
\(494\) 0 0
\(495\) 98.8807 + 375.223i 0.199759 + 0.758026i
\(496\) 0 0
\(497\) 270.646i 0.544560i
\(498\) 0 0
\(499\) 947.765 1.89933 0.949664 0.313269i \(-0.101424\pi\)
0.949664 + 0.313269i \(0.101424\pi\)
\(500\) 0 0
\(501\) 144.708 + 111.514i 0.288838 + 0.222583i
\(502\) 0 0
\(503\) 215.893i 0.429210i 0.976701 + 0.214605i \(0.0688464\pi\)
−0.976701 + 0.214605i \(0.931154\pi\)
\(504\) 0 0
\(505\) 287.582 0.569470
\(506\) 0 0
\(507\) −261.046 + 338.751i −0.514885 + 0.668148i
\(508\) 0 0
\(509\) 494.254i 0.971030i 0.874228 + 0.485515i \(0.161368\pi\)
−0.874228 + 0.485515i \(0.838632\pi\)
\(510\) 0 0
\(511\) 217.968 0.426552
\(512\) 0 0
\(513\) 483.048 + 203.602i 0.941615 + 0.396885i
\(514\) 0 0
\(515\) 191.610i 0.372057i
\(516\) 0 0
\(517\) −766.333 −1.48227
\(518\) 0 0
\(519\) 785.787 + 605.539i 1.51404 + 1.16674i
\(520\) 0 0
\(521\) 98.2752i 0.188628i −0.995543 0.0943140i \(-0.969934\pi\)
0.995543 0.0943140i \(-0.0300658\pi\)
\(522\) 0 0
\(523\) 227.467 0.434927 0.217463 0.976068i \(-0.430222\pi\)
0.217463 + 0.976068i \(0.430222\pi\)
\(524\) 0 0
\(525\) −24.2245 + 31.4352i −0.0461419 + 0.0598767i
\(526\) 0 0
\(527\) 111.827i 0.212196i
\(528\) 0 0
\(529\) 510.032 0.964143
\(530\) 0 0
\(531\) −309.340 + 81.5187i −0.582560 + 0.153519i
\(532\) 0 0
\(533\) 340.550i 0.638931i
\(534\) 0 0
\(535\) −126.119 −0.235736
\(536\) 0 0
\(537\) 667.946 + 514.729i 1.24385 + 0.958527i
\(538\) 0 0
\(539\) 134.971i 0.250409i
\(540\) 0 0
\(541\) 510.563 0.943740 0.471870 0.881668i \(-0.343579\pi\)
0.471870 + 0.881668i \(0.343579\pi\)
\(542\) 0 0
\(543\) 287.806 373.476i 0.530029 0.687800i
\(544\) 0 0
\(545\) 213.945i 0.392559i
\(546\) 0 0
\(547\) −485.854 −0.888215 −0.444108 0.895974i \(-0.646479\pi\)
−0.444108 + 0.895974i \(0.646479\pi\)
\(548\) 0 0
\(549\) 147.170 + 558.465i 0.268068 + 1.01724i
\(550\) 0 0
\(551\) 5.76179i 0.0104570i
\(552\) 0 0
\(553\) 202.198 0.365639
\(554\) 0 0
\(555\) −193.942 149.454i −0.349445 0.269287i
\(556\) 0 0
\(557\) 383.384i 0.688302i 0.938914 + 0.344151i \(0.111833\pi\)
−0.938914 + 0.344151i \(0.888167\pi\)
\(558\) 0 0
\(559\) 211.597 0.378528
\(560\) 0 0
\(561\) −80.2697 + 104.163i −0.143083 + 0.185674i
\(562\) 0 0
\(563\) 854.637i 1.51800i −0.651088 0.759002i \(-0.725687\pi\)
0.651088 0.759002i \(-0.274313\pi\)
\(564\) 0 0
\(565\) −325.888 −0.576793
\(566\) 0 0
\(567\) −186.474 + 105.615i −0.328878 + 0.186271i
\(568\) 0 0
\(569\) 197.946i 0.347883i −0.984756 0.173942i \(-0.944350\pi\)
0.984756 0.173942i \(-0.0556504\pi\)
\(570\) 0 0
\(571\) −582.578 −1.02028 −0.510139 0.860092i \(-0.670406\pi\)
−0.510139 + 0.860092i \(0.670406\pi\)
\(572\) 0 0
\(573\) −468.647 361.147i −0.817884 0.630273i
\(574\) 0 0
\(575\) 21.7763i 0.0378719i
\(576\) 0 0
\(577\) 828.323 1.43557 0.717784 0.696266i \(-0.245156\pi\)
0.717784 + 0.696266i \(0.245156\pi\)
\(578\) 0 0
\(579\) 302.491 392.532i 0.522437 0.677949i
\(580\) 0 0
\(581\) 18.8573i 0.0324567i
\(582\) 0 0
\(583\) 906.997 1.55574
\(584\) 0 0
\(585\) −100.074 + 26.3719i −0.171066 + 0.0450802i
\(586\) 0 0
\(587\) 20.1899i 0.0343950i −0.999852 0.0171975i \(-0.994526\pi\)
0.999852 0.0171975i \(-0.00547441\pi\)
\(588\) 0 0
\(589\) 955.011 1.62141
\(590\) 0 0
\(591\) 214.682 + 165.438i 0.363253 + 0.279928i
\(592\) 0 0
\(593\) 297.750i 0.502108i −0.967973 0.251054i \(-0.919223\pi\)
0.967973 0.251054i \(-0.0807772\pi\)
\(594\) 0 0
\(595\) −13.4496 −0.0226043
\(596\) 0 0
\(597\) 17.1999 22.3197i 0.0288106 0.0373865i
\(598\) 0 0
\(599\) 229.232i 0.382692i 0.981523 + 0.191346i \(0.0612852\pi\)
−0.981523 + 0.191346i \(0.938715\pi\)
\(600\) 0 0
\(601\) 15.1940 0.0252812 0.0126406 0.999920i \(-0.495976\pi\)
0.0126406 + 0.999920i \(0.495976\pi\)
\(602\) 0 0
\(603\) 266.403 + 1010.92i 0.441796 + 1.67649i
\(604\) 0 0
\(605\) 560.755i 0.926868i
\(606\) 0 0
\(607\) −714.266 −1.17672 −0.588358 0.808601i \(-0.700225\pi\)
−0.588358 + 0.808601i \(0.700225\pi\)
\(608\) 0 0
\(609\) −1.86581 1.43782i −0.00306373 0.00236096i
\(610\) 0 0
\(611\) 204.384i 0.334508i
\(612\) 0 0
\(613\) −126.711 −0.206707 −0.103354 0.994645i \(-0.532957\pi\)
−0.103354 + 0.994645i \(0.532957\pi\)
\(614\) 0 0
\(615\) 271.163 351.878i 0.440915 0.572159i
\(616\) 0 0
\(617\) 363.016i 0.588357i −0.955751 0.294178i \(-0.904954\pi\)
0.955751 0.294178i \(-0.0950460\pi\)
\(618\) 0 0
\(619\) −374.347 −0.604761 −0.302380 0.953187i \(-0.597781\pi\)
−0.302380 + 0.953187i \(0.597781\pi\)
\(620\) 0 0
\(621\) 45.6732 108.360i 0.0735477 0.174493i
\(622\) 0 0
\(623\) 33.8267i 0.0542964i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) −889.561 685.509i −1.41876 1.09332i
\(628\) 0 0
\(629\) 82.9781i 0.131921i
\(630\) 0 0
\(631\) −454.126 −0.719692 −0.359846 0.933012i \(-0.617171\pi\)
−0.359846 + 0.933012i \(0.617171\pi\)
\(632\) 0 0
\(633\) 403.223 523.248i 0.637003 0.826617i
\(634\) 0 0
\(635\) 329.430i 0.518787i
\(636\) 0 0
\(637\) −35.9973 −0.0565106
\(638\) 0 0
\(639\) 890.259 234.605i 1.39321 0.367145i
\(640\) 0 0
\(641\) 42.7418i 0.0666799i −0.999444 0.0333400i \(-0.989386\pi\)
0.999444 0.0333400i \(-0.0106144\pi\)
\(642\) 0 0
\(643\) 809.610 1.25911 0.629557 0.776955i \(-0.283237\pi\)
0.629557 + 0.776955i \(0.283237\pi\)
\(644\) 0 0
\(645\) −218.636 168.484i −0.338970 0.261215i
\(646\) 0 0
\(647\) 1007.94i 1.55787i −0.627102 0.778937i \(-0.715759\pi\)
0.627102 0.778937i \(-0.284241\pi\)
\(648\) 0 0
\(649\) 685.352 1.05601
\(650\) 0 0
\(651\) −238.318 + 309.257i −0.366080 + 0.475049i
\(652\) 0 0
\(653\) 474.829i 0.727151i −0.931565 0.363575i \(-0.881556\pi\)
0.931565 0.363575i \(-0.118444\pi\)
\(654\) 0 0
\(655\) −144.929 −0.221266
\(656\) 0 0
\(657\) −188.942 716.979i −0.287583 1.09129i
\(658\) 0 0
\(659\) 1304.52i 1.97955i 0.142633 + 0.989776i \(0.454443\pi\)
−0.142633 + 0.989776i \(0.545557\pi\)
\(660\) 0 0
\(661\) 928.326 1.40443 0.702213 0.711967i \(-0.252195\pi\)
0.702213 + 0.711967i \(0.252195\pi\)
\(662\) 0 0
\(663\) −27.7808 21.4083i −0.0419016 0.0322900i
\(664\) 0 0
\(665\) 114.860i 0.172722i
\(666\) 0 0
\(667\) 1.29252 0.00193781
\(668\) 0 0
\(669\) −640.728 + 831.450i −0.957740 + 1.24283i
\(670\) 0 0
\(671\) 1237.30i 1.84396i
\(672\) 0 0
\(673\) −825.850 −1.22712 −0.613558 0.789649i \(-0.710262\pi\)
−0.613558 + 0.789649i \(0.710262\pi\)
\(674\) 0 0
\(675\) 124.401 + 52.4344i 0.184298 + 0.0776806i
\(676\) 0 0
\(677\) 1161.82i 1.71613i −0.513544 0.858064i \(-0.671668\pi\)
0.513544 0.858064i \(-0.328332\pi\)
\(678\) 0 0
\(679\) −434.775 −0.640316
\(680\) 0 0
\(681\) 801.358 + 617.538i 1.17674 + 0.906811i
\(682\) 0 0
\(683\) 325.686i 0.476846i 0.971161 + 0.238423i \(0.0766305\pi\)
−0.971161 + 0.238423i \(0.923370\pi\)
\(684\) 0 0
\(685\) 251.198 0.366713
\(686\) 0 0
\(687\) −5.74482 + 7.45485i −0.00836218 + 0.0108513i
\(688\) 0 0
\(689\) 241.900i 0.351089i
\(690\) 0 0
\(691\) 36.1475 0.0523118 0.0261559 0.999658i \(-0.491673\pi\)
0.0261559 + 0.999658i \(0.491673\pi\)
\(692\) 0 0
\(693\) 443.970 116.997i 0.640649 0.168827i
\(694\) 0 0
\(695\) 428.736i 0.616886i
\(696\) 0 0
\(697\) 150.551 0.215999
\(698\) 0 0
\(699\) 393.581 + 303.299i 0.563063 + 0.433905i
\(700\) 0 0
\(701\) 121.382i 0.173156i 0.996245 + 0.0865778i \(0.0275931\pi\)
−0.996245 + 0.0865778i \(0.972407\pi\)
\(702\) 0 0
\(703\) 708.638 1.00802
\(704\) 0 0
\(705\) −162.741 + 211.183i −0.230838 + 0.299551i
\(706\) 0 0
\(707\) 340.272i 0.481290i
\(708\) 0 0
\(709\) 860.497 1.21368 0.606839 0.794825i \(-0.292437\pi\)
0.606839 + 0.794825i \(0.292437\pi\)
\(710\) 0 0
\(711\) −175.272 665.107i −0.246515 0.935452i
\(712\) 0 0
\(713\) 214.233i 0.300468i
\(714\) 0 0
\(715\) 221.716 0.310093
\(716\) 0 0
\(717\) 48.6928 + 37.5234i 0.0679119 + 0.0523339i
\(718\) 0 0
\(719\) 583.081i 0.810961i 0.914104 + 0.405480i \(0.132896\pi\)
−0.914104 + 0.405480i \(0.867104\pi\)
\(720\) 0 0
\(721\) 226.716 0.314446
\(722\) 0 0
\(723\) −162.647 + 211.061i −0.224961 + 0.291924i
\(724\) 0 0
\(725\) 1.48385i 0.00204669i
\(726\) 0 0
\(727\) 337.474 0.464200 0.232100 0.972692i \(-0.425440\pi\)
0.232100 + 0.972692i \(0.425440\pi\)
\(728\) 0 0
\(729\) 509.051 + 521.832i 0.698287 + 0.715818i
\(730\) 0 0
\(731\) 93.5433i 0.127966i
\(732\) 0 0
\(733\) 403.486 0.550459 0.275229 0.961379i \(-0.411246\pi\)
0.275229 + 0.961379i \(0.411246\pi\)
\(734\) 0 0
\(735\) 37.1947 + 28.6628i 0.0506050 + 0.0389970i
\(736\) 0 0
\(737\) 2239.73i 3.03898i
\(738\) 0 0
\(739\) −1149.86 −1.55597 −0.777987 0.628281i \(-0.783759\pi\)
−0.777987 + 0.628281i \(0.783759\pi\)
\(740\) 0 0
\(741\) 182.828 237.250i 0.246732 0.320175i
\(742\) 0 0
\(743\) 408.388i 0.549647i 0.961495 + 0.274824i \(0.0886195\pi\)
−0.961495 + 0.274824i \(0.911381\pi\)
\(744\) 0 0
\(745\) 80.6187 0.108213
\(746\) 0 0
\(747\) 62.0289 16.3462i 0.0830374 0.0218824i
\(748\) 0 0
\(749\) 149.226i 0.199234i
\(750\) 0 0
\(751\) −103.547 −0.137878 −0.0689391 0.997621i \(-0.521961\pi\)
−0.0689391 + 0.997621i \(0.521961\pi\)
\(752\) 0 0
\(753\) 389.030 + 299.793i 0.516641 + 0.398131i
\(754\) 0 0
\(755\) 318.016i 0.421214i
\(756\) 0 0
\(757\) −505.410 −0.667648 −0.333824 0.942635i \(-0.608339\pi\)
−0.333824 + 0.942635i \(0.608339\pi\)
\(758\) 0 0
\(759\) −153.777 + 199.551i −0.202605 + 0.262913i
\(760\) 0 0
\(761\) 246.614i 0.324066i −0.986785 0.162033i \(-0.948195\pi\)
0.986785 0.162033i \(-0.0518050\pi\)
\(762\) 0 0
\(763\) 253.143 0.331773
\(764\) 0 0
\(765\) 11.6586 + 44.2408i 0.0152399 + 0.0578311i
\(766\) 0 0
\(767\) 182.786i 0.238313i
\(768\) 0 0
\(769\) −944.766 −1.22856 −0.614282 0.789086i \(-0.710554\pi\)
−0.614282 + 0.789086i \(0.710554\pi\)
\(770\) 0 0
\(771\) −733.267 565.066i −0.951059 0.732900i
\(772\) 0 0
\(773\) 792.538i 1.02528i −0.858605 0.512638i \(-0.828668\pi\)
0.858605 0.512638i \(-0.171332\pi\)
\(774\) 0 0
\(775\) 245.947 0.317352
\(776\) 0 0
\(777\) −176.837 + 229.475i −0.227589 + 0.295335i
\(778\) 0 0
\(779\) 1285.72i 1.65047i
\(780\) 0 0
\(781\) −1972.40 −2.52548
\(782\) 0 0
\(783\) −3.11220 + 7.38372i −0.00397471 + 0.00943004i
\(784\) 0 0
\(785\) 70.9777i 0.0904174i
\(786\) 0 0
\(787\) −65.5806 −0.0833298 −0.0416649 0.999132i \(-0.513266\pi\)
−0.0416649 + 0.999132i \(0.513266\pi\)
\(788\) 0 0
\(789\) 725.028 + 558.717i 0.918920 + 0.708134i
\(790\) 0 0
\(791\) 385.596i 0.487479i
\(792\) 0 0
\(793\) 329.993 0.416132
\(794\) 0 0
\(795\) 192.613 249.947i 0.242280 0.314398i
\(796\) 0 0
\(797\) 1262.46i 1.58401i 0.610512 + 0.792007i \(0.290964\pi\)
−0.610512 + 0.792007i \(0.709036\pi\)
\(798\) 0 0
\(799\) −90.3548 −0.113085
\(800\) 0 0
\(801\) −111.269 + 29.3221i −0.138912 + 0.0366069i
\(802\) 0 0
\(803\) 1588.49i 1.97820i
\(804\) 0 0
\(805\) −25.7661 −0.0320076
\(806\) 0 0
\(807\) 881.955 + 679.647i 1.09288 + 0.842190i
\(808\) 0 0
\(809\) 591.358i 0.730974i −0.930816 0.365487i \(-0.880902\pi\)
0.930816 0.365487i \(-0.119098\pi\)
\(810\) 0 0
\(811\) 249.297 0.307394 0.153697 0.988118i \(-0.450882\pi\)
0.153697 + 0.988118i \(0.450882\pi\)
\(812\) 0 0
\(813\) 517.893 672.051i 0.637014 0.826631i
\(814\) 0 0
\(815\) 14.5123i 0.0178065i
\(816\) 0 0
\(817\) 798.866 0.977805
\(818\) 0 0
\(819\) 31.2037 + 118.409i 0.0380997 + 0.144577i
\(820\) 0 0
\(821\) 1412.27i 1.72019i 0.510137 + 0.860093i \(0.329595\pi\)
−0.510137 + 0.860093i \(0.670405\pi\)
\(822\) 0 0
\(823\) 12.3889 0.0150533 0.00752664 0.999972i \(-0.497604\pi\)
0.00752664 + 0.999972i \(0.497604\pi\)
\(824\) 0 0
\(825\) −229.092 176.541i −0.277687 0.213990i
\(826\) 0 0
\(827\) 200.645i 0.242618i 0.992615 + 0.121309i \(0.0387091\pi\)
−0.992615 + 0.121309i \(0.961291\pi\)
\(828\) 0 0
\(829\) −762.542 −0.919833 −0.459917 0.887962i \(-0.652121\pi\)
−0.459917 + 0.887962i \(0.652121\pi\)
\(830\) 0 0
\(831\) 324.550 421.157i 0.390553 0.506808i
\(832\) 0 0
\(833\) 15.9138i 0.0191042i
\(834\) 0 0
\(835\) −136.169 −0.163077
\(836\) 0 0
\(837\) 1223.85 + 515.844i 1.46218 + 0.616301i
\(838\) 0 0
\(839\) 32.4426i 0.0386682i 0.999813 + 0.0193341i \(0.00615461\pi\)
−0.999813 + 0.0193341i \(0.993845\pi\)
\(840\) 0 0
\(841\) 840.912 0.999895
\(842\) 0 0
\(843\) 130.522 + 100.582i 0.154830 + 0.119314i
\(844\) 0 0
\(845\) 318.763i 0.377234i
\(846\) 0 0
\(847\) −663.494 −0.783346
\(848\) 0 0
\(849\) 317.136 411.537i 0.373541 0.484731i
\(850\) 0 0
\(851\) 158.966i 0.186799i
\(852\) 0 0
\(853\) −156.786 −0.183806 −0.0919029 0.995768i \(-0.529295\pi\)
−0.0919029 + 0.995768i \(0.529295\pi\)
\(854\) 0 0
\(855\) −377.820 + 99.5649i −0.441894 + 0.116450i
\(856\) 0 0
\(857\) 862.268i 1.00615i −0.864244 0.503073i \(-0.832203\pi\)
0.864244 0.503073i \(-0.167797\pi\)
\(858\) 0 0
\(859\) −1326.28 −1.54399 −0.771993 0.635632i \(-0.780740\pi\)
−0.771993 + 0.635632i \(0.780740\pi\)
\(860\) 0 0
\(861\) −416.348 320.844i −0.483563 0.372641i
\(862\) 0 0
\(863\) 1214.13i 1.40687i 0.710759 + 0.703436i \(0.248352\pi\)
−0.710759 + 0.703436i \(0.751648\pi\)
\(864\) 0 0
\(865\) −739.422 −0.854823
\(866\) 0 0
\(867\) 519.752 674.464i 0.599483 0.777928i
\(868\) 0 0
\(869\) 1473.57i 1.69570i
\(870\) 0 0
\(871\) 597.346 0.685816
\(872\) 0 0
\(873\) 376.878 + 1430.14i 0.431704 + 1.63819i
\(874\) 0 0
\(875\) 29.5804i 0.0338062i
\(876\) 0 0
\(877\) −830.750 −0.947263 −0.473632 0.880723i \(-0.657057\pi\)
−0.473632 + 0.880723i \(0.657057\pi\)
\(878\) 0 0
\(879\) 504.995 + 389.157i 0.574511 + 0.442727i
\(880\) 0 0
\(881\) 974.644i 1.10629i 0.833084 + 0.553146i \(0.186573\pi\)
−0.833084 + 0.553146i \(0.813427\pi\)
\(882\) 0 0
\(883\) −583.358 −0.660654 −0.330327 0.943866i \(-0.607159\pi\)
−0.330327 + 0.943866i \(0.607159\pi\)
\(884\) 0 0
\(885\) 145.543 188.867i 0.164456 0.213409i
\(886\) 0 0
\(887\) 897.766i 1.01214i −0.862493 0.506069i \(-0.831098\pi\)
0.862493 0.506069i \(-0.168902\pi\)
\(888\) 0 0
\(889\) 389.786 0.438455
\(890\) 0 0
\(891\) −769.697 1358.97i −0.863857 1.52522i
\(892\) 0 0
\(893\) 771.636i 0.864094i
\(894\) 0 0
\(895\) −628.533 −0.702272
\(896\) 0 0
\(897\) −53.2212 41.0130i −0.0593324 0.0457224i
\(898\) 0 0
\(899\) 14.5980i 0.0162380i
\(900\) 0 0
\(901\) 106.940 0.118690
\(902\) 0 0
\(903\) −199.353 + 258.693i −0.220767 + 0.286482i
\(904\) 0 0
\(905\) 351.438i 0.388330i
\(906\) 0 0
\(907\) −1418.76 −1.56423 −0.782115 0.623134i \(-0.785859\pi\)
−0.782115 + 0.623134i \(0.785859\pi\)
\(908\) 0 0
\(909\) −1119.28 + 294.959i −1.23134 + 0.324488i
\(910\) 0 0
\(911\) 620.721i 0.681362i 0.940179 + 0.340681i \(0.110658\pi\)
−0.940179 + 0.340681i \(0.889342\pi\)
\(912\) 0 0
\(913\) −137.427 −0.150523
\(914\) 0 0
\(915\) −340.970 262.756i −0.372645 0.287165i
\(916\) 0 0
\(917\) 171.482i 0.187004i
\(918\) 0 0
\(919\) −662.040 −0.720392 −0.360196 0.932877i \(-0.617290\pi\)
−0.360196 + 0.932877i \(0.617290\pi\)
\(920\) 0 0
\(921\) −998.174 + 1295.30i −1.08379 + 1.40640i
\(922\) 0 0
\(923\) 526.047i 0.569932i
\(924\) 0 0
\(925\) 182.498 0.197295
\(926\) 0 0
\(927\) −196.525 745.754i −0.212001 0.804481i
\(928\) 0 0
\(929\) 3.51829i 0.00378717i 0.999998 + 0.00189359i \(0.000602748\pi\)
−0.999998 + 0.00189359i \(0.999397\pi\)
\(930\) 0 0
\(931\) −135.905 −0.145977
\(932\) 0 0
\(933\) −861.703 664.041i −0.923583 0.711727i
\(934\) 0 0
\(935\) 98.0170i 0.104831i
\(936\) 0 0
\(937\) −893.777 −0.953871 −0.476935 0.878938i \(-0.658252\pi\)
−0.476935 + 0.878938i \(0.658252\pi\)
\(938\) 0 0
\(939\) −301.355 + 391.058i −0.320932 + 0.416462i
\(940\) 0 0
\(941\) 824.629i 0.876332i −0.898894 0.438166i \(-0.855628\pi\)
0.898894 0.438166i \(-0.144372\pi\)
\(942\) 0 0
\(943\) 288.419 0.305853
\(944\) 0 0
\(945\) 62.0412 147.193i 0.0656520 0.155760i
\(946\) 0 0
\(947\) 974.692i 1.02924i 0.857418 + 0.514621i \(0.172067\pi\)
−0.857418 + 0.514621i \(0.827933\pi\)
\(948\) 0 0
\(949\) −423.658 −0.446425
\(950\) 0 0
\(951\) −936.764 721.884i −0.985031 0.759079i
\(952\) 0 0
\(953\) 264.699i 0.277753i −0.990310 0.138877i \(-0.955651\pi\)
0.990310 0.138877i \(-0.0443492\pi\)
\(954\) 0 0
\(955\) 440.995 0.461774
\(956\) 0 0
\(957\) 10.4785 13.5975i 0.0109493 0.0142085i
\(958\) 0 0
\(959\) 297.222i 0.309929i
\(960\) 0 0
\(961\) 1458.61 1.51780
\(962\) 0 0
\(963\) 490.861 129.354i 0.509721 0.134324i
\(964\) 0 0
\(965\) 369.371i 0.382768i
\(966\) 0 0
\(967\) −365.750 −0.378232 −0.189116 0.981955i \(-0.560562\pi\)
−0.189116 + 0.981955i \(0.560562\pi\)
\(968\) 0 0
\(969\) −104.884 80.8251i −0.108239 0.0834109i
\(970\) 0 0
\(971\) 401.640i 0.413635i 0.978380 + 0.206818i \(0.0663107\pi\)
−0.978380 + 0.206818i \(0.933689\pi\)
\(972\) 0 0
\(973\) −507.287 −0.521364
\(974\) 0 0
\(975\) 47.0844 61.0998i 0.0482917 0.0626664i
\(976\) 0 0
\(977\) 1202.29i 1.23060i −0.788294 0.615299i \(-0.789035\pi\)
0.788294 0.615299i \(-0.210965\pi\)
\(978\) 0 0
\(979\) 246.520 0.251808
\(980\) 0 0
\(981\) −219.433 832.683i −0.223683 0.848810i
\(982\) 0 0
\(983\) 1503.26i 1.52926i −0.644469 0.764630i \(-0.722922\pi\)
0.644469 0.764630i \(-0.277078\pi\)
\(984\) 0 0
\(985\) −202.015 −0.205091
\(986\) 0 0
\(987\) 249.875 + 192.558i 0.253166 + 0.195094i
\(988\) 0 0
\(989\) 179.206i 0.181199i
\(990\) 0 0
\(991\) 1172.96 1.18361 0.591805 0.806081i \(-0.298415\pi\)
0.591805 + 0.806081i \(0.298415\pi\)
\(992\) 0 0
\(993\) −1151.50 + 1494.26i −1.15962 + 1.50479i
\(994\) 0 0
\(995\) 21.0027i 0.0211083i
\(996\) 0 0
\(997\) −376.288 −0.377421 −0.188710 0.982033i \(-0.560431\pi\)
−0.188710 + 0.982033i \(0.560431\pi\)
\(998\) 0 0
\(999\) 908.119 + 382.767i 0.909028 + 0.383150i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.3.l.b.1121.11 16
3.2 odd 2 inner 1680.3.l.b.1121.12 16
4.3 odd 2 420.3.g.a.281.6 yes 16
12.11 even 2 420.3.g.a.281.5 16
20.3 even 4 2100.3.e.c.449.9 32
20.7 even 4 2100.3.e.c.449.24 32
20.19 odd 2 2100.3.g.d.701.11 16
60.23 odd 4 2100.3.e.c.449.23 32
60.47 odd 4 2100.3.e.c.449.10 32
60.59 even 2 2100.3.g.d.701.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.g.a.281.5 16 12.11 even 2
420.3.g.a.281.6 yes 16 4.3 odd 2
1680.3.l.b.1121.11 16 1.1 even 1 trivial
1680.3.l.b.1121.12 16 3.2 odd 2 inner
2100.3.e.c.449.9 32 20.3 even 4
2100.3.e.c.449.10 32 60.47 odd 4
2100.3.e.c.449.23 32 60.23 odd 4
2100.3.e.c.449.24 32 20.7 even 4
2100.3.g.d.701.11 16 20.19 odd 2
2100.3.g.d.701.12 16 60.59 even 2